

Texts in Theoretical Computer Science

An EATCS Series

Editors: W. Brauer G. Rozenberg A. Salomaa
On behalf of the European Association
for Theoretical Computer Science (EATCS)

Advisory Board: G. Ausiello M. Broy C.S. Calude
S. Even J. Hartmanis J. Hromkovic N. Jones
T. Leighton M. Nivat C. Papadimitriou D. Scott

Springer-Verlag Berlin Heidelberg GmbH

Leonid Libkin

Elements of
Finite Model Theory

With 24 Figures

~Springer

Author

Prof. Leonid Libkin
Department of Computer Science
University of Toronto
Toronto ON M5S 3H5
Canada
libkin@cs.toronto.edu
www.cs.toronto.edu/-libkin

Series Editors

Prof. Dr. Wilfried Brauer
Institut fUr Informatik der TUM
Boltzmannstr. 3,85748 Garching, Germany
Brauer@informatik.tu-muenchen.de

Prof. Dr. Grzegorz Rozenberg
Leiden Institute of Advanced Computer Science
University of Leiden
Niels Bohrweg 1,2333 CA Leiden, The Netherlands
rozenber@liacs.nl

Prof. Dr. Arto Salomaa
Turku Centre for Computer Science
Lemminkăisenkatu 14A, 20520 Turku, Finland
asalomaa@utu.fi

Library of Congress Control Number: 2004105855

ACM Computing Classification (1998): FA, El, H.2, E3

ISBN 978-3-642-05948-3 ISBN 978-3-662-07003-1 (eBook)
DOI 10.1007/978-3-662-07003-1

This work is subject to copyright. AII rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright Law of
September 9, 1965, in its current version, and permission for use must always be obtained from
Springer-Verlag Berlin Heidelberg GmbH.
Violations are liable for prosecution under the German Copyright Law.

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Originally published by Springer-Verlag Berlin Heidelberg New York in 2004
Softcover reprint ofthe hardcover lst edition 2004
The use of general descriptive names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant protective laws and
therefore free for general use.

Cover Design: KiinkelLopka, Heidelberg
Typesetting: Camera-ready by the author
Printed on acid-free paper 45/3142/GF - 5432 1 O

To Helen and Daniel
AJieHe II ,ll,aHIIJie

Preface

Finite model theory is an area of mathematical logic that grew out of computer
science applications.

The main sources of motivational examples for finite model theory are
found in database theory, computational complexity, and formal languages,
although in recent years connections with other areas, such as formal methods
and verification, and artificial intelligence, have been discovered.

The birth of finite model theory is often identified with Trakhtenbrot's
result from 1950 stating that validity over finite models is not recursively
enumerable; in other words, completeness fails over finite models. The tech
nique of the proof, based on encoding Turing machine computations as finite
structures, was reused by Fagin almost a quarter century later to prove his cel
ebrated result that put the equality sign between the class NP and existential
second-order logic, thereby providing a machine-independent characterization
of an important complexity class. In 1982, Immerman and Vardi showed that
over ordered structures, a fixed point extension of first-order logic captures
the complexity class PTIME of polynomial time computable propertiE~s. Shortly
thereafter, logical characterizations of other important complexity classes were
obtained. This line of work is often referred to as descriptive complexity.

A different line of finite model theory research is associated with the de
velopment of relational databases. By the late 1970s, the relational database
model had replaced others, and all the basic query languages for it were es
sentially first-order predicate calculus or its minor extensions. In 197 4, Fagin
showed that first-order logic cannot express the transitive closure query over
finite relations. In 1979, Aho and Ullman rediscovered this result and brought
it to the attention of the computer science community. Following this, Chan
dra and Harel proposed a fixed-point extension of first-order logic Oil finite
relational structures as a query language capable of expressing queries such
as the transitive closure. Logics over finite models have become the standard
starting point for developing database query languages, and finite model the
ory techniques an~ used for proving results about their expressiveness and
complexity.

VIII Preface

Yet another line of work on logics over finite models originated with Biichi's
work from the early 1960s: he showed that regular languages an~ pn~cisf'ly
those definable in monadic second-order logic over strings. This line of work
is the automata-theoretic counterpart of descriptive complexity: instead of
logical characterizations of time/space restrictions of Turing machines, one
provides such characterizations for weaker devices, such as automat a. More
recently, connections between databasE~ qw~ry languages and automata have
been explored too, as the field of databases started moving away from rdations
to more complex data models.

In general, finite model theory studies the behavior of logics 011 finite struc
tures. The reason this is a separate subject, and not a tiny chapter in classical
model theory, is that most standard model-theon~tic tools (most notably, com
pactness) fail over finite models. Over the past 25 -30 y<~ars, many tools haw
been developed to study logics over finite structur<'s, and these tools helped
answer many questions about complexity theory, databas<~s, formal languages.
etc.

This book is an introduction to finite model theory, gean~d towards the
oretical computer scientists. It grew out of my finite model theory course,
taught to computer science graduate students at tlw University of Toronto.
While teaching that course, I realized that there is no single source that cov
ers all the main areas of finite model theory, and yet is suitable for computer
science students. There are a number of excellent books on th<' subject. Finite
Model Theory by Ebbinghaus and Flum was the first standard reference and
heavily influenced the development of the field, but it is a book written for
mathematicians, not computer scientists. There is also a nice sPt of notes by
Vaiinanen, available on the web. Immerman's Descr-iptive Complexity lkals
extensively with complexity-theoretic aspects of finite model theory, hut does
not address other applications. Foundations of Databases hy Abiteboul, Hull,
and Vianu covers many database applications, and Thomas's chaptPr ''Lan
guages, automata, and logic" in the Handbook of Formal Languages describes
connections between logic and formal languages. Given the absence of a single
source for all the subjects, I decided to write course not<~s, which eventually
became this book.

The reader is assumed to have only the most basic computer scienc<~ and
logic background: some discrete mathematics. theory of computation, com
plexity, propositional and predicate logic. The book also includes a background
chapter, covering logic, computability theory, and computational complexity.
In general, the book should be accessible to senior undergraduate stude11ts in
computer science.

A note on exercises: there are three kinds of these. SomP are the usual
exercises that the reader should be able to do easily after reading each chapter.
If I indicatf~ that an exercise conws from a paper, it means that its level could
range from moderately to extremely difficult: depending on the <~xact kwl,
such an "exercise" could be a question on a take-homP exam, or even a cours<>

Preface IX

project, whose main goal is to understand the paper where the result is proven.
Such exercises also gave me the opportunity to mention a number of interesting
results that otherwise could not have been included in the book. There are
also exercises marked with an asterisk: for these, I do not know solutions.

It gives me the great pleasure to thank my colleagues and students for
their help. I received many comments from Marcelo Arenas, Pablo Barcelo,
Michael Benedikt, Ari Brodsky, Anuj Dawar, Ron Fagin, Arthur Fischer, Lauri
Hella, Christoph Koch, Janos Makowsky, Frank Neven, Juha Nurmonen, Ben
Rossman, Luc Segoufin, Thomas Schwentick, Jan Van den Bussche, Victor
Vianu, and Igor Walukiewicz. Ron Fagin, as well as Yuri Gurevich, Alexander
Livchak, Michael Taitslin, and Vladimir Sazonov, were also very helpful with
historical comments. I taught two courses based on this book, and students
in both classes provided very useful feedback; in addition to those I already
thanked, I would like to acknowledge Antonina Kolokolova, Shiva Nejati, Ken
Pu, Joseph Rideout, Mehrdad Sabetzadeh, Ramona Truta, and Zheng Zhang.
Despite their great effort, mistakes undoubtedly remain in the book; if you
find one, please let me know. My email is libkin«lcs. toronto. edu.

Many people in the finite model theory community influenced my view
of the field; it is impossible to thank them all, but I want to mention Scott
Weinstein, from whom I learned finite model theory, and immediately became
fascinated with the subject.

Finally, I thank Ingeborg Mayer, Alfred Hofmann, and Frank Hol:.~warth
at Springer-Verlag for editorial assistance, and Denis Therien for providing
ideal conditions for the final proofreading of the book.

This book is dedicated to my wife, Helen, and my son, Daniel. Daniel
was born one week after I finished teaching a finite model theory course in
Toronto, and after several sleepless nights I decided that perhaps writing a
book is the type of activity that goes well with the lack of sleep. By the time
I was writing Chap. 6, Daniel had started sleeping through the night, but at
that point it was too late to turn back. And without Helen's help and support
I certainly would not have finished this book in only two years.

Toronto, Ontario, Canada
May 2004 Leonid Libkin

Contents

1 Introduction . 1
1.1 A Database Example . 1
1.2 An Example from Complexity Theory . 4
1.3 An Example from Formal Language Theory................. 6
1.4 An Overview of the Book . 8
1.5 Exercises . 10

2 Preliminaries . 13
2.1 Background from Mathematical Logic.. 13
2.2 Background from Automata and Computability Theory 17
2.3 Background from Complexity Theory . 19
2.4 Bibliographic Kotes . 21

3 Ehrenfeucht-Fra"isse Games 23
3.1 First Inexpressibility Proofs. 23
3.2 Definition and Examples of Ehrenfeuc:ht-Frai:sse Garnes. 26
3.3 Games and the Expn~ssive Power of FO 32
3.4 Rank-k Types. 33
3.5 Proof of the Ehrenfeucht-Frai:sse Theorem 35
3.6 More Inexpressibility Results. 37
3.7 Bibliographic Notes 40

3.8 Exercises . 41

4 Locality and Winning Games . 45
4.1 Neighborhoods, Hanf-locality, and Gaifman-locality 45
4.2 Combinatorics of Neighborhoods . 49

4.3 Locality of FO . G1
4.4 Structures of Small Degree . 54
4.5 Locality of FO Revisited 57
4.6 Bibliographic Notes. 62
4. 7 Exercises . 63

XII Contents

5 Ordered Structures .. 67
5.1 Invariant Queries . 67
5.2 The Power of Order-invariant FO 69
5.3 Locality of Order-invariant FO . 73
5.4 Bibliographic Notes. 83
5.5 Exercises . 83

6 Complexity of First-Order Logic . 87
6.1 Data, Expression, and Combined Complexity 87
6.2 Circuits and FO Queries . 89
6.3 Expressive Power with Arbitrary Predicates.. 93
6.4 Uniformity and AC0 95
6.5 Combined Complexity of FO . 99
6.6 Parametric Complexity and Locality . 99
6. 7 Conjunctive Queries 102
6.8 Bibliographic Notes 108
6.9 Exercises ... 109

7 Monadic Second-Order Logic and Automata 113
7.1 Second-Order Logic and Its Fragments 113
7.2 MSO Games and Types 116
7.3 Existential and Universal MSO on Graphs 119
7.4 MSO on Strings and Regular Languages 124
7.5 FO on Strings and Star-Free Languages 127
7.6 Tree Automata .. 129
7. 7 Complexity of MSO 133
7.8 Bibliographic Notes 136
7.9 Exercises ... 137

8 Logics with Counting 141
8.1 Counting and Unary Quantifiers 141
8.2 An lnfinitary Counting Logic 145
8.3 Games for .C~w(Cnt) 151
8.4 Counting and Locality 153
8.5 Complexity of Counting Quantifiers 155
8.6 Aggregate Operators 158
8.7 Bibliographic Notes 161
8.8 Exercises ... 161

9 Turing Machines and Finite Models 165
9.1 Trakhtenbrot's Theorem and Failure of Completeness 165
9.2 Fagin's Theorem and NP 168
9.3 Bibliographic Notes 17 4
9.4 Exercises . 1 7 4

Contents XIII

10 Fixed Point Logics and Complexity Classes 177
10.1 Fixed Points of Operators on Sets 178
10.2 Fixed Point Logics 180
10.3 Properties of LFP and IFP 184
10.4 LFP, PFP, and Polynomial Time and Space 192
10.5 DATALOG and LFP 195
10.6 Transitive Closure Logic 199
10.7 A Logic for PTIME? 204
10.8 Bibliographic Notes 206
10.9 Exercises ... 207

11 Finite Variable Logics 211
11.1 Logics with Finitely Many Variables 211
11.2 Pebble Games ... 215
11.3 Definability of Types 220
11.4 Ordering of Types 225
11.5 Canonical Structures and the Abiteboul-Vianu Theorem 229
11.6 Bibliographic Notes 232
11.7 Exercises ... 233

12 Zero-One Laws .. 235
12.1 Asymptotic Probabilities and Zero-One Laws 235
12.2 Extension Axioms 238
12.3 The Random Graph 241
12.4 Zero-One Law and Second-Order Logic 243
12.5 Almost Everywhere Equivalence of Logics 245
12.6 Bibliographic Notes 246
12.7 Exercises ... 247

13 Embedded Finite Models 249
13.1 Embedded Finite Models: the Setting 249
13.2 Analyzing Embedded Finite Models 252
13.3 Active-Generic Collapse 256
13.4 Restricted Quantifier Collapse 260
13.5 The Random Graph and Collapse to MSO 265
13.6 An Application: Constraint Databases 267
13.7 Bibliographic Notes 270
13.8 Exercises ... 271

14 Other Applications of Finite Model Theory 275
14.1 Finite Model Property and Decision Problems 275
14.2 Temporal and Modal Logics 278
14.3 Constraint Satisfaction and Homomorphisms of Finite Models. 285
14.4 Bibliographic Notes 288

XIV Contents

References ... 201

List of Notation ... 30!i

Index .. :307

Name Index ... :31:3

1

Introduction

Finite model theory studies the expressive power of logics on finite models.
Classical model theory, on the other hand, concentrates on infinite structures:
its origins are in mathematics, and most objects of interest in mathematics
are infinite, e.g., the sets of natural numbers, real numbers, etc. Typical exam
ples of interest to a model-theorist would be algebraically closed fields (e.g.,
(IC, +, ·)), real closed fields (e.g., (JR.,+,·,<)), various models of arithmetic
(e.g., (N, +, ·) or (N, +)), and other structures such as Boolean algebras or
random graphs.

The origins of finite model theory are in computer science where most ob
jects of interest are finite. One is interested in the expressiveness of logics over
finite graphs, or finite strings, other finite relational structures, and sometimes
restrictions of arithmetic structures to an initial segment of natural numbers.

The areas of computer science that served as a primary source of examples,
as well as the main consumers of techniques from finite model theory, are
databases, complexity theory, and formal languages (although finite model
theory found applications in other areas such as AI and verification). In this
chapter, we give three examples that illustrate the need for studying logics
over finite structures.

1.1 A Database Example

While early database systems used rather ad hoc data models, from the early
1970s the world switched to the relational model. In that model, a database
stores tables, or relations, and is queried by a logic-based declarative lan
guage. The most standard such language, relational calculus, has precisely
the power of first-order predicate calculus. In real life, it comes equipped with
a specialized programming syntax (e.g., the select-from-where statement of
SQL).

Suppose that we have a company database, and one of its relations is the
Reports_To relation: it stores pairs (x, y), where x is an employee, and y is

2 1 Introduction

his/her immediate manager. Organizational hierarchies tend to be quitP com
plicated and often result in many lay<~rs of rnanag<~ment, so one may want to
skip the immediate manager levd and instead look for the manager's manager.

In SQL, this would be done by the following query:

select R1.employee, R2.manager
from Reports_To R1, Reports_To R2
where R1.manager=R2.employee

This is simply a different way of writing the following first-onkr logic
formula:

"jz (Reports_To(.r,z) i\Reports_To(z.yJ).

Continuing, w<~ may ask for someone's manager's manager's manager:

and so or1.
But what if we want to find everyone who is higlwr in tlw hierarchy than

a given employee? Speaking graph-theoretically, if we associat<' a pair (,r, y)
in the Reports_To relation with a directed edge from J' to y in a graph, then
we want to find, for a given node, all the nodes n~achabl<~ from it. This do<'s
not seem possible in first-order logic, but how can one prove this'?

There are other queries naturally related to this reachability propnty.
Suppose that once in a while, the company wants to make sure that its man
agement hierarchy is logically consistent; that is, we cannot haY<' cydes in tlw
Reports_To relation. In graph-tlworetic terms, it means that Reports_To is
acyclic. Again, if one thinks about it for a while, it seems that first-order logic
does not have enough power to express this query.

We now consider a different kind of query. Suppose we have two rmmag<'rs,
.randy, and let X be the set of all the employees directly managed hy .r (i.<•.,
all .r' such that (J.l, ;r:) is iu Report s_To), and likewise let Y be t lw s<'l of all
the employees directly managed by y. Can W(' write a query asking wlwtlwr
I X I = I Y I; that is, a query asking whether .1' aud y haw the sam<> numl><'r of
people reporting to them'?

It turns out that first-order logic is again not sufficiently expressive for
this kind of query, hut since queries like those described above an· so common
in practice, SQL adds special features to the language to perform tlwm. That
is, SQL can count: it can apply the cardinality function (and more complex
functions as well) to entire columns in relations. For example, in SQL orw can
write a query that finds all pairs of managers J" and y who have tlw sam<'
number of people reporting to them:

1.1 A Database Example 3

select R1.manager, R2.manager
from Reports_To R1, Reports_To R2
where (select count(Reports_To.employee)

from Reports_To
where Reports_To.manager = R1.manager)

(select count(Reports_To.employee)
from Reports_To
where Reports_To.manager = R2.manager)

Since this cannot be done in first-order logic, but can be done in SQL (and,
in fact, in some rather simple extensions of first-order logic with counting), it
is natural to ask whether counting provides enough expressiveness to define
queries such as reachability (can node x be reached from node y in a given
graph?) and acyclicity.

Typical applications of finite model theory in databases have to deal with
questions of this sort: what can, and, more importantly, what cannot, be
expressed in various query languages.

Let us now give intuitive reasons why reachability queries are not express
ible in first-order logic. Consider a different example. Suppose that we have
an airline database, with a binary relation R (for routes), such that an entry
(A, B) in R indicates that there is a flight from A to B. Now suppose we want
to find all pairs of cities A, B such that there is a direct flight between them;
this is done by the following query:

qo(:r, y) R(x, y),

which is simply a first-order formula with two free variables. Next, suppose
we want to know if one can get from x toy with exactly one change of plane;
then we write

3z R(x, z) 1\ R(z, y).

Doing "with at most one change" means having a disjunction

Clearly, for each fixed k we can write a formula stating that one can get from
.1: to y with exactly k stops:

q,(:r, y)

as well as Qk = V j~k qj testing if at most k stops suffice.
But what about the reachability query: can we get from x to y? That is,

one wants to compute the transitive closure of R. The problem with this is
that we do not know in advance what k is supposed to be. So the query that
we need to write is

4 1 Introduction

but this is not a first-order formula! Of course this is not a formal proof that
reachability is not expressible in first-order logic (we shall see a proof of this
fact in Chap. 3), hut at least it gives a hint as to what tlw limitations of
first-order logic are.

The inability of first-order logic to express some important queries moti
vated a lot of research on extensions of first-order logic that can do queries
such as transitive closure or cardinality comparisons. 'Vc shall s<>e a nurnber
of extensions of these kinds - fixed point logics, (fragments of) s\'cond-ordm·
logic, counting logics - that are important for databas<' theory, and we shall
study properties of thesE~ extensions as well.

1.2 An Example from Complexity Theory

We now turn to a different area, and to more expressive logics. Suppose that
we have a graph, this time undirected, given to us as a pair (V, E), when• V
is the set of vertices, or nodes, and E is the edge relation. Assume that now
we can specify graph properties in second-order· logic; that is, W<' can quantify
over sets (or relations) of nodes.

Consider a well-known property of Hamiltonicity. A simple cirr:uit in a
graph G is a sequence (a 1, ... , a71) of distinct nodes such that there arT
edges (a 1 , a 2), (a 2 , a3), ... , (an-t. a71), (a11 , a r). A simple circuit is Hamiltonian
if V = {a 1, ... , an}. A graph is Hamiltonian if it has a Hamil toni an circuit.

We now consider the following formula:

(
linear order(L))

31 38 1\ S is the successor re.la.·tion of],
J 1\ \fx3y (L(:r:, y) V L(y, .r))

1\ \f:rHy (S(:c, y) _,. E(:r·, y))

(1.1)

The quantifiers ?JL CJS state the existence of two binary relations, Land S',
that satisfy the formula in parentheses. That formula uses some abbreviations.
The subformula linear order(L) in (1.1) states that the relation Lis a linear
ordering; it can be defined as

(V:r:•L(x,x:)) 1\ (V:c\fy\fz (L(:r:,y) 1\L(y,z) _,.J~(:T,z)))

1\ \f.rc\fy ((:c i- y) _,. (L(x,y) V L(y,:1:))).

The subformula S is the successor relation of L states that ,'-,' is the successor
relation associated with the linear ordering L; it can be d<~fiw·cl as

\fx\fy S(x,y) +--> ((L(:c,y)l\•3z(L(:r:,z)I\I.~(:,y))))
V (•3z L(x,z) 1\ ·3z L(z,y))

1.2 An Example from Complexity Theory 5

Note that Sis the circular successor relation, as it also includes the pair (x, y)
where x is the maximal and y the minimal element with respect to L.

Then (1.1) says that L and S are defined on all nodes of the graph, and
that Sis a subset of E. Hence, Sis a Hamiltonian circuit, and thus (1.1) tests
if a graph is Hamiltonian.

It it well known that testing Hamiltonicity is an NP-complete problem. Is
this a coincidence, or is there a natural connection between NP and second
order logic? Let us turn our attention to two other well-known NP-complete
problems: 3-colorability and clique.

To test if a graph is 3-colorable, we have to check that there exist three
disjoint sets A, B, C covering the nodes of the graph such that for every edge
(a, b) E E, the nodes a and b cannot belong to the same set. The sentence
below does precisely that:

[
(A(x)/\•B(x)/\•C(x))l

\lx V (•A(x) 1\ B(x) 1\ ·C(x))
V (•A(x) 1\ ·B(x) 1\ C(x))

3A3B3C 1\ (1.2)

[
(A(x) 1\ A(y)) l

\lx,y E(x,y)-+..., V (B(x) 1\ B(y))
v (C(x) 1\ C(y))

For clique, typically one has a parameter k, and the problem is to check
whether a clique of size k exists. Here, to stay purely within the formalism of
second-order logic, we assume that the input is a graph E and a set of nodes
(a unary relation) U, and we ask if E has a clique of size I U 1- We do it by
testing if there is a set C (nodes of the clique) and a binary relation F that is
a one-to-one correspondence between C and U. Testing that the restriction of
E to C is a clique, and that F is one-to-one, can be done in first-order logic.
Thus, the test is done by the following second-order sentence:

(
\lx\ly (F(x, y)-+ (C(x) 1\ U(y))))

:3C:3F 1\ \lx (C(x) -+ 3!y(F(x,y) 1\ U(y)))
1\ Vy (U(y)-+ 3!x(F(x,y) 1\ C(x)))
1\ \lx\ly (C(x) 1\ C(y)-+ E(x,y))

(1.3)

Here 3!xcp(x) means "there exists exactly one x such that cp(x)"; this is
an abbreviation for 3x(cp(x) 1\ \ly (cp(y)-+ x = y)).

Notice that (1.1), (1.2), and (1.3) all follow the same pattern: they start
with existential second-order quantifiers, followed by a first-order formula.
Such formulas form what is called existential second-order logic, abbreviated
as 380. The connection to NP can easily be seen: existential second-order
quantifiers correspond to the guessing stage of an NP algorithm, and the
remaining first-order formula corresponds to the polynomial time verification
stage of an NP algorithm.

6 1 Introduction

It turns out that the connection between NP and ::JSO is exact, as was
shown by Fagin in his celebrated 1974 theorem, stating that NP = ::JSO.
This connection opened up a new area, called descriptive complexity. The
goals of descriptive complexity are to describe complexity classes by means
of logical formalisms, and then use tools from mathematical logic to analyze
those classes. We shall prove Fagin's theorem later, and we shall also sec logical
characterizations of a number of other familiar complexity classes.

1.3 An Example from Formal Language Theory

Now we turn our attention to strings over a finite alphabet, say E = {a, b}.
We want to represent a string as a structure, much like a graph.

Given a string s = s 1 s2 ... s,, we create a structure 11{, as follows: the
universe is { 1, ... , n} (corresponding to positions in the string), we have one
binary relation < whose meaning of course is the usual order on the natural
numbers, and two unary relations A and B. Then A(i) is true if s; =a, and
B(i) is true if si = b. For example, 111a.bba has universe { 1, 2, :). 4}, with A
interpreted as {1, 4} and Bas {2, 3}.

Let us look at the following second-order sentence in which quantifiers
range over sets of positions in a string:

(
Vx (X(x) +--+ ·Y(x)))

P ::JX::JY 1\ Vx \:ly (X(x) 1\ Y(y)---+ :r < y)

1\ Vx (X(x)---+ A(x) 1\ Y(x)---+ B(:1·))

When is 1\1[8 a model of P? This happens iff there exists two sets of posi
tions, X andY, such that X andY form a partition of the universe (this is
what the first conjunct says), that all positions in X precede the positions in
Y (that is what the second conjunct says), and that for each position i in X,
the ith symbol of s is a., for each position j in Y, the jth symbol is b (this
is stated in the third conjunct). That is, the string starts with some a.'s, and
then switches to all b's. Using the language of regular expressions, we can say
that

M 8 pP iff sEa*b*.

Is quantification over sets really necessary in this example? It turns out
that the answer is no: one can express the fact that s is in a* b* by saying that
there are no two positions i < j such that the ith symbol is b and the jth
symbol is a. This, of course, can be done in first-order logic:

-,::Ji::Jj ((i < j) 1\ B(i) 1\ A(j)).

A natural question that arises then is the following: are second-order quan
tifiers of no use if one wants to describe regular languages by logical means?
The answer is no, as we shall see later. For now, we can give an example.

1.3 An Example from Formal Language Theory 7

First, consider the sentence <Pa. = \/i A(i), which is true in lvf8 iff 8 E a*.

Next, define a relation i -< j saying that j is the successor of 'i. It can be
defined by the formula ((i < j) 1\ \/k ((k :::; i) V (k ~ j))). Now consider the
sentence

(

\/i (X(i) .__, ,y(i)))
1\ \/i (,=jj (j < i) ---+ X (i))

<Pt =jX=jY 1\ \/i (,=jj(j > i)---+ Y(i))
1\ \/i\/j ((i-< j) 1\ X(i)---+ Y(j))
1\ \/i\/j ((i-< j) 1\ Y(i)---+ X(j))

This sentence says that the universe { 1, ... , n} can be partitioned into two
sets X and Y such that 1 E X, n E Y, and the successor of an element of X

is in Y and vice versa; that is, the size of the universe is even.
Now what is <J/1 1\ <Pa? It says that the string is of even length, and has

only a's in it -hence, 1\18 f= <P1 1\ <Pa iff s E (aa)*. It turns out that one cannot
define (aa)* using first-order logic alone: one needs second-order quantifiers.
Moreover, with second-order quantifiers ranging over sets of positions, one
defines precisely the regular languages. We shall deal with both expressibility
and inexpressibility results related to logics over strings later in this book.

There are a number of common themes in the examples presented above.
In all the cases, we are talking about the expressive power of logics over finite

objects: relational databases, graphs, and strings. There is a close connection
between logical formalisms and familiar concepts from computer science: first
order logic corresponds to relational calculus, existential second-order logic to
the complexity class NP, and second-order logic with quantifiers ranging over
sets describes regular languages.

Of equal importance is the fact that in all the examples we want to show
some inexpr·essibility results. In the database example, we want to show that
the transitive closure is not expressible in first-order logic. In the complexity
example, it would be nice to show that certain problems cannot be expressed
in =jSO -- any such result would give us bounds on the class NP, and this would
hopefully lead to separation results for complexity classes. In the example from
formal languages, we want to show that certain regular languages (e.g., (aa)*)
cannot be expressed in first-order logic.

Inexpressibility results have traditionally been a core theme of finite model

theory. The main explanation for that is the source of motivating examples
for finite model theory. Most of them come from computer science, where one
is dealing not with natural phenomena, but rather with artificial creations.
Thus, we often want to know the limitations of these creations. In general,
this explains the popularity of impossibility results in computer science. After
all, the most famous open problem of computer science, the PTIME vs NP

problem, is so fascinating because the expected answer would tell us that a
large number of important problems cannot he solved efficiently.

8 1 Introduction

Concentrating on inexpressibility n~sults highlights anotlwr important fea
ture of finite model theory: since we are often interested in countE'r<'xarnplr~s,
many constructions and techniques of interest apply only to a ''small" frac
tion of structures. In fact, we shall see that some techniques (e.g., locality)
degenerate to trivial statements on almost all structures, and yet it is that
small fraction of structures on which they behave interestingly that gives us
important techniques for analy:.~ing expressiveness of logics, query languages,
etc. Towards the end of the book, we shall also see that on most typical struc
tun~s, some very exprPssive logics collapse to rather weak OtH's: how<'ver, all
interesting separation examples occur outside the class of "typical'' strudun~s.

1.4 An Overview of the Book

In Chap. 2, we review the background material from mathematical logic, com
putability theory, and cornph~xity theory.

In Chap. 3 we introduce the fundamental tool of Ehrenfeucht-Fntiss0
games, and prove their completeness for Pxpressibility in first-orch~r logic (FO).
The game is played by two players, tlw spoiler and the duplicator, on two
structun~s. The spoiler tries to show that the structun~s are different, whil<'
the duplicator tries to show that they are the same. If tlw duplicator can
succeed for k rounds of such a game, it means that the structun·s cannot
be distinguished by FO sentences whose depth of quantifier nesting does not
exceed k. \Ve also defirw types, which play a very important role in many
aspects of finite model theory. In tlw sam<' chapter, W<' see some bounds 011

the expressive power of FO, proved via Ehrenfeucht-Fralss0 games.

Finding winning strategies in Ehrenfeucht-Fralss(• games beconws quit<'
hard for nontrivial structures. Thus, in Chap. 4, we introduce some sufficient
conditions that guarantee a win for the duplicator. Tlwse conditions are based
on the idea of locality. Intuitively, local formulae cannot see very far from their
free variables. \VP show several different ways of formalizing this intuition.
and explain how each of those ways gives us easy proofs of bounds on th<'
expressiveness of FO.

In Chap. 5 we continue to study first-order logic, but this time OV<'r stmc
tures whose univ<~rse is ordered. Hm·e w<~ see the phenomenon that is very
common for logics over finite structures. \Ve call a property of structures
order-invariant if it can be defined with a linear order, but is indep<mdent
of a particular linear order used. It turns out that then' an' order-invariant
FO-definable properties that an~ not definable in FO alorw. \Ve also show that
such order-invariant properties continue to lw local.

Chap. 6 deals with the complexity of FO. We distinguish two kinds of
complexity: data complexity, meaning that a formula is fixed and the structure
on which it is evaluated varies, and combined compkxit y, meaning that both
the formula and thP structure are part of the input. \Ve show hmv to <'valuat<·

1.4 An Overview of the Book 9

FO formulae by Boolean circuits, and use this to derive drastically different
bounds for the complexity of FO: AC0 for data complexity, and PSPACE for
combined complexity. We also consider the parametric complexity of FO: in
this case, the formula is viewed as a parameter of the input. Finally, we study
a subclass of FO queries, called conjunctive queries, which is very important
in database theory, and prove complexity bounds for it.

In Chap. 7, we move away from FO, and consider its extension with
monadic second-order quantifiers: such quantifiers can range over subsets of
the universe. The resulting logic is called monadic second-order logic, or MSO.
We also consider two restrictions of MSO: an ::IMSO formula starts with a se
quence of existential second-order quantifiers, which is followed by an FO
formula, and an 'v'MSO formula starts with a sequence of universal second
order quantifiers, followed by an FO formula. We first study ::IMSO and 'v'MSO
on graphs, where they are shown to be different. We then move to strings,
where MSO collapses to ::IMSO and captures precisely the regular languages.
Further restricting our attention to FO over strings, we prove that it captures
the star-free languages. We also cover MSO over trees, and tree automata.

In Chap. 8 we study a different extension of FO: this time, we add mech
anisms for counting, such as counting terms, counting quantifiers, or certain
generalized unary quantifiers. We also introduce a logic that has a lot of
counting power, and prove that it remains local, much as FO. We apply these
results in the database setting, considering a standard feature of many query
languages - aggregate functions - and proving bounds on the expressiveness
of languages with aggregation.

In Chap. 9 we present the technique of coding Turing machines as finite
structures, and use it to prove two results: Trakhtenbrot's theorem, which
says that the set of finitely satisfiable sentences is not recursive, and Fagin's
theorem, which says that NP problems are precisely those expressible in ex
istential second-order logic.

Chapter 10 deals with extensions of FO for expressing properties that,
algorithmically, require recursion. Such extensions have fixed point operators.
There are three flavors of them: least, inflationary, and partial fixed point
operators. We study properties of resulting fixed point logics, and prove that
in the presence of a linear order, they capture complexity classes PTIME (for
least and inflationary fixed points) and PSPACE (for partial fixed points). We
also deal with a well-known database query language that adds fixed points to
FO: DATALOG. In the same chapter, we consider a closely related logic based
on adding the transitive closure operator to FO, and prove that over order
structures it captures nondeterministic logarithmic space.

Fixed point logics are not very easy to analyze. Nevertheless, they can be
embedded into a logic which uses infinitary connectives, but has a restriction
that every formula only mentions finitely many variables. This logic, and
its fragments, are studied in Chap. 11. We introduce the logic c~W' define
games for it, and prove that fixed point logics are embeddable into it. We

10 1 Introduction

study definability of types for finite variable logics, and use them to provide
a purely logical counterpart of the PTIME vs. PSPACE question.

In Chap. 12 we study the asymptotic behavior of FO and prove that every
FO sentence is either true in almost all structures, or false in almost all struc
tures. This phenomenon is known as the zero-one law. We also prove that
£~w' and hence fixed point logics, have the zero-one law. In the same chapter
we define an infinite structure whose theory consists precisely of FO sentences
that hold in almost all structures. We also prove that almost everywhere, fixed
point logics collapse to FO.

In Chap. 13, we show how finite and infinite model theory mix: we look
at finite structures that live in an infinite one, and study the power of FO
over such hybrid structures. We prove that for some underlying infinite struc
tures, like (N, +, ·), every computable property of finite structures embedd0d
into them can be defined, but for others, like (JR'., +, ·), one can only define
properties which are already expressible inFO over the finite structure alonP.
We also explain connections between such mixed logics and database query
languages.

Finally, in Chap. 14, we outline other applications of finite model theory:
in decision problems in mathematical logic, in formal verification of properties
of finite state systems, and in constraint satisfaction.

1.5 Exercises

Exercise 1.1. Show how to express the following properties of graphs in first-ordPr
logic:

• A graph is complete.
• A graph has an isolated vertex.
• A graph has at least two vertices of out-degree a.
• Every vertex is connected by an edge to a vertex of out-degree :3.

Exercise 1.2. Show how to express the following properties of graphs in existential
second-order logic:

• A graph has a kernel, i.e., a set of vertices X such that there is no edge between
any two vertices in X, and every vertex outside of X is connected by an edge
to a vertex of X.

• A graph on n vertices has an independent set X (i.e., no two nodes in X are
connected by an edge) of size at least n/2.

• A graph has an even number of vertices.
• A graph has an even number of edges.
• A graph with m edges has a bipartite subgraph with at least m/2 edges.

Exercise 1.3. (a) Show how to define the following regular languages in monadic
second-order logic:

• a* (b +c)* aa*;

1. 5 Exercises 11

• (a. a. a)* (bb) +;

• (((a+b)*cc*)*(aa)*)*a.

For the first language, provide a first-order definition as well.

(b) Let 1> be a monadic second-order logic sentence over strings. Show how to
construct a sentence tJr such that Ms f= tJr iff there is a string s' such that Is 1=\s'\
and J!,fs·s' f= 1>. Here Is I refers to the length of s, and s · s' is the concatenation of
sands'.

Remark: once we prove Biichi's theorem in Chap. 7, you will see that the above
statement says that if L is a regular language, then the language

~L = {s\forsomes', \s\=\s'\ ands·s'EL}

is regular too (see, e.g., Exercise 3.16 in Hopcroft and Ullman [126]).

2

Preliminaries

The goal of this chapter is to provide the necessary background from mathe
matical logic, formal languages, and complexity th~ory.

2.1 Background from Mathematical Logic

We now briefly review some standard definitions from mathematical logic.

Definition 2.1. A vocabulary CJ" is a collection of constant symbols (denoted
c1 , ..• , c,, ...), relation, or predicate, symbols (P1 , ... , Pn, ...) and funrtion

symbols (h, ... , fn, ...) . Each relation and function symbol has an associated
arity.

A CJ"-structure (also called a model)

consists of a universe A together with an interpretation of

• each constant symbol ci fmm CJ" as an element c~ E A;

• each k-ary relation symbol Pi fmm CJ" as a k-ary relation on A; that is, a
set P?" c;;; Ak; and

• each k-ary function symbol J; from (} as a function J;21 : A k ---> A.

A structure 2t is called finite if its universe A is a finite set. The universe of

a str·ucture is typically denoted by a Roman letter corresponding to the name

of the structure; that is, the univer-se of 2t is A, the univer-se of 'B is B, and
so on. We shall also occasionally write x E 2t in8tead of x E A.

For example, if(} has constant symbols 0, 1, a binary relation symbol <,
and two binary function symbols · and +, then one possible structure for (}
is the real field R = \JR(., oR, lR. <R, +R, .R;, where oR, lR, <R, +R, ,R have

14 2 Pn~liminaries

the expected meaning. Quite often in fact, typically we shall omit the
superscript with the name of the structure, using the same symbol for both a
symbol in the vocabulary, and its interpwtation in a structun:. For <'xample,
we shall writeR= (][{, 0, 1, <, +. ·) for the real field.

A few notes on restrictions on vocabularies are in order. Constants can lw
treated as functions of arity 1\ero; however, we often rwed them :-,eparatdy, as
in the finite case, we typically restrict vocabularies to relational on<:s: such vo
cabularies contain only relation symbols and constants. This is not a serious
restriction, as first-order logic defines, for each k-ary function .f, its graph.
which is a (k + 1)-ary relation { (:r, .f (.f)) I .r E A I.}. A vocabulary that con
sists exclusively of relation symbols (i.e., does not have constant awl function
symbols) is called purely relational.

Unless stat<~d explicitly otherwise, we shall assume that:

• any vocabulary CJ is at most countable;

• when we deal with finite structures, vocabularies CJ an• finite and rela
tional.

If CJ is a relational vocabulary, tlwn STRUCT[CJ] denotes the class of all finite
CJ-structures.

Next, we define first-order (FO) formulae, free and bound variables, and
the semantics of FO formulae.

Definition 2.2. We assume a countably infinite set of var·iables. Variables
will be typically denoted by :r, y, :.:, ... , with subscripts and .mperscripts. We
inductively define terms and formulae of the first-order predicate calculus
over vocabulary CJ a.s follows:

• Each variable :r: is a tenn.

• Each con.~tant symbol c is a term.

• If t 1 , ... , t, are ter7ns and f is a k-ary function symbol, !.hen f (!1 • .•.• I h)
is a ter·m.

• If t 1, t2 are terms, then t1 = f2 is an (atomic) forrnnla.

• If t 1 , ... , t, ar-e terms and P is a k-ary n~lation symbol, then P(I 1, ...• I k)

is an (atomic) fommla.

• If i.p 1, i.p2 ar-e formulae, then 1P1 1\ i.p2. i.p 1 V i.p'2, and ---,lp 1 an~ fonnnlrw.

• If 1.p i.s a formula, then =:J:r:~.p and V xcp an~ formulae.

A formula that does not use existential (::3) and universal (V) quantifiers
is called quantifier-free.

We shall use the standard shorthand 1.p --+ 1/, for ---,IP V If' and lp ,__, c· for
(cp ,__, lj;) 1\ (1/J ___, cp).

Free variables of a formula or a term are defirwd as follows:

2.1 Background from Mathematical Logic 15

• The only free variable of a term x is x; a constant term c does not have
free variables.

• Free variables of h = t2 are the free variables of h and t2; free variables
of P(t1, ... , tk) or f(h, ... , tk) are the free variables of t1, ... , tk.

• Negation (•) does not change the list of free variables; the free variables
of cp1 V 'P2 (and of 'Pl 1\ 'P2) are the free variables of 'Pl and 'P2·

• Free variables of 'c/xcp and 3xcp are the free variables of cp except x.

Variables that are not free are called bound.
If xis the tuple of all the free variables of cp, we write cp(x). A sentence

is a formula without free variables. We often use capital Greek letters for
sentences.

Given a set of formulae S, formulae constructed from formulae inS using
only the Boolean connectives V, 1\, and -, are called Boolean combinations of
formulae in S.

Given a <T-structure 2.1., we define inductively for each term t with free
variables (x 1 , ... ,xn) the value t'21(a), where a E An, and for each formula
cp(Xl' ... ' Xn)' the notion of 2.1. F cp(a) (i.e.' cp(a) is true in 2.1.).

• If t is a constant symbol c, then the value of t in 2.1. is c'2J..

• If tis a variable xi, then the value of t'21(a) is ai.

• If t = f(t 1 , ... , tk), then the value of t'21(a) is J'21(t~(a), ... , t~(a)).

• If cp = (t1 = t2), then 2.1. f= cp(a) iff t~(a) = t~(a).

• If cp = P(t1, ... , tk), then 2.1. f= cp(a) iff (t~(a), ... , t~(a)) E P'21..

• 2.1. F= •cp(a) iff 2.1. F= cp(a) does not hold.

• 2.1. F= 'Pl(a) A 'P2Ca) iff 2.1. F= cpl(a) and 2.1. F= 'P2Ca).

• 2.1. F= 'Pl C a) v 'P2 C a) iff 2.1. F= 'Pl (a) or 2.1. F= 'P2 (a) .
• If 'lj;(x) = 3ycp(y, x), then 2.1. F 'lj;(a) iff 2.1. F cp(a'' a) for some a' E A .

• If 'lj;(x) = 'c/ycp(y, x), then 2.1. F 'lj;(a) iff 2.1. F cp(a', a) for all a' EA.

If 2.1. E STRUCT[<T] and Ao <;;;A, the substructure of A generated by A0 is
a <T-structure 113 whose universe is B = Ao U { c'21 I c a constant symbol in <T},
with c23 = c'21 for every c, and with each k-ary relation R interpreted as the
restriction of R'21. to B: that is, R 23 = R'21. n Bk.

Let <T1 be a vocabulary disjoint from <T. Let 2.1. be a <T-structure, and let 2.1.'
be a <T1 -structure with the same universe A. We then write (2.1., 2.1.') for a <T U <T1-

structure on A in which all constant and relation symbols in <T are interpreted
as in 2.1., and all constant and relation symbols in <T1 are interpreted as in 2.1.'.

One of the most common instances of such an expansion is when <T1 only
contains constant symbols; in this case, the expansion allows us to go back and

16 2 Preliminaries

forth between formulae and sentm1ces, which will be very conveni(~nt when WP
talk about games and expressiveness of formulas as well as sentencrs.

From now on, we shall use the notation rTn for thP expansion of vocabulary
rT with n new constant symbols c1 , ... , en.

Let ip(x1 , ... , .r,) be a formula in vocabulary cr. Consider a rT 11 sPnt<'ncc <J>
obtained from ip by replacing each J"; with c, i ::; n. Lt't (a 1 , ... , on) E A".
Then one can easily show (the proof is left as an (~xercise) thP following:

Lemma2.3.2tpip(o.l,····o..,) iff (2t,ILJ n,) f=<J>. D

This correspondence is rather convenient: wP oftpn do not nePd separatP
treatment for sentencrs and formula<' with frPe variables.

Most classical theorrrns from model theory fail iu the finite case, as will lw
seen later. However, two fundamental facts- compactness and the LowPnheim
Skolem theorem - will he used to prove results about fiuit<~ models. To stat<'
them, we need the following definition.

Definition 2.4. A theory (over CJ) is a .set of sentences. A rT-stnu:tun~ 2t is a
model of a theor·y T iff for every sentence <P ofT, the structmr 2t is a model
of <P; that i.s, 2t f= <P. A theory T is called consistent if it has a model.

Theorem 2.5 (Compactness). A theory T is wmistent iff ever-y finite .mb
set ofT is consi.stent. D

Theorem 2.6 (Lowenheim-Skolem). If T has an infinite model. then it
has a countable model. D

In general, Theorem 2.1 allows one to construct a model of cardinality
max{w, lrTI}, but we shall never deal with uncountable vocabulari(~S her<'.

Compactness follows from the completeness theor-em, stating that T f= cp
iff T f-- ip, where f-- refers to a derivation in a formal proof system. \\1<' shall
see some other important corollariPs of this rPsult.

We say that a sentence <P is sati8jiable if it has a model, and it is valid if it
is true in every structure. These notions are closely wlated: </> is not valid iff
--.<P is satisfiahk. It follows from completeness that tlw set of valid scntencPs is
recursively enumerable (if you forgot th<' definition of recursivPly enunwrablP.
it is given in the rwxt section). This is tru(' when one considers validity \Yith
respect to arbitrary models; wP shall see later that validity owr finite modds
in not recursively enumerable.

Given two structures 2! and 23 of a rdational vocabulary CJ, a homouwr-
phi.sm between them is a mapping h : A ____, I3 such that for each constant
symbol c in CJ, we hav(~ h (c2l) = c~H, and for each k-ary rdation symbol R and
a tuple (a 1 , ••• ,ak) E R 2t, the tuple (h(ot), h(ok)) is in J?'B. A hijectiV('

2.2 Background from Automata and Computability Theory 17

homomorphism h whose inverse is also a homomorphism is called an isomor·
phisrn. If there is an isomorphism between two structures 21 and 23, we say
that they are isomorphic, and we write 21 ~ 23.

Next, we need the following basic definition of m-ary queries.

Definition 2.7 (Queries). An m-ary query, m ;::: 0, on a-structures, is a
mapping Q that associates with each structure 21 a subset of Am, such that
Q is closed under isomorphism: if 21 ~ 23 via isomorphism h : A --+ B, then

Q(23) = h(Q(21)).
We say that Q is definable in a logic £ if there is a formula (f?(Xl, ... , x,)

of £ in vocabulary a such that for every 21,

If Q is definable by (f?, we shall also write (f?(21) instead of Q(21). Fur·ther

more, for a formula (f?(X, if)' we write (f?(21, b) for {a E Alai I 21 I= (f?(a, b)}.

A very important special case is that of m = 0. We assume that A0 is a
one-element set, and there are only two subsets of A0 . Hence, a 0-ary query is
just a mapping from a-structures to a two-element set, which can be assumed
to contain true and false. Such queries will be called Boolean. A Boolean query
can be associated with a subset C ~ STRUCT[a] closed under isomorphism:

21 E C iff Q(21) = true.

Such a query Q is definable in a logic £ if there is an £-sentencE~ tJ> such that
Q(21) = true iff 211= tJ>.

An example of a binary (m = 2) query is the transitive closure of a graph.
An example of a unary (m = 1) query is the set of all isolated nodes in a
graph. An example of a Boolean (m = 0) query on graphs is planarity.

2.2 Background from Automata and Computability
Theory

In this section we briefly review some basic concepts of finite automata and
computability theory.

Let E be a finite nonempty alphabet; that is, a finite set of symbols. The
set of all finite strings over E will be denoted by E*. ~Te shall use s · s' to
denote concatenation of two strings s and s'. The empty string is denoted by
E. One commonly refers to subsets of E* as languages.

A nondeterministic finite automaton is a tuple A= (Q, E, qo, F, 5) whew
Q is a finite set of states, E is a finite alphabet, q0 E Q is the initial state,
F ~ Q is the set of final states, and 5 : Q x E --+ 2Q is the transition function.
An automaton is deterministic if l5(q, a)l = 1 for every q and a; that is, if 5
can be viewed as a function Q x E --+ Q.

18 2 Preliminaries

Let s = a 1 a2 ... a 71 be a string in E*. Define a run of A on s as a mapping
r: {1, n} --+ Q such that

• r(l) E r5(qo, at) (or r(l) = 6(q0 , at) if A is deterministic), and

• r(i + 1) E r5(r(i), a;+I) (or r(i + 1) = 6(r'(i). ai+l) if A is determinist.ic).

We say that a run is accepting if r(n) E F, and that A accepts s if there is
an accepting run (for the case of a d<~terrninistic automaton, there is exactly
one run for Pach string). The set of all strings accepted b~· A is dmtoted by
L(A).

A language L is called regular if there is a nondeterministic finit<~ autmna
ton A such that L = L(A). It is well known that for any n·gular languag<' L,
one can find a deterministic finite automaton A such that L '-" L(A).

Turing machines are the most gem~ral computing dPvices. Formally. a Tur
ing machine AI is a tuple (Q. E. Ll, 6, q0 , Qu., Q,), where

• Q is a finite set of states;

• E is a finit<~ input alphabet;

• Ll is a finite tape alphabet; it contains E and a designated blank symbol
'. _,

• J: Q x .:1--+ 2Qx..:lx{f.,} is the transition function;

• q0 E Q is the initial state;

• Qa and Q,. are the sets of accepting and rejecting stat<~s rPSp<'ct.ively; \Ve
require that Q" n Q, = 0. We rder to states in Q" U Q, as tlw halting
states.

A Turing machine is called deterministic if jr5(q. a) I= L for E'Y<'ry <f. a; that is,
if 5 can be viewed as a function Q x Ll --+ Q x Ll x {f. r}.

\Ve assume that Turing machin<~s han~ a one-way infinit<' tap<', and one
head. A config'Uration of a Turing machine "U sp~:cifies tlH' contents of the
tape, the state, and the position of tlw head as follows. Let the tapc contain
symbols w 1 • w 2 , •. . , where w 1 E Ll is the symbol in tlH' ith position of thC'
tape. Assume that the head is in position j, and n 2 j is such that for
all n' > n, W 11 , = _ (the blank symbol). If M is in state q. W<' d(']lotc· this
configuration by w1 Wz ... lL'j-1 rru·.J ... Wn. \Ve ddine the rdation (' f-- ~ C' as
follows. If C = s · q ·a· s', where s. s' ELl*, nELl, and q if. C2u U Q,. th<•n

• if (q'.b,f) E 5(q, a), then C f--11 s0 · q' · c · IJ. s', where s == ·'o · c (that is. o is
replaced by b, tlw new state is q', and th<' !wad mow~s ldt: if s = ', tlwn
C h q' · b · s'), and

• if (q'. b. r·) E 6(q, a), then C f--~ .'i · b · q' · s' (that is. a is rcplac<'d by b. the
new state is q', and the head mon~s right).

2.3 Background from Complexity Theory 19

A configuration s · q · s' is accepting if q E Qa, and rejecting if q E Qr.
Suppose we have a string s E E*. The initial configuration C(s) corre

sponding to this string is q0 · s; that is, the state is q0 , the head points to the
first position of s, and the tape contains s followed by blanks. We say that s
is accepted by !vi if there is a sequence of configurations Co, C 1 , ... , Cn such
that Co= C(s), Ci f-- 0 Ci+1 ,i < n, and Cn is an accepting configuration. The
set of all strings accepted by M is denoted by L(M).

We call a subset L of E* recursively enumerable, or r. e. for short, if there
is a Turing machine M such that L = L(M).

Notice that in general, there are three possibilities for computations by a
Turing machine !vi on input s: M accepts s, or M eventually enters a rejecting
state, or M loops; that is, it never enters a halting state. We call a Turing
machine halting if the last outcome is impossible. In other words, on every
input, !vi eventually enters a halting state.

We call a subset L of E* recursive if there is a halting Thring machine
M such that L = L(M). Halting Thring machines can be seen as deciders for
some sets L: for every string s, M eventually enters either an accepting or a
rejecting state, which decides whether s E L. For that reason, one sometimes
uses decidable instead of recursive. When we speak of decidable problems, we
mean that a suitable encoding of the problem as a subset of E* for some finite
E is decidable.

A canonical example of an undecidable problem is the halting problem:
given a Thring machine M and an input w, does M halt on w (i.e., eventu
ally enters a halting state)? In general, any nontrivial property of recursively
enumerable sets is undecidable. One result we shall use later is that it is
undecidable whether a given Turing machine halts on the empty input.

2.3 Background from Complexity Theory

Let L be a language accepted by a halting Turing machine !vf. Assume that
for some function f : N---> N, it is the case that the number of transitions 1\;f
makes before accepting or rejecting a string s is at most f (I s I), where l.sl is
the length of .s. If M is deterministic, then we write L E DTIME(J); if M is
nondeterministic, then we write L E NTIME(J).

We define the class PTIME of polynomial-time computable problems as

PTIME = U DTIME(nk),
kEN

and the class NP of problems computable by nondeterministic polynomial
time Turing machines as

NP U NTIME(nk).
kEN

20 2 Preliminaries

The class coNP is defim~d as the class of languages whose complements an'
in NP. Notice that PTIME is closed under complementation, but this is no1
clear in the case of NP. We have PTIME c;;; NP n c:o~P, hut it is not known
whE~ther the containment is proper, and whether ~p equals coNP.

Now assume that f(n) 2 n for all n EN. Defin<~ DSPACE(f) as the class
of languages L that are accepted by deterministic halting Turing machines
AI such that for every string s, the length of the longest configuration of M
that occurs during the computation on s is at most f(l.sl). In other words. J\1
does not use mow than f (Is I) cells of the tape. Similarly, \V(' define tlw class
NSPACE(f) by using nondeterministic machines. We tlwn l<'t

PSPACE U DSPACE(nk).
~·E f\1

In the case of space complexity, tlw nondeterministic case collaps<>s to tlw
deterministic one: by Savitch's theorem, PSPACE = UAEN l\SPACE(n~).

To define space complexity for sublinear functions f, we use a modd of
Turing machin<~s with a work tape. In such a modPI, a machine AI has two
tapes, and two heads. The first tape is the input tape: it stores the input, awl
the machine cannot write on it (hut can move the head). The second tape is tlw
work tape, which operates as the normal tap<~ of a Turing machine. \V<~ dPfinP
the class NLoc: as the class of languages acc:eptPcl by such nondeterministic
machines where the size of the work tape does not exceed O(log Is I). on tlw
inputs. Likewise, we define the class DLOG as the c:lass of language accepted
by deterministic: machines with the work tape, whPre at most O(log js I) cells

of the work tape are used.

Finally, we defiw~ the polynomial hiemrchy PH. Ld .2;(; == II(; = PTll\lE.
E'' Define inductively Ef' = NP , _,, for i 2': 1. That is, languages in I-';' an' those

accepted by a nondeterministic Turing machirw running in polynomial tim<'
such that this machine can make "calls'' to another machine that computes
a language in Df'_ 1 . Such a call is assumed to have unit cost. \"'e definp t lw
class Ilf' as the class of languages whose c:omplenwnts are in Ef'.

Notice that Ej = NP and Ifj' = coNP. \Ve define the polynomial hierar
chy as

PH

This will be suffici<mt for our purposes, but th<TC is another int<Testing dPfi
nition of PH in terms of alternating Turing machines.

The relationship between the complexity classes we introduced is as fol
lows:

DLoc C NLoc C PT1l\1E C { :r'JP } C PH
coNP

PSPACE.

2.4 Bibliographic Notes 21

None of the containments of any two consecutive classes in this sequence is
known to be proper, although it is known that NLOG ~ PSPACE.

We shall also refer to two classes based on exponential running time. These
are

EXPTIME = u DTIME(2nk) and NEXPTIME
kEN

Both of these contain PsPACE.

U NTIME(2n\
kEN

Later in the book we shall see a number of other complexity classes, in
particular circuit-based classes AC0 and TC0 (which are both contained in
DLoc).

2.4 Bibliographic Notes

Standard mathematical logic texts are Enderton (66], Ebbinghaus, Flum, and
Thomas (61], and van Dalen [241]; infinite model theory is the subject of
Chang and Keisler [35], Hodges [125], and Poizat [201]. Good references on
complexity theory are Papadimitriou [195], Johnson [139], and Du and Ko
(59]. For the basics on automata and computability, see Hopcroft and Ullman
[126], Khoussainov and Nerode [145], and Sipser [221].

3

Ehrenfeucht-Fra"isse Games

We start this chapter by g1vmg a few examples of inexpressibility proofs,
using the standard model-theoretic machinery (compactness, the Lowenheim
Skolern theorem). We then show that this machinery is not generally ap
plicable in the finite model theory context, and introduce the notion of
Ehrenfeucht-Frai"sse games for first-order logic. We prove the Ehrenfeucht
Frai"sse theorem, characteri11ing the expressive power of FO via games, and
introduce the notion of types, which will be central throughout the book.

3.1 First Inexpressibility Proofs

How can one prove that a certain property is inexpressible in FO? Certainly
logicians must have invented tools for proving such results, and we shall now
see a few examples. The problem is that these tools are not partirularly well
suited to the finite context, so in the next section, we introduce a different
technique that will be used for FO and other logics over finite models.

In the first example, we deal with connectivity: given a graph C, is it
connected? Recall that a graph with an edge relation E is connected if for
every two nodes a, b one can find a number n and nodes c1 , ... , c~~. E V such
that (a, c1), (c1, c2), ... , (C71 , b) are all edges in the graph. A standard model
theoretic argument below shows that connectivity is not FO-definable.

Proposition 3.1. Connectivity of arbitrary graphs is not FO-definable.

Proof. Assume that connectivity is definable by a sentence <P, over vocabulary
(J = { E}. Let (J2 expand O" with two constant symbols, c1 and c2. For every
n, let tf/n be the sentenre

saying that then~ is no path of length n + 1 from c:1 to c2 .

Let T be the theory

24 3 Ehrenfeucht-Fra!sse GarrH's

We claim that T is consistent. By compactrwss, we have to shmv that <'ver.v

finite subset T' c:;; T is consistent. Indeed, let N be such that for all !f/, E T',
n < N. Then a comwcted graph in which the shortest path from c 1 to c2 has

length N + 1 is a model of T'.
Since T is consistent, it has a model. Let l5 be a modd ofT. Then l5 is

connected, but there is no path from c1 to c2 of l<~ngth 11, for an~· 11. This

contradiction shows that connectivity is not FO-definahk D

Does the proof above tdl us that FO, or relational calculus, cannot expn'ss

the comwctivity test over finite graphs? l:nfortunatdy, it dol's not. \Vhile

connectivity is not definable in FO over arbitm1·y graphs, the proof ahov<'

leaves open the possibility that there is a first-order sentence' that COIT<'ctly

tests connectivity only for finite graphs. But to prove the dC'sin'd r<'sult for
relational <:alculus, one has to show irwxpressibility of cmmectivity over finitr

graphs.
Can one modify the proof above for finite models? An obvious way to do

so would be to use compactness over finite graphs (i.e., if <'very finit<' subset

of T has a finite model. then T has a finite rnodd), assuming this holds.

Unfortunately, this turns out not to lw the casC'.

Proposition 3.2. Compactness fails over .finite models: then~ is a them·y T

snch that

1. T has no finite models, and

2. every finite .mbset ofT has a finite model.

Pr-oof. \Ve assume that a = 0, and define A, as a sentPIH"C' stating that the
universe has at least n distinct clements:

3:r 1 ••• 3.r, 1\ --{r, = .ri). (3.])
ifJ

Now T = {An In ~ 0}. Clearly, T has no finite model, hut for each finite subs<'t
{ A711 , ••. , A, k } of T, a set whose cardinality excPeds all til<' n, · s is a mod d. []

However, sometimes a compactness argument works nicely in th<' finite
contf~xt. We now consider a very important property, which will bP se<~n man;.·

times in this book. We want to test if tlw cardinality of the univcrs(' is PV('Jl.

That is, we arC' interested in query EVEN defined as

I A I mod 2 = 0.

Note that this only makes sense over finite' models; for infinit<' 12l the vahw of
EVEN could be arbitrary.

3.1 First Inexpressibility Proofs 25

Proposition 3.3. Assume that (J = 0. Then EVEN is not FO-dejinable.

Proof. Suppose EVEN is definable by a sentence l]). Consider sentences 1\, (3.1)
from the proof of Proposition 3.2 and two theories:

By compactness, both are consistent. These theories only have infinite
models, so by the Lowenheim-Skolem theorem, both have countable models,
Qi1 and 2i2. Since (J = 0, the structures 2i1 and 2i2 are just countable sets, and
hence isomorphic. Thus, we have two isomorphic models, 2i1 and 2i2, with
2i1 f= l]) and 2i2 f= ,q>_ This contradiction proves the result. 0

This is nice, but there is a small problem: we assumed that the vocabulary
is empty. But what if we have, for example, (J = { <}, and we want to prove
that evenness of ordered sets is not definable? In this case we would expand T1

and T2 with axioms of ordered sets, and we would obtain, by compactness and
Lowenheim-Skolem, two countable linear orderings 2i1 and 2i2 , one a model of
l]), the other a model of ,q>_ This is a dead end, since two arbitrary countable
linear orders need not be isomorphic (in fact, some can be distinguished by
first-order sentences: think, for example, of a discrete order like (N, </ and a
dense one like (Q, <)).

Thus, while traditional tools from model theory may help us prove some
results, they are often not sufficient for proving results about finite models. We
shall examine, in subsequent chapters, tools designed for proving expressivity
bounds in the finite case.

As an introduction to these tools, let us revisit the proof of Proposition
3.3. In the proof, we constructed two models, 2i1 and 2i2, that agree on all
FO sentences (since they are isomorphic), and yet compactness tells us that
they disagree on l]), which was assumed to define EVEN - hence EVEN is not
first-order.

Can we extend this technique to prove inexpressibility results over finite
models? The most straightforward attempt to do so fails due to the following.

Lemma 3.4. For ever·y finite structure 2i, there is a sentence l])'2l such that
23 F= q52t iff 23 ~ 2t.

Proof. Assume without loss of generality that 2i is a graph: (J

2i = ({a.1 •... , a.,}, E). Define l])'<t as

Then 23 f= l])2l iff 23 ~ 2{.

{E}. Ld

0

26 3 Ehrenfeucht-Frai"sse Games

In particular, every two finite structures that agree on all FO sentences
are isomorphic, and hence agree on any Boolean query (as Boolean queries
are closed under isomorphism).

The idea that is prevalent in inexpressibility proofs in finite model the
ory is, nevertheless, very dose to the original idea of finding structures 2l
and 'B that agree on all FO sentences but disagree on a given query. But
instead of two structures, 2l and 'B, we consider two families of structures,
{2lk I kEN} and {'Bk I kEN}, and instead of all FO sentences, WP consider
a certain partition of FO sentences into infinitely many classes.

In general, the methodology is as follows. Suppose we want to provP that
a property P is not expressible in a logic .C. We then partition the set of all
sentences of .C into countably many classes, .C[O], .C[l]C[kj (we shall
see in Sect. 3.3 how to do it), and find two families of structures, {2lk I kEN}
and {'Bk I k E N}, such that

• 2lk f= <I> iff 'Bk f= <I> for every .C[k] sentence <I>; and

• 2lk has property P, but 'Bk does not.

Clearly, this would show P tf_ .C; it "only" remains to show what .C[k] is,
and give techniques that help us prove that two structures agree on .C[k]. \V<>
shall do precisely that in the rest of the chapter, for the case of .C = FO. and
later for other logics.

3.2 Definition and Examples of Ehrenfeucht-Fra"isse
Games

Ehrenfeucht-Frai"sse games give us a nice tool for describing <~xpressiveness of
logics over finite models. In general, games are applicable for both finite and
infinite models (at least for FO), but we have seen that in the infinite rase we
have a number of more powerful tools. In fact, in some model theory texts.
Ehrenfeucht-Frai"ssc games are only briefly mentioned (or even appear only
as exercises), but in the finite case, their applicability makes them a rPntral
notion.

The idea of the game · for FO and other logics as well is almost invariably
the same. There are two players, called the spoileT and the duplicator' (or, less
imaginatively, player I and player II). The board of the game consists of two
structures, say 2l and 'B. The goal of the spoiler is to show that thes<> two
structures are different; the goal of the duplicator is to show that they are thP
same.

In the classical Ehrenfeucht-Frai:sse game, the players play a certain mun
ber of rounds. Each round consists of the following steps:

1. The spoiler picks a structure (2l or 'B).

3.2 Definition and Examples of Ehrenfeucht-Fralsse Games 27

2. The spoiler makes a move by picking an element of that structure: either
a E Qt or b E 23.

3. The duplicator responds by picking an element in the other structure.

An illustration is given in Fig. 3.1. The spoiler's moves are shown as filled
circles, and the duplicator's moves as empty circles. In the first round, the
spoiler picks 23 and selects b1 E 23; the duplicator responds by a 1 E Qt. In the
next round, the spoiler changes structures and picks a 2 E Qt; the duplicator
responds by b2 E 23. In the third round the spoiler plays b:3 E 23; the response
of the duplicator is a3 E Qt.

Since there is a game, someone must win it. To define the winning condition
we need a crucial definition of a partial isomorphism. Recall that all finite
structures have a relational vocabulary (no function symbols).

Definition 3.5 (Partial isomorphism). Let Qt, 23 be two a-structur·es,

wher·e (J is relational, and a = (a 1 ' ... ' an) and b = (bl' ... ' bn) two tuples
in Qt and 23 respectively. Then (a, b) defines a partial isomorphism between Qt

and 23 if the following conditions hold:

• For every i, j ~ n,
iff b; = bj.

• For every constant symbol c from a, and every i ~ n,

a; = c21 iff b; = c'll.

• For every k-ary relation symbol P from a and every sequence (i 1, ••• , ih-)
of (not necessarily distinct) numbers from [1, n],

(a; 1 , ... , a.;,) E P 21 iff (b;" .. . , b;,) E p'll.

In the absence of constant symbols, this definition says that the mapping
a; f---+ b;, i ~ n, is an isomorphism between the substructures of Qt and 23
generated by { 0.1, ... , 0.11 } and { b1, ... , bn}, respectively.

After n rounds of an Ehrenfeucht-Fra"isse game, we have moves (a1 , ... , a 11)

and (bl, ... 'b,). Let C}' ... 'Cz be the constant symbols in a; then c21 denotes
(c~, ... , c~) and likewise for c'll. We say that (a, b) is a winning position for
the duplicator if

is a partial isomorphism between Qt and 23. In other words, the map that
sends each a., into b; and each c~ into c'f is an isomorphism b<~tween
the substructures of Qt and 23 generated by { a. 1 , ... , an, r~, ... , c~} and
{ b1 , ... , b,, c~, ... , r('} respectively.

We say that the duplicator has an n-round winning stmtegy in the
Ehrenfeucht-Frai:sse game on Qt and 23 if the duplicator can play in a way

28 3 Ehrenfeucht-Frai'sse Games

0]0 • hi

a'2 • 0 b'2

O:Jo •h:l

(1'2t= =c'E

Fig. 3.1. Ehrenfeucht-Frai'sse game

that guarantees a winning position after n rounds, no rnatt<~r how the spoiler
plays. Otherwise, the spoiler has ann-round winning strategy. If the <luplica
tor has an n-round winning strategy. we write 1.2{ =" 23.

Observe that 2t =n 23 implies 2t =k 23 for CV<'ry J.· S:: n.
Before we connect Ehrenfeucht-Frai"sse games and FO-ddinability, \Ve give

some exampk~s of vv-inning strat<~gi<~s.

Garnes on Sets

In this example, the vocabulary rr is <~rnpty. That is, a structure is just a set.
Let IAI, IBI ~ n. Then A =n n.

The strategy for the duplicator works as follows. Suppose i rounds have
been played, and the position is ((o 1 , a;). (b 1 1 ••• 1 b;)). Assume the spoiler
picks an element ai+J E A. If lli+l = a.J for j :S i, th<m the duplicator
responds with bi+ 1 = bJ; othenvise, the duplicator responds w·ith any b.J+I E
B- { b11 •••• b;} (which exists sine<~ I B I~ n).

Garnes on Linear· 0Tders

Our next example is a bit more cornplicat<·cl, as \V<' add a binar~· rdation <
to rr, to be interpreted as a linear ord<~r. Now suppose L 1 . L 2 arc two lin<'ar
orders of size at least n (i.e., structures of tlw form ({ 1 m} 1 <), m ~ n.).
Is it true that L 1 =o L 2 ?

It is very easy to sec that the answer is negative ewn for tlw case of n = 2.
Let L 1 contain three elements (say { 11 2. 3}) 1 and L 2 two d<'ments ({ 1. 2}). In
the first move, the spoiler plays 2 in L 1. The duplicator has to respond with
Pither 1 or 2 in L 2 . Suppos<~ the duplicator responds wit b I E L 2 ; tlwn the
spoiler plays 1 E L 1 and the duplicator is lost, since he has to r<'spond with
an element less than 1 in L 1, and there is no such element. If the duplicator
selects 2 E L 2 as his first-round move, the spoiler plays ;:; E L 1 • and the
duplicator is lost again. Henc<', L 1 =j2 L 2 •

However, a winning strategy for the duplicator can be guaranh'<'d if L 1 • L 2

are much larger than the number of rounds.

3.2 Definition and Examples of Ehrenfeucht-Fra!ssc Games 29

> 2k-i

d > 2k-(i+I)

£1
aj ai+l az aj

£2
bj bi+l bz

d) 2k-(L+J)

) 2k-i

(a) d < 2k-(i+l) (b)

Fig. 3.2. Illustration for the proof of Theorem 3.6

Theorem 3.6. Let k > 0, and let £ 1 , £ 2 be linear order·s of length at least 2'.
Then L1 =k £2.

We shall give two different proofs of this result that illustrate two different
techniques often used in game proofs.

Theorem 3. 6, Pmof # 1. The idea of the first proof is as follows. We use
induction on the number of rounds of the game, and our induction hypothesis
is stronger than just the partial isomorphism claim. The reason is that if we
simply state that after 'i rounds we have a partial isomorphism, the induction
step will not get off the ground as there are too few assumptions. Hence, we
have to make additional assumptions. But if we try to impose too many con
ditions, there is no guarantee that a game can proceed in a way that preserves
them. The main challenge in proofs of this type is to find the right induction
hypothesis: the one that is strong enough to imply partial isomorphism, and
that has enough conditions to make the inductive proof possible.

We now illustrate this general principle by proving Theorem 3.6. We ex
pand the vocabulary with two new constant symbols min and max, to be
interpreted as the minimum and the maximum element of a linear ordering,
and we prove a stronger fact that £1 =k £2 in the expanded vocabulary.

Let £ 1 have the universe { 1, ... , n} and £ 2 have the universe { 1, m}.
Assume that the lengths of L 1 and £ 2 are at least 2''; that is, n, m :::> 2k + 1. The
distance between two elements x, y of the universe, d(:r, y), is simply I x - .tJ I·
We claim that the duplicator can play in such a way that the following holds
after each round i. Let r1 = (a_l, oo, o1, ... , a;) consist of o-1 = min£ 1 , oo =
max£ 1 and the 'i moves a 1 •...• Oi in £ 1 , and likewise let b = (b_ 1 , bo, b1 , /1;)

consist of b_ 1 = minL", b11 = max£2 and the i moves in £ 2 • Then, for -I <::;
j, l s; i:

30 3 Ehrl'nfeucht-Fra!sse Gam<'s

1. ifrl(o1 ,at) <2'-i· thend(hJ"ht)=d(o1 Jlt).
2. if d(ai, a1) 2: 2'-'. then d(b1 • 1!1) 2: 21. ;_
3. a1 S: o, {===? bi S: bt.

We prove (3.2) by induction; notice that the third condition ensures partial
isomorphism, so we do prove an induction statement that says more than just.
maintaining partial isomorphism.

And now a simple proof: the base case of i = 0 is immediate since
d(a_ 1 , a 0), d(b __ 1 , b0) 2: 2" by assumption. For the induction step, suppose
the spoiler is making his (i + l)st move in L 1 (the case of L 2 is s.vmmdric).
If tlw spoiler plays one of a1 ,j S: i, the n~sponse is bJ, and all thc conditions
are trivially preserved. Otherwise, t hc spoiler's move falls into an int PnaL say
a.J < a;+ 1 < u 1, such that no other pn~viously played rnov<·s ar<' in the same
interval. By mndition 3 of (3.2), this means that the interval hPtw<'<'n h 1 and
bt contains no other clements of b. Th<•re are t\YO cases: .

• d(a1 , at) < 2'-;. Then d(b1 , ht) = d(o 1 , at), and the int<·nals [u1. u 1] and
[111 , l1,] are isomorphic. Then we simply find b;+ 1 so that rf,: u 1 • u, + 1) =
d(b1 ,h;+l) and d(ai+l,at) = d(h, 1 1 ,bt). Clearly, this ensm<•s that all the
conditions in (3.2) hold.

• d(a1 , o 1) 2: '2k-i. In this cas<' d(b1 , 1!1) 2: 2'-;. \Ve have thre<' possihilitiPs:

1. d(a1 ,a;+t) < 2'·-(i+l)_ Th<m d(a;+ 1 .az) 2: 2"-(,+ll, and w<' can choose
b;+J so that d(bj,bi+l) = d(a.~,a;+I) and d(b;+ 1.b1)? :zk--(,+l) This
is illustrated in Fig. 3.2 (a), where d stands for d(aJ" u,+ 1).

2. d(a;+ 1 ,a1) < 2k-(i+l)_ This case is similar to the pn•vious one.
3. d(a1 , a;+ I) 2: 21.-(,+IJ, d(ai+l, at) 2: 21.-(,+IJ. Since d(h.~.IJt) 2: 2k-i,

by choosing b;+ 1 to be the middle of the interval [bi. bt] W<' ensur<'
that d(bi.b+J) 2: 2k-(i+l) and d(b,~ 1 .h1) ? 21.-(i+IJ_ This cas<' is
illustrated in Fig. 3.2 (b).

Thus, in all the cases, (3.2) is preserved.
This completes the inductive proof; henc<~ W<' havr' shown that the dupli-

cator can win a !.:-round EhrPnfeucht-Frai:sse gam<' on L 1 and L 2 . D

Theorem 8.6, Pmof # 2. The second proof n~li<'S on the composition
method: a way of composing simpler games into mon• complicated ones.

Before we proceed, we make the following observation. Suppose L 1 '=1. /, 2 .

Then we can assunH~, without loss of generality, that the duplicator has a
\vinning strategy in which lw responds to the minimal dement of one ordering
by the minimal e!Prnent of the other ordering (and likewise for the maximal
dements).

Indeed, suppose the spoikr plays min L,, the minimal dement of L 1 . If t hP
duplicator responds hy b > min L 2 and then• is at kast one round lPft. tlH'n
in the next round the spoiler plays mir/' 2 and the duplicator loses. If this is
the last round of the game, then the duplicator can respond by any Plenl<'nt

3.2 Definition and Examples of Ehrenfeucht-Fralsse Games 31

that does not exceed those previously played in L 2 , in particular, minL2 • The
proof for other cases is similar.

Let L be a linear ordering, and a E L. By LS,a we mean the substructure
of L that consists of all the elements b ~ a, and by L?.a the substructure of L
that consists of all the elements b ;::: a. The composition result we shall need
says the following.

Lemma 3.7. Let L1, L2, a E L1, and bE L2 be such that

L S,a L<b
1 =k 2

Proof of Lemma 3. 7. The strategy for the duplicator is very simple: if the
·1 1 . L<a h d 1· h . . c L<a L<b spm er p ays m 1 , t e up 1cator uses t e wmnmg strategy 10r 1 =k 2 ,

and if the spoiler plays in Lr, the duplicator uses the winning strategy for
L'fa =k L~b (the case when the spoiler plays in L 2 is symmetric). By the
remark preceding the lemma, the duplicator always responds to a by b and
to b by a, which implies that the strategy allows him to win in the k-round
game on (L1, a) and (L 2 , b). 0

And now we prove Theorem 3.6. The proof again is by induction on k, and
the base case is easily verified. For the induction step, assume we have two
linear orderings, L1 and L 2 , of length at least 2k. Suppose the spoiler plays
a E L 1 (the case when the spoiler plays in L 2 is symmetric). We will show
how to find bE L2 so that (L1 , a) =k-1 (L2, b). There are three cases:

• The length of L(a is less than 2k- 1 . Then let b be an element of L 2
such that d(minL 1 ,a) = d(minL 2 ,b); in other words, L(a ~ L'i§:b. Since
the length of each of L'fa and L~b is at least 2k- 1 , by the induction
hypothesis, Lr =k-1 L~b· Hence, by Lemma 3.7, (L1 , a) =k- 1 (L2 , b).

• The length of L'fa is less than 2k- 1 . This case is symmetric to the previous
case.

• The lengths of both L(a and L'fa are at least 2k- 1 . Since the length of L 2
is at least 2k, we can find b E L 2 such that the lengths of both L~b and
L~b are at least 2k-l. Then, by the induction hypothesis, L(a =k-l L~b
and L'fa =k-1 L~b' and by Lemma 3.7, (L1, a) =k-1 (L2, b).

Thus, for every a E L 1 , we can find bE L 2 such that (L1 , a) =k- 1 (L 2 , b) (and
symmetrically with the roles of L1 and L 2 reversed). This proves L1 =k L 2 ,

and completes the proof of the theorem. 0

32 3 EhrenfPucht-Fralssc Games

3.3 Games and the Expressive Power of FO

And now it is time to sec why games are important.. For this, we neC'd a nurial
definition of quantifier rank.

Definition 3.8 (Quantifier rank). The quantifier rank of a formula qr(cp)
is its depth of quantifier· nesting. That is:

• If cp is atomic, then qr(cp) = 0.

• qr(rp, Vcp2) = qr(cp, 1\ c,?2) = max(qr(rp,).qr(cp2)).

• qr(•rp) = qr(cp).

• qr(:..J:rcp) = qr('li:rcp) = qr(cp) + 1.

We usc the notation FO[k] for- all FO for-mulae of quantifier- mnk np to k.

In general, quantifier rank of a formula is different from the total of mim
her of quantifiers used. For cxampk, we can define a family of formula<' hy
induction: do(x, y) = E(x. y), and <h = :..Jz d,_, (.1:. z) 1\ <h- 1 (z. y). The quall
tifier rank of dk is k, but tlw total number of quantifiers used in d, is 2" - I.
For formulae in th<' prenex form (i.e .. all quantifiers ar!' in front. follmvcd by
a quantifier-free formula), quantifi<~r rank is the' same as the total numlH'r of
quantifiers.

Given a set S of FO sentences (over vocabulary IT), we say that t\vo IT
structures 2l and 'B agr-ee on S if for every s<~nt<mee <P of S'. it is tll<' rase that
2l F= <P <=? 'B F= $.

Theorem 3.9 (Ehrenfeucht-Fralsse). Let 2l and 'B be two str·v.ctun:s in a
r-elational vocabular-y. Then the following ar·e equivalent:

1. 2l and 'B agr-ee on FO[k].

2. 2(=k 'B.

\Vc will prove this theorem shortly, but first w<~ discuss how this is useful
for proving irwxpressibility results.

Characterizing the Pxpressivc power of FO via games gives ris<' to the
following methodology for proving inexpn~ssibility rPsults.

Corollary 3.10. A pmper-ty P of finite IT-str-uctnn;s is not expressihl<' inFO
if for· ever-y k E N, then: exist two finite IT-str-uctnn;s, 21,. and 'B~c, snch that:

• 21,. =k 'B,, and

• 2lk has pmper-t:IJ P. and 'B, does not.

3.4 Rank-k Types 33

Proof. Assume to the contrary that P is definable by a sentence <P. Let k =

qr(<P), and pick Qlk and IBk as above. Then Qlk =k lEA, and thus if Qlk has
property P, then so does IBk, which contradicts the assumptions. D

We shall see in the next section that the if of Corollary 3.10 can be re
placed by iff; that is, Ehrenfeucht-Fra!sse games are complete for first-order
definability.

The methodology above extends from sentences to formulas with free vari
ables.

Corollary 3.11. An m-ary query Q on a-structures is not expressible inFO
iff for every k E N, there exist two finite a-structures, Qlk and IBk, and two

m-tuples a and b in them such that:

• (Qlk, a) =~.: (IBk, b), and

• a E Q(Qli.) and b tf. Q(IBk)· D

We next see some simple examples of using games; more examples will
be given in Sect. 3.6. An immediate application of the Ehrenfeucht-Fra!sse
theorem is that EVEN is not FO-expressible when a is empty: we take Qll ..

to contain k elements, and IBk to contain k + 1 elements. However, we have
already proved this by a simple compactness argument in Sect. 3.1. But we
could not prove, by the same argument, that EVEN is not expressible over
finite linear orders. Now we get this for free:

Corollary 3.12. EVEN is not FO-expressible over linear orders.

Proof. Pick Qlk to be a linear order of length 2k, and IB~.: to be a linear order
of length 2"· + 1. By Theorem 3.6, Qll.: =A- IBk· The statement now follows from
Corollary 3.10. D

3.4 Rank-k Types

We now further analyze FO[k] and introduce the concept of types (more pre
cisely, rank-k types).

First, what is FO[O]? It contains Boolean combinations of atomic fornm
las. If we arc interested in sentences in FO[O], these are precisely atomic
sentences: that is, sentences without quantifiers. In a relational vocabulary,
such sentences are Boolean combinations of formulae of the form c = c' and
R(c1, ... , ck), where c, c', ci, ... , ck are constant symbols from a.

Next, assume that 'P is an FO[k + 1] formula. If 'P = 'PI V zp2 , then both
'PI, zp2 are FO[k + 1] formulae, and likewise for /\; if 'P = ''PI, then zp 1 E

FO[k + 1]. However, if 'P = 3x1j; or 'P = \lx'lj;, then 1j; is an FO[k] formula.
Hence, every formula from FO[k + 1] is equivalent to a Boolean combination
of formulae of the form 3x'lj;, where 1j; E FO[k]. Using this, we show:

34 3 Ehrenfeucht-Fralsse Games

Lemma 3.13. If CJ is finite, then up to logical equivalence, FO[k] over· CJ con
tains only finitely many formulae in m free var·iables J: l· r, 11 •

Proof. The proof is by induction on k. The base case is FO[O]; then' an'
only finitely many atomic formulae, and hence only finitely many Boolean
combinations of those, up to logical equivalence. Going from k to /,: + 1, recall
that each formula <P(x1 , •.• , :r711) from FO[k + 1] is a Boolean combination of
::lxm+l '!j;(xl, ... , x 111 , Xm+t), where 7/) E FO[k]. By the hypothesis, the numlwr
of FO[k] formulae in rn + 1 free variables :r1 , :rw+ 1 is finite (up to logical
equivalence) and hence the same can be concluded about FO[k + 1] formulas
in rn free variables. D

In model theory, a type (or rn-type) of an rn-tuple a over a CJ structure Ql
is the set of all FO formulae <Pin m free variables such that Ql f= cp(a). This
notion is too general in our setting, as the type of a over a finite Ql describes
(Ql, ii) up to isomorphism.

Definition 3.14 (Types). Fix a relational vocabulary (J. Let Ql be a (]"
structure, and ii an m-tuple over· A. Then the rank-k m-type of a over Ql
is defined as

tpk(m, a) = { 'P E FO[kJI m F= <P(a)}.

A rank-k rn-type is any set of formulae of the form tp~,:(Ql, a)' wher·e I a I= m.
When rn is clear from the context, we speak of rank-/; types.

In the special case of rn = 0 we deal with tph: (Ql), defined as tlw set of
FO[k] sentences that hold in Ql. Also note that rank-k types arP maximally
consistent sets of formulae: that is, each rank-k type S is consistent, and for
every <P(x1 , ... , X 111) E FO[k], either <P E S or ''? E S.

At this point, it seems that rank-k types arc inherently infinite objects, hut
they are not, because of Lemma 3.13. We know that up to logical ~~qui valence,
FO[k] is finite, for a fixed number m of free variables. Let <P 1 (Y) , <P J\1 (.7)
enumerate all the nonequivalent formulae in FO[k] with free variables .F =
(x1 , ... , xm)· Then a rank-k type is uniquely determined by a subset K of
{1, ... , 1\-1} specifying which of the <P;'s belong to it. Moreover, testing that :r
satisfies all the <Pi's with i E K and does not satisfy all the Pi's with j t/ 1\
can be done by a single formula

1\ <Pi 1\ 1\ '<PJ. (3.3)
iEK jt/cX

Note that ax (x) itself is an FO[k] formula, since no new quantifiers were
introduced.

Furthermore, all the aK's are mutually exclusive: for J(-I- K', if Ql f=
ax(ii), then Ql f= 'ax,(ii). Every FO[k] formula is a disjunction of some of
the ax's: indeed, every FO[k] formula is equivalent to some <Pi in the above
enumeration, which is the disjunction of all a K 's with i E K.

Summing up, we have the following.

3.5 Proof of the Ehrenfeucht-Fra!sse Theorem 35

Theorem 3.15. a) For· a finite r-elational vocabulary O", the number of differ·
ent mnk-k m-types is finite.

b) Let T 1, ••• , Tr enumemte all the mnk-k m-types. There exist FO[k:] for
mulae a 1 (x), ... , a,.(x) .mch that:

• for every Qt and a E A 111 , it is the case that Qt f= ai(a) iff tpdl.2t, 17) = T;,
and

• every FO[k] formula ip(x) in m free variables is equivalent to a disjunction
of some a;. 's.

Thus, in what follows we normally associate types with their defining for
mulae a/s (3.3). It is important to remember that these defining formulae for
rank-k types have the same quantifier rank, k.

From the Ehrenfeucht-Frai:sse theorem and Theorem 3.15, we obtain:

Corollary 3.16. The equivalence relation =k is of finite index {that is, has
finitely many equivalence classes).

As promised in the last section, we now show that games are complete for
characterizing the expressive power of FO: that is, the if of Corollary 3.10 can
be replaced by iff.

Corollary 3.17. A proper·ty P is expressible inFO iff there exists a number·
k such that for every two structures Qt, 23, if Qt E P and Qt = k 23, then 23 E P.

Proof. If Pis expressible by an FO sentence if>, let k = qr(tf>). If Qt E P,
then Qt f= if>, and hence for 23 with Qt =k 23, we have 23 f= if>. Thus, 23 E P.

Conversely, if Qt E P and Qt ="' 23 imply 23 E P, then any two structures
with the same rank-k type agree on P, and hence Pis a union of types, and
thus definable by a disjunction of some of the ai 's defined by (3.3). D

Thus, a property P is not expressible in FO iff for every k, one can find
two structures, Qtk =" 23"' such that Qtk has P and 23k does not.

3.5 Proof of the Ehrenfeucht-Fralsse Theorem

We shall prove the equivalence of 1 and 2 in the Ehrenfeucht-Frai:sse theorem,
as well as a new important condition, the back-and-forth equivalence. Before
stating this condition, we briefly analyze the equivalence relation =o.

When does the duplicator win the game without even starting? This hap
pens iff (0, 0) is a partial isomorphism between two structures Qt and 23. That
is, if cis the tuple of constant symbols, then c~ = c~ iff c'f" = c'f for evf~ry

i, j, and for each relation symbol R, the tuple (c~, ... , c~) is in R 21 iff the

tuple (c~, ... , r:'f;J is in R'B. In other words, (0, 0) is a partial isomorphism
between Qt and 23 iff Qt and 23 satisfy the same atomic sentences.

36 3 Ehrenfeucht-Frai"sse Games

We now usc this as the basis for the inductive definition of hack-and-forth

relations on 21 and 23. More precisely, we define a family of relations r::::~, on

pairs of structures of the same vocabulary as follows:

• 21 r::::o 23 iff 21 =o 23; that is, 21 and 23 satisfy the same atomic scntPnccs.

• 21 ':'::'k+J 23 iff the following two conditions hold:

forth: for every a E A, there exists bE B such that (21. a) ':'::'1, ('B, IJ);

back: for every bE JJ, there exists a E A such that (21, a) ':'::',. (23. b).

'Ve now prow the following extension of Theorem 3.9.

Theorem 3.18. Let 21 and 23 be two structures in a r-elational '/J{)(:abu,lar-;tJ (J.

The-n the following are equ.ivalent:

1. 21 and 23 agree on FO[k].

2. 21 =k 23.

s. 21 ':'::'~; 23.

Proof. By induction on k. The case of k = 0 is obvious. W(• first show the

equivalence of 2 and 3. Going from k to k + 1, assunH' 21 ':'::'k-1-l 23; we must

show 21 =h+ 1 23. Assume for the first move the spoiler plays a E A: we find

b E 23 with (21, a) ':'::'1, (23, b), and thus by the hypotlwsis (21, a) =~, (23, b).

Hence the duplicator can continue to play for k moves, and thus wins the

k + 1-rnove game. The other direction is similar.

With games replaced by the back-and-forth relation, we show the equiva

lence of 1 and 3. Assume 21 and 23 agree on all quantifier-rank J.: + 1 scntPnces:

we must show 21 '::'A:+ 1 23. w(~ prove the for·th case; the back case is identical.

Pick a E A, and let ni define its rank-k 1-type. Then 21 ~ 3.ux.;(.I:). Sim:P

qr(ai) = k, this is a sentence of quantifier-rank k + 1; hence 23 ~ =j:ro; (.1:). L<'t

h be the witness for the Pxistential quantifier; that is, tpk(21, a) = ipA_(23, h).

Hence for every (Jl sentence l]J of qr(tJ!) = k, we have (21, a) ~if/ iff (23, b) ~ ![t,

and thus (21, a) and (23, b) agree on quantifi<>r-rank k sentences. By the hy

pothesis, this implies (21, a) r::::~;: (23, b).
For the implication 3 ____, 1, we need to prove that 21 ':'::''+ L 23 impli<~s that 21

and 23 agree on FO[k + 1]. Every FO[k + 1] sentencP is a Boolean combination

of 3x<p(x), where <p E FO[k], so it suffices to prove the result for sentences of

the form 3x<p(x). Assume that 21 ~ 3;r;y(:r), so 21 ~ cp(a) for some a EA. By

forth, find bE B such that (21,a) ':'::'' (23,b); hence (21,a) and (23.b) agr<'<'

on FO[k] by the hypothesis. Hence, 23 ~ <p(IJ), and thus 23 ~ :=J:rcp(.1·). Th<'

converse (that 23 ~ 3:rcp(:r) implies 21 ~ 3J:<p(:r)) is identical, which complPt<~s

the proof. 0

3.6 More Inexpressibility Results 37

Fig. 3.3. Reduction of parity to connectivity

3.6 More Inexpressibility Results

So far we have used games to prove that EVEN is not expressible in FO, in
both ordered and unordered settings. Next, we show inexpressibility of graph
connectivity over finite graphs. In Sect. 3.1 we used compactness to show that
connectivity of arbitrary graphs is inexpressible, leaving open the possibility
that it may be FO-definable over finite graphs. We now show that this cannot
happen. It turns out that no new game argument is needed, as the proof uses
a reduction from EVEN over linear orders.

Assume that connectivity of finite graphs is definable by an FO sentence
tf>, in the vocabulary that consists of one binary relation symbol E. Next ,
given a linear ordering, we define a directed graph from it as described below.
First, from a linear ordering < we define the successor relation

succ(x,y) = (x < y) 1\ Vz((z::; .1:) V (z;::: y)).

Using this, we define an FO formula !' (x , y) such that !' (x , y) is true iff one of
the following holds:

• y is the successor of the successor of x: 3z (succ(x, z) 1\ succ(z, y)), or

• x is the predecessor of the last element, and y is the first element:
(3z (succ(x,z) 1\ \lu(u::; z))) 1\ \lu(y::; u), or

• x is the last element and y is the successor of the first element (the FO
formula is similar to the one above).

Thus, !' (x , y) defines a new graph on the elements of the linear ordering; the
construction is illustrated in Fig. 3.3.

Now observe that the graph defined by /' is connected iff the size of the
underlying linear ordering is odd. Hence, taking ---.1> , and substituting /' for
every occurrence of the predicate E, we get a sentence that tests EVEN for
linear orderings. Since this is impossible, we obtain the following.

Corollary 3.19. Connectivity of finite graphs is not FO-definable.

38 3 Ehrenfeucht-F:ralsse Games

··----···----··.---· ··----··.---·~-.-~

•• ---<•o4·--·... . . . ·---<•o4·--· ...

Fig. 3.4. Graphs GL and G{

So far all the examples of inexpressibility results proved via EhtTufeuc:ht
Frai:sse games were fairly simple. Unfortunatcly, this is a rather mmsuai situa
tion; typically game proofs are hard, and often some nontrivial combinatorial
arguments arc required. We uow present a11 additional example of a gam e
proof, as well as a few mow problems that could possibl.Y be handled by
games, but are bettE~r left until we have sccu rnore powerful techniqtws. TlH~s<'
show how the difficulty of game proofs can rapidly im:reas<· as tlw probl<'II1S
become more complex.

Suppose that we want to test if a graph is a tree. By trees we nwa.n dircct<•d
rooted trees. This s<,ems to be impossible inFO. To prove this, we follow th<'
general methodology: that is, for each k we must find two graphs. r:L = ~.- c:f.
such that one of them is a tree, and the ot.lwr one is not.

We choose t.Jwse graphs as follows: CL is tlw graph of a successor r<'lation
of length 2·m., aud Gf. has two connected components: one is the graph of a
successor relation of length m, and the other o11e is a cycle of length 111. Vvc
did not say what m. is, and it will be ch'ar fro1n the proof what it should he:
at this point we just say that rn. depends only 011 A: , and is sufficientJ.Y la.rg<'.

Clearly Gl is a. tree (of degree 1), and Gx is not , so wP must. show UL =.,
Gf,. In each of these two graphs there an~ two special points: t he start. and
the endpoint of the successor relation. Clearly these must be preserved in tlw
game, so we may just assume t hat the game starts in a positio11 when· these
points were played. That is, we let a _ 1. a0 be the start and t.lw endpoint of
Gl, and b_ 1, b0 lw the start and the endpoint of the successor part of Gf.. \V<·
let a; 's stand for the points played in G L, and b.;'s for tlH' points played in Gf.

What do we put in the inductive hypothesis'? The approach we take is
very similar to the first proof of Theorem 3.6. We define t.lw dist.ance bN.ween
two clements as the length of tlw shortest path betwPen tlwm. Notice that in
the case of Gi, the distanc<~ muld be infinity, as the graph has two comwcted

3.6 More Inexpressibility Results 39

components. We then show that the duplicator can play in a way that ensures
the following conditions after each round i:

1. if d(a1 ,at):::; 2k-i, then d(b1 ,bt) = d(a1 ,at).
2. if d(a1, at) > 2k-i, then d(b1, bt) > 2k-i.

(3.4)

These are very similar to conditions (3.2) used in the proof of Theorem
3.6.

How do we prove that the duplicator can maintain these conditions? Sup
pose i rounds have been played, and the spoiler makes his move in round i + 1.
If the spoiler plays close (at a distance at most 2k-(i+l)) to a previously played
point, we can apply the proof of Theorem 3.6 to show that the duplicator has
a response.

But what if the spoiler plays at a distance greater than 2k-(i+l) from all
the previously played points? In the proof of Theorem 3.6 we were able to place
that move into some interval on a linear ordering and use some knowledge of
that interval to find the response - but this does not work any more, since our
graphs now have a different structure. Nevertheless, there is a way to ensure
that the duplicator can maintain the winning conditions: simply by choosing
m "very large", we can always be sure that if fewer than k rounds of the
game have been played, there is a point at a distance greater than 2k-(i+l)

from all the previously played points in the graph. We leave it to the reader
to calculate m for a given k (it is not that much different from the bound we
had in Theorem 3.6).

Thus, the duplicator can maintain all the conditions (3.4). In the proof of
Theorem 3.6, one of the conditions of (3.2) stated that the moves in the game
define a partial isomorphism. Here, we do not have this property, but we can
still derive that after k rounds, the duplicator achieves a partial isomorphism.
Indeed, suppose all k rounds have been played, and we have two elements ai, a1
such that there is an edge between ai and a1. This means that d(ai, a1) = 1,
and, by (3.4), d(bi,bJ) = 1. Therefore, there is an edge between bi and bi.
Conversely, let there be an edge between bi and bj. If there is no edge between
ai and aj, then d(ai,aj) > 1, and, by (3.4), d(bi,bj) > 1, which contradicts
our assumption that there is an edge between them.

Thus, we have shown that Gl =kG%, which proves the following.

Proposition 3.20. It is impossible to test, by an FO sentence, if a finite
graph is a tree. D

This proof is combinatorially slightly more involved than other game proofs
we have seen, and yet it uses trees with only unary branching. So it does not
tell us whether testing the property of being an n-ary tree, for n > 1, is
expressible. Moreover, one can easily imagine that the combinatorics in a
game argument even for binary trees will be much harder. And what if we are
interested in more complex properties? For example, testing if a graph is:

40 3 Ehrenfeucht-Fra1sse Games

• a balanced binary tree (the branching factor is 2, and all the maximal
branches arc of the same length);

• a binary tree with all the maximal branches of different length;

• or even a bit different: assuming that we know that the input is a binary
tree, can we check, in FO, if it is balanced?

It would thus be nice to have some easily verifiable criteria that guarantee
a winning strategy for the duplicator, and that is exactly what we shall do in
the next chapter.

3. 7 Bibliographic Notes

Examples of using compactness for proving some very easy inexpressibility
results over finite models are taken from Viiiiniinen [239] and Gaifman and
Vardi [89].

Characterization of the expressive power of FO in terms of the bark-and
forth equivalence is due to Frai"ssc [84]; the game description of the bark-and
forth equivalence is due to Ehrenfeucht [62].

Theorem 3.6 is a classical application of Ehrenfeucht-Frai"sse games, and
was rediscovered many times, cf. Gurevich [117] and Rosenstein [209]. The
composition method, used in the second proof of Theorem 3.6, will be dis
cussed elsewhere in the book (e.g., exercise 3.15 in this chaptPr, as well as
Chap. 7). For a recent survey, see Makowsky [177].

The proof of inexpressibility of connectivity is standard, see, e.g., [60, 133].
Types are a central concept of model theory, see [35, 125, 201]. The proof

of the Ehrenfeucht-Frai"sse theorem given here is slightly different from the
proof one finds in most texts (e.g., [60, 125]); an alternative proof using what
is called Hintikka formulae is presented in Exercise 3.11.

Some of the exercises for this chapter show that several classical theorems
in model theory (not only compactness) fail over finite models. For this line of
work, see Gurevich [116], Rosen [207], Rosen and Weinstein [208], Feder and
Vardi [78].

Sources for exercises:
Exercise 3.11: Ebbinghaus and Flum [60]
Exercises 3.12 and 3.13: Gurevich [116]
Exercise 3.14: Ebbinghaus and Flum [60]
Exercise 3.17: Cook and Lin [41]
Exercise 3.18: Pezzoli [199]

3.8 Exercises 41

3. 8 Exercises

Exercise 3.1. Use compactness to show that the following is not FO-expressible
over finite structures in the vocabulary of one unary relation symbol U: for a struc

ture Ql, both I um I and I A - U~1 I are even.

Exercise 3.2. Prove Lemma 3.4 for an arbitrary vocabulary.

Exercise 3.3. Prove Corollary 3.11.

Exercise 3.4. Using Ehrenfeucht-Fra.lsse games, show that acyclicity of finite
graphs is not FO-definable.

Exercise 3.5. Same as in the previous exercise, for the following properties of finite

graphs:

1. Planarity.
2. Hamiltonicity.
3. 2-colorability.
4. k-colorability for any k > 2.
5. Existence of a clique of size at least n/2, where n is the number of nodes.

Exercise 3.6. We now consider a query closely related to EVEN. Let rr be a vo
cabulary that includes a unary relation symbol U. We then define a Boolean query
PARITYu as follows: a finite rr-structure Ql satisfies PARITYu iff

1 u~~ I= o (mod 2).

Prove that if rr = { <, U}, where< is interpreted as a linear ordering on the universe,
then PARITYu is not FO-definable.

Exercise 3.7. Theorem 3.6 tells us that £1 =k £2 for two linear orders of length
at least 2k. Is the bound 2k tight? If it is not, what is the tight bound?

Exercise 3.8 . .Just as for linear orders, the following can be proved for <B.,, the
graph of successor relation on { 1, ... , n}. There is a function f : N -> N such that
<Bn =k <Brn whenever n,m 2 f(k). Calculate f(k).

Exercise 3.9. Consider sets of the form Xq, = {n EN I Ln p <P}, where <Pis an
FO sentence, and Ln is a linear order with n elements. Describe these sets.

Exercise 3.10. Find an upper bound, in terms of k, on the number of rank-k types.

Exercise 3.11. The goal of this exercise is to give another proof of the Ehrenfeucht

Fralsse theorem. In this proof, one constructs formulae defining rank-k types explic
itly, by specifying inductively a winning condition for the duplicator.

Assume that rr is relational. For any rr-structure Ql and a E A rn, we define

inductively formulae a~.a:(XI, :r,) as follows:

• a~.a:(x) = A x(x) where the conjunction is taken over all atomic or negated
atomic x such that Ql p x(a). Note that the conjunction is finite.

42 3 Ehrenfeucht-Pra!ssc Games

• Assuming nk'~ an~ defined, we ddine

(1\ 3z o;~.,Ic(.r.zl) !\ (vz v Cl~(.;;,(:r. ::)).
~~t:= :1 cE:- A.

Prove that the following are equivalent:

L (2l, 0:) =k (SB. h);
2. (2l, a) "-'k (SB. h);
3. for every y(:r) with qr(y) <::: k, we have 2l f= i;?(O:) iff SB f= i;?(h);

4. SB f= a~ 5 (b).

U~ing this, prove the following statement. Let Q he a query definable in FO by

a formula of quantifier rank k. Then Q is definable by the following formula:

V o;t,,(.?).
iiHJ(Qt)

Note that the disjunction is finite, by Lemma 3.13.

Exercise 3.12. Beth's definability theorem is a das~ical n'sult in mathematical

logic: it says that a property is definable implicitly iff it is d<'finable explicitly. Ex

plicit definability of a A:-ary query CJ ou IT-structures means that tlwre is a formula

cp(:r:1, ... , Xk) such that cp(2l) = Q(2l). Implicit dcfinability nwans that there is a

sentence if> in the language of O" expanded with a single k-ary relation J> such that

for every IT-structure 2l, there exists a unique set P c;; A k such that (2L P) f= <[> and

p = Q(2l).
Prove that Beth's theorem fails over finite mockls.
Hint: P is a unary query that returns the ~et of even denH'nts in a linear order.

Exercise 3.13. Craig's interpolation is another classical result from mathematical

logic. Let 1T 1 • IT 2 be two vocabularies, and IT = IT 1 n IT 1 . Let if>' he a S<'utencc ov<'r IT;,

i = L 2. Assume that </> 1 f- 1'>2 Craig's th<'orem ~ays that then~ exists a sentenc<' if>

over O" such that 1'> 1 f- <1> and </> f- 1'>2 .

Using techniques similar to those in the previous ex<~rcis<', prow that Craig's

interpolation fails over finite models.

Exercise 3.14. This exercise demonstrates another example of a result from math

ematical logic that fails over finite models. The Los-Tar~ki th<1on'm ~ays that a
sentence which is preserved under extensions (that is, 2(c;; SB and 2(I= </> impliPs

SB f= if>) is equivalent to an existential sentence: a sentence built ti'Oltl atomic and

negated atomic formulae by using V, !\, and 3.
Prove that the Lo~-Tarski theorem fails over finite modds.

Exercise 3.15. vVinning strategies for complex structure~ can h<' cmnJ)()sed from

winning strategies for simpler structures. Two commonly used <1xamph~s of such

compositions are the ~ubject of this exercise.
Given two structures 2l, SB of the same vocabulary IT, their Carte~ian product 2l x

SB is defined as a IT-structure whose universe is Ax B, each constant. 1· i~ intPrprded a~

a pair (cQl, c'1'), and Pach m-ary relation P is intPrpreted as { ((a 1 • h 1) • • • • (a"' . b,,)) I

(a I' ' ' . 'Orn) E p'?t' (IJ]' ' ' ' 'bm) E p'B}'
If the vocabulary contains only rdation symbols, the disjoint union 2l USB for

two structures with A n B = 0 has the universe A u n, and each r<'lation P i~

interpreted as pm U p'l3.
Assume 2l1 =' 2l2 and SB 1 =k SB2. Show that:

3.8 Exercises 43

• 2l1 X I.B1 '=k 2l2 X I.B2;
• 2ll ll s.B 1 '=k 2l2ll s.B2.

Exercise 3.16. Then x m grid is a graph whose set of nodes is { (i, j) I i :::; n, j :::; m}
for some n, mEN, and whose edges go from (i,j) to (i + 1, j) and to (i,j + 1). Use
composition of Ehrenfeucht-Fralsse games to show that there are no FO sentences
testing if n = m (n > m) for then x m grid.

Exercise 3.17. Consider finite structures which are disjoint unions of finite linear
orderings. Such structures occur in AI applications under the name of blocks world.
Use Ehrenfeucht-Fralsse games to show that the theory of such structures is decid
able, and finitely axiomatizable.

Exercise 3.18. Fix a relational vocabulary a that has at least one unary and one
ternary relation. Prove that the following is PSPACE-complete. Given k, and two
a-structures 2l and s.B, is 2l '=k s.B?

What happens if k is fixed?

Exercise 3.19:' A sentence iP of vocabulary a is called positive if no symbol from a
occurs under the scope of an odd number of negations in iP. We say that a sentence
iP is preserved under surjective homomorphisms if 2l f= (/> and h(2l) = s.B implies
s.B f= iP, where h : A ---+ B is a homomorphism such that h(A) = B. Lyndon's
theorem says that if iP is preserved under surjective homomorphisms (where 2l, s.B
could be arbitrary structures), then iP is equivalent to a positive sentence.

Does Lyndon's theorem hold in the finite? That is, if(]> is preserved under surjec
tive homomorphisms over finite structures, is it the case that, over finite structures,
iP is equivalent to a positive sentence?

4

Locality and Winning Games

Winning games becomes nontrivial even for fairly simple examples. But often
we can avoid complicated combinatorial arguments, by using rather simple
sufficient conditions that guarantee a winning strategy for the duplicator. For
first-order logic, most such conditions are based on the idea of locality, best
illustrated by the example in Fig. 4.1.

Suppose we want to show that the transitive closure query is not express
ible in FO. We assume, to the contrary, that it is definable by a formula
cp(x, y), and then use the locality of FO to conclude that such a formula can
only see up to some distance r from its free variables, where r is determined
by cp. Then we take a successor relation l.2t long enough so that the distance
from a and b to each other and the endpoints is bigger than 2r - in that
case, cp cannot see the difference between (a, b) and (b, a), but our assumption
implies that l.2t f= cp(a, b) 1\ --,cp(b, a) since a precedes b.

The goal of this chapter is to formalize this type of reasoning, and use it
to provide winning strategies for the duplicator. Such strategies will help us
find easy criteria for FO-definability.

Throughout the chapter, we assume that the vocabulary cr is purely re
lational; that is, contains only relation symbols. All the results extend easily
to the case of vocabularies that have constant symbols (see Exercise 4.1), but
restricting to purely relational vocabularies often makes notations simpler.

4.1 Neighborhoods, Hanf-locality, and Gaifman-locality

We start by defining neighborhoods that formalize the concept of "seeing up
to distance r from the free variables" .

Definition 4.1. Given a cr-structure l.2t, its Gaifman graph, denoted by Q(l.2t),
is defined as follows. The set of nodes of G(l.2t) is A, the universe of l.2t. There
is an edge (a1, a2) in Q(l.2t) iff a1 = a2, or there is a relation R in cr such that
for some tuple t E R')!, both a1, a2 occur in t.

46 4 Locality and Winning Games

,,.
<- - - - - - - - - - - ->

~--·----~

r
<- - - - - - - - - - - ->

~--·~

Fig. 4.1. A local formula cannot distinguish (a. h) from (/1.a)

Note that Q(2l) is an undirected graph. If 2l is an undirectPd graph to start
with, then Q (2l) is simply 2l together with the diagonal { (a. a) / a E A}. If 2l
is a directed graph, then Q (2l) simply forgets about the orientation (and adds
the diagonal as well).

By the distanced~ (x, y) we mean the distance in the Gaifman graph: that
is, the length of the shortest path from :I' to y in Q (2l). If there is no such
path, then d~ (x, a) = oo. It is easy to verify that the distance satisfies all tlw
usual properties of a metric: d~(x.y) = 0 iff .r = y, d~(:r,y) = d~(y .. r), and
d~(x, z):::; d~(x, y) + d~(y, z), for all :1:, y, z.

If we are given two tuples, a= (aJ ,an) and b = (bJ bm). and an
element c, then

d~(a,c) = min d'<l(a 1.e).
l<::;i<::;11

Furthermore, ac stands for the n + 1-tuple (a 1 a 11 , c), and i!b stands for
then+ rn-tuple (a1, ... , an, bt, ... , bm)·

Recall that we usc the notation a 11 for a expanded with n constant symbols.

Definition 4.2. Let a contain only relation symbols, and let 2l be a a
structure, and a = (a l' ... 'an) E A 11 • The radius r hall around i! is the
set

The r·-neighborhood of a in 2l is the an -structure N,'J. (i!). where:

• the universe is B~ (a);
• each k-ar·y r·elation R is inteTpr·eted as R'J. restr·icted to B~ (i"i): that iH.
R~ n (B~ (a)) k ;

• n additional constants are interpreted as a 1 , ... , a11 •

Note that since we define a neighborhood around an n-tuple as a a 11 -

structure, for any isomorphism h between two isomorphic neighborhoods
N,'?-(a 1, ... , an) and N,'B(bt, b,), it must be the case that h(ai) = b;. 1 :::;
i < n.

4.1 Neighborhoods, Hanf-locality, and Gaifinan-locality 47

Definition 4.3. Let~' 113 be a-structures, where a only contains r·elation sym
bols. Let a E A" and bE B'". We write

(~,a) ::::;d (113, b)

if there exists a bijection f : A ---+ B such that for every c E A,

We shall often deal with the case of n = 0; then ~::::;c1113 means that for
some bijection f : A ---+ B,

N:f(c) ~ N'f(f(c)) for all c EA.

The ::::;d relation says, in a sense, that locally two structures look the
same, with respect to a certain bijection J; that is, f sends each element
c into f(c) that has the same neighborhood. The lemma below summarizes
some properties of this relation:

Lemma 4.4. 1. (~,a)::::;d(113,b) '*IAI=IBI.
2. (~,a)::::;r~(113,b) =} (~,a)::::;d,(113,b), ford':::::; d.

3. (~,a)::::;d(113,b) '* N:f(a) ~ N'f(b).

Recall that a neighborhood of an n-tuple is a an-structure. By an iso
morphism type of such structures we mean an equivalence class of ~ on
STRUCT[an]· We shall use the letter T (with sub- and superscripts) to denote
isomorphism types. Instead of saying that a structure belongs to T, we shall
say that it is of the isomorphism type T.

If Tis an isomorphism type of an-structures, and a E An, we say that a
d-realizes Tin ~if N,T(a) is of type T. If dis understood from the context,
We say that a realizes T.

The following is now easily proved from the definition of the :::::; c1 relation.

Lemma 4.5. Let~' 113 E STRUCT[a]. Then~ ::::;d 113 iff for each isomor
phism type T of a 1 -structures, the number of elements of ~ and 113 that d
realize T is the same. D

We now formulate the first locality criterion.

Definition 4.6 (Hanf-locality). An m-ary query Q on a-structures is Hanf
local if there exists a number d :::: 0 such that for every ~' 113 E STRUCT[a],
aE Am bE Bm

' '
(~,a) ::::,d (113, b) implies (a E Q(~) {::} bE Q(113)) .

The smallest d for which the above condition holds is called the Hanf-locality
rank of Q and is denoted by hlr(Q).

48 4 Locality and \Vinning Games

two cycles of length m

one cycle of lPngt.h 2m

Fig. 4.2. Conrwctivity is not Hanf-local

Most commonly Hanf-locality is used for Boolean queri<~s; then the defi
nition says that for some d :2: 0, for every 2t, 23 E STRUCT[IT], the condition
2t '=> d 23 implies that 2t and 23 agree on Q.

Using Hanf-locality for proving that a query (J is not definable in a logic
£ then amounts to showing:

• that every £-definable query is Hanf-local, and

• that Q is not Hanf-local.

\Ve now give the canonical example of using Hanf-locality. \Ve show, by a
very simple argument, that graph C:OIUH'ctivity is not Hanf-local: it will then
follow that graph connectivity is not expressible in any logic that only defines
Hanf-local Bool<~an queries.

Assume to tlw contrary that the graph c:omwctivity query CJ is Hanf-local,
and hlr(CJ) = d. Let rn > 2d + 1, and choose t.\vo graphs G~" and c:;" as
shown in Fig. 4.2. Their sets of nod<~s have tlw sanw cardinalit.v. Let .f be an
arbitrary bijection between the nodes of c;, and c;;n. Since each cycl<' is of
length > 2d + 1, the d-neighborhood of any node a is the same: it is a chain
of length 2d with a in the rniddll'. HPnC<', G~, '=,d c;n, and they must agr<'('
on Q, but. c;, is connected, and G~" is not. Thus, graph coll!H'ctivit.y is not
Hanf-local.

While Hanf-locality works well for Boolean queries, a different notion is
often helpful for m-ary qlH~rics, m > 0.

Definition 4.7 (Gaifman-locality). An rn-ar·y q'll.ery Q, m > 0, on IT

structures, is called Gaifrnan-local if there exists a nwnber· d :2: 0 sw:h that for·
every O"-stntctnre 2t and ever·y ii1, n2 E A'",

4.2 Combinatorics of Neighborhoods 49

The minimum d for which the above condition holds is called the locality rank

of Q, and is denoted by lr(Q).

Note the difference between Hanf- and Gaifman-locality: the former relates
two different structures, while the latter is talking about definability in one
structure.

The methodology for proving inexpressibility of queries using Gaifman
locality is then as follows:

• first we show that all m-ary queries, m > 0, definable in a logic L are
Gaifman-local,

• then we show that a given query Q is not Gaifrnan-local.

We shall see many examples of logics that define only Gaifman-local
queries. At this point, we give a typical example of a query that is not

Gaifrnan-local. The query is transitive closure, and we already saw that it is
not Gaifman-local. Recall Fig. 4.1. Assume that the transitive closure query Q
is Gaifman-local, and let I r(Q) = r. If a, b are at a distance > 2r + 1 from each
other and the start and the endpoints, then the r-neighborhoods of (a, b) and
(b, a) are isomorphic, since each is a disjoint union of two chains of length 2r.
We know that (a, b) belongs to the output of Q; hence by Gaifman-locality,

(b, a) is in the output as well, which contradicts the assumption that Q defines
transitive closure.

These examples demonstrate that locality tools are rather easy to use to

obtain inexpressibility results. Our goal now is to show that FO-definable
queries are both Hanf-local and Gaifrnan-local.

4.2 Combinatorics of Neighborhoods

The main technical tool for proving locality is combinatorial reasoning about
neighborhoods. We start by presenting simple properties of neighborhoods;
proofs are left as an exercise for the reader.

Lemma 4.8. • Assume that 2l, 23 E STRUCT[u] and h: N:;r(ii) ---" N,'B(b)

is an isomorphism. Let d S r. Then h restr·icted to B~ (ii) is an isomor

phism between N,T (ii) and N'J' (b).

• Assume that 2l, 23 E STRUCT[u] and h: N'jl(ii) ---" Nr'B(b) is an isomor·

phisrn. Let d + l s r and x be a tuple from BF(a). Then h(B~(x)) =

B,'"f (h(i)), and NJ (x) and N'f (h(x)) are isomorphic.

• Let 2l, 23 E STRUCT[a] and let i11 E A", b1 E B" for n 2: 1, and i12 E

Am,b2 E Bm form 2: 1. Assume that N'jl(iil) ~ Nr'B(bl), N,0.(ii2) ~
'B~ ~ ~ 0. 'B~~

N,. (b2), and d0. (ii,, ii2), d'B (b1, b2) > 2r+ 1. Then Nr (i1 1 i12) ~ N, (b 1 b2).

50 4 Locality and Winning Games

From now on, we shall usc the notation

for N'/:'-(a) ~ N,'13(b), omitting Ql and 23 when they arp undcrstood. \Vp shall
also write d(·, ·) instead of d21 (·, ·) when Ql is understood.

The main technical result of this section is the lemma below.

Lemma 4.9. If Ql!=;d23 and a ~~d~l b. then (Qt. a)!=;d('B. b).
Pmof. We need to define a bijection f : A ----+ B such that iic ~~l.'H bf(e)

for every c E A. Since a ~~d~l b, there is an isomorphism h : N:~l+ 1 (a) ~
N:~+ 1 (b). Then the restriction of h to B~d+ 1 (a) is an isomorphism hetwePn

N~1+ 1 (a) and N~+ 1 (b). Since IAI=IBI, we obtain

2l ~ '13 ~ I A - B2d+ 1 (a) I = I B - B2rl+ 1 (b) I ·
Now consider an arbitrary isomorphism type T of a d-neighhorhood of a

single point. Assume that c E B~l+ 1 (a) realizes T in Qt. Sincf' h is an isomor-

phism of 3d+ !-neighborhoods, BJ(c) t;;; B:~J+l (a) and thus h(c) E B1~1+ 1 (b)

realizes T. Similarly, if c E B:};l+ 1 (b) realizes T, then so does h- 1 ((") E B~~l +I (a).

Hence, the number of elements in B~1+ 1 (a) and B:};l+ 1 (b) that reali;:c Tis thP
same.

Since Ql!=;d'B, the number of elements of A and of B that realizP T is thP
same. Therefore,

I { (L E A - B~l+ 1 (a) I a d-realizes T} I
= I {bE B- B:};I+ 1 (b) I b d-rcalizes T} I

for every T. Using (4.1), we ean find a bijection g : A- BJ,1+1 (a)

B:};l+l (b) such that c ~d g(c) for every c E A- B'fcl+ 1 (r7).
We now define .f by

.f(c) { h(c) ~fcEB~d+ 1 (~)
g(c) IfctjB2rl+l(o).

It is clear that .f is a bijection A ----+ B.

(4.1)

----+ B-

We claim that ac ~d b.f(c) for every c EA. This is illustratPd in Fig. 4.3.

If c E B~l+l (a), then BJ(c) t;;; B~l+l (a), and ac ~d bh(c) hecausp h is an

isomorphism. If c t/c B~i+l (a), then .f(c) = y(c) t/c R:};1+1 (b), and (" ~d y(c).

Since d(c, a). d(g(c), b) > 2d + 1, by Lemma 4.8, ac ~rl ~q(c). D

The following corollary is VPry useful in establishing localit.v of logics.

Corollary 4.10. Ij(Ql,a)!=;:~d+J(23,b), then there exists a bijection .f: A _ _.,
B such that

Vc E A (Qt. ac) =>" (23. b.f(c)).

4.3 Locality of FO 51

h

g

3d+ 1

Fig. 4.3. Illustration of the proof of Lemma 4.9

Proof. By the definition of the!:::; relation, there exists a bijection f: A----> B,
such that for any c E A, iic ~~cl! 1 b f (c). Since 2l!:::;:ld+ 123, we have 2l!:::; d 23.

By Lemma 4.9, (2l, iic)!:::;11 (23, bf(c)). 0

4.3 Locality of FO

We now show that FO-definable queries are both Hanf-local and Gaifman
local. In fact , it suffices to prove the former, due to the following result.

Theorem 4.11. If Q is a Hanf-local non-Boolean query, then Q is Gaifrnan
local, and lr(Q) ~ 3 · hlr(Q) + 1.

Proof. Suppose Q is an m-ary query on STRUCT[a], m > 0, and hlr(Q) =d.
Let 2l be a a-structure, and let ii1 ~~d+J ii2. Since 2l!:::;d2l, by Lemma 4.9,

52 4 Locality and ~Winning Games

(2l, a1) ~d (2l, iJ:2), and hence a1 E Q(2l) iff a2 E Q(2l), which proves lr(CJ) S
:3d+ 1. D

Theorem 4.12. Every FO-definable qner·y Q 'is Hanf-local. Mon~over·, 'if Q 'is
defined by an FO[k] formula {that 'is, an FO fonnula whose quantifier· rank is

at must k}, then

hlr(Q) <

Pr·oof. By induction on the quantifier rank. If A:= 0, tlwn (2l.c7)':::::0 (1E.b)

means that (a, b) defines a partial isomorphism lwtv.:een 2l and IE, and thus i7

and b satisfy the same atomic formulas. Hence hlr(Q) = 0, if Q is defined by

an FO[O] formula.
Suppose Q is defined by a formula of quantifier rank A:+ 1. Such a formula

is a Boolean combination of formulae of the form ::bp(x .. ~) where qr(!fl)::; k.

Note that it follows immediately from the definition of Hanf-locality that if

i/' is a Boolean combination of , ... , ~1't, and for all i::; I, hlr(~·rl ::; d, then

hlr(~) ::; d. Thus, it suffices to prow that the Hanf-locality rank of the cpH'ry

defined by 3zip is at most :1d + 1, where d is the Hanf-locality rank of thC'

query defined by if'·
To see this, let (2l,i1) '::::::1<1+ 1 (IE, b). By Corollary 4.10, we find a bijection

f: A---+ B such that (2l, ric) '::::;d (IE, bf(c)) for <~very c E A. Since hlr(cp) =d.

we have 2l f= ip(ii, r) iff IE f= ip(b, .f(c)). Hence,

2l f= 3.~ ip(c7,z)
=? 2l f= ip(a. r) for some c E: A
=?IE f= ip(b,f(c))
=? IE F 3,:; ip(b,

The same proof shows IE f= 3z cp(b, z) implies 2l f= 3:; cp(c7. ;;) . Thus. 1! and

b agree on the qm~ry defined by :=lzip(.f, z), which completes thc• proof. D

Combining Theorems 4.11 and 4.12, we obtain:

Corollary 4.13. EvrTy FO-definable m-ar·:tl query Q, m > 0, is Gaifrrwn

lucal. Moreover·, if Q is definable by an FO[k] formula, then

lr(Q) <
:1'+ 1 - 1

2

Since we know that graph comwctivity is not Hanf-local and transitive

closure is not Gaifman-local, we immediately obtain, \vithout using games,
that these qw~ries are not FO-definable.

\Ve can give rather easy inexpressibility proofs for man.\· qneri<'S. Bdow,

we provide two examples.

4.3 Locality of FO 53

Fig. 4.4. Balanced binary trees are not FO-definable

Balanced Binary Trees

This example was mentioned at the end of Chap. 3. Suppose we are given a
graph, and we want to test if it is a balanced binary tree. We now sketch the
proof of inexpressibility of this query in FO; details are left as an exercise for
the reader.

Suppose a test for being a balanced binary tree is definable in FO, say by
a sentence iP of quantifier rank k. Then we know that it is a Hanf-local query,
with Hanf-locality rank at most r = (3k - 1)/2. Choose d to be much larger
than r, and consider two trees shown in Fig. 4.4.

In the first tree, denoted by T1 , the subtrees hanging at all four nodes
on the second level are balanced binary trees of depth d; in the second tree,
denoted by T2 , they are balanced binary trees of depths d- 1, d- 1, d, and
d + 1. We claim that T1 t:::tr T2 holds.

First, notice that the number of nodes and the number of leaves in T1

and T2 is the same. If d is sufficiently large, these trees realize the following
isomorphism types of neighborhoods:

• isomorphism types of r-neighborhoods of nodes a at a distance m from
the root, m ~ r;

• isomorphism types of r-neighborhoods of nodes a at a distance m from a
leaf, m ~ r;

• the isomorphism type of the r-neighborhood of a node a at a distance > r
from both the root and all the leaves.

Since the number of leaves and the number of nodes are the same, it
is easy to see that each type of an r--neighborhood has the same number of
nodes realizing it in both T1 and T2 , and hence T1 t::;r T2 . But this contradicts
Hanf-locality of the balanced binary tree test, since T1 is balanced, and T2 is
not.

Same Generation

The query we consider now is same generation: given a graph, two nodes a
and b are in the same generation if there is a node c (common ancestor) such

54 4 Locality and Winning Games

... ----.-
bd+I b2dtJ

Fig. 4.5. Inexpressibility of same generation

that the shortest paths from c to a and from c to b have the same length. This
query is most commonly computed on trees; in this case a. I! arc in the sarw'
generation if they are at the same distance from th<' root.

We now give a very simple proof that the same-generation query q"Y
is not FO-definable. Assume to the contrary that it is FO-dcfiuahle, and
I r(Q89) = d. Consider a tree T with root r and two branches, one with nodPs
a 0 , a 1 , ... , ad (where a;+l is the successor of a;) and the other one with nodPs
bo, b1, ... , bd, ... , b2d+I, sec Fig. 4.5.

It is clear that (ad. bd) ~r (ad, bd+l), while ad, bd are in the sam<' genera
tion, and ad, b,z+ 1 are not.

In most examples seen so far, locality ranks (for either Hanf- or Gaifman
locality) were exponential in the quantifier rank. We now show a simple Px

ponential lower bound for the locality rank; precise bounds will be givm in
Exercise 4.11.

Suppose that a is the vocabulary of undirected graphs: that is, a = { E}
where E is binary. Define the following formulae:

• do(:r, y) = E(x, y),

• d1(x,y) = 3z (do(x.z) 1\do(y,z)), ... ,

• dk+l(x,y) = 3z(d~.,(:r,z)l\dk(y.z)).

For an undirected graph, d1.: (a, b) holds iff there is a path of length 2" hPtwPen
a and b; that is, if the distance between a and b is at most 2". Hence, I r(rh) 2':
21.:-l. However, qr(di.:) = k, which shows that locality rank can he exponential
in the quantifier rank.

4.4 Structures of Small Degree

In this section, we shall sec a large class of structures for which very simple
criteria for FO-dcfinability can be obtained. These are structures in which all
the degrees are bounded by a constant. If we deal with undirected graphs.
degrees are the usual degrees of nodes; if we deal with din~ctecl graphs, tlwy
are in- and out-degrees. In general, we use the following definition.

4.4 Structures of Small Degree 55

Definition 4.14. Let CJ be a relational vocabulary, R an m-ary symbol in CJ,
and 2t E STRUCT[CY]. For a E A and i :::; m, define degree~)a) as the
cardinality of the set

That is, degree~,i(a) is the number of tuples in R'li that have a in the ith
position.

Define deg_set(2t) to be the set of all the numbers of the form degree~,i(a),
where a E A, R E CJ, and i is at most the arity of R. That is,

deg_set(2t) = {degree~i(a) I aEA, RECJ, i:s; arity(R)}.

Finally, STRUCTt[CY] stands for

{2t E STRUCT[CY] I deg_set(2t) ~ {0, ... , l} }.

In other words, STRUCTz [CY] consists of CJ-structures in which all degr·ees do
not exceed l.

We shall also be applying deg_set to outputs of queries: by deg_set(Q(2t)),
for an m-ary query Q, we mean the set of all degrees realized in the structure
whose only m-ary relation is Q(2t); that is, deg_set((A, Q(2t))).

When we talk of structures of small degree, we mean STRUCTz [CY] for some
fixed l E .N.

There is another way of defining structures of small degree, essentially
equivalent to the way we use here. Instead of defining degrees for m-ary
relations, one can use only the definition of degrees for nodes of an undi
rected graph, and define structures of small degrees as structures 2t where
deg_set(Q(2t)) ~ {0, ... , l} for some l E .N. Recall that Q(2t) is the Gaifman
graph of 2t, so in this case we are talking about the usual degrees in a graph.
However, this is essentially the same as the definition of STRUCTt[CY].

Lemma 4.15. For every relational vocabulary CJ, there exist two functions
fa, 9a : .N ---> .N such that

1. deg_set(Q(2t)) ~ {0, ... , fa(l)} for every 2t E STRUCTt[CJ], and

2. 2t E STRUCT9"(l)[CY] for every 2t with deg_set(Q(2t)) ~ {0, ... ,l}.

One reason to study structures of small degrees is that many queries behave
particularly nicely on them. We capture this notion of nice behavior by the
following definition.

Definition 4.16. Let CJ be relational. An m-ary query Q on CJ-structures, m >
0, has the bounded number of degrees property (BNDP) if there exists a
function !Q : .N---> .N such that for every l ~ 0 and every 2t E STRUCTt[CJ],

I deg_set(Q(2t)) I :::; !Q(l).

56 4 Locality and \Vinning Gam<'s

Notice a certain asymmetry of this definition: our assumptio11 is that all

the numbers in deg_.set(21) are small, but the conclusion is that tlw mnli

nality of deg_set(Q(21)) is smalL \Ye cannot possibly ask for all the num

bers in dcg_set(Q(21)) to be small and still say anything interesti11g about

FO-definable queri<~s: ('Onsider, for cxampk, the query defined by ;;(y. ::) =
3.r(x = .r). On every structure 21 with I A I= n > 0, it defines the complet<'

graph on n nodes, where every nod<' has the same d<~grc<' 11. Hence, sonw de

grees in dcg_sct(Q(21)) do depend 011 21, but the number· of dzffcrent deqn~es is

determined by deg_set(21) and tlH~ query.

It is usually very easy to show that a query do<~s 11ot han' the Bl\DP.

Consider, for example, th<' transitive closur<' query. Assunw that its input is a

successor relation G n on n nodes. Then deg_.sct(G,) = { 0. l}. Th<' transit.iw

closure of G 11 is a linear order Ln on n nodes, and deg_set (L 11) = { 0 n- I } .

showing that the transitivP closurP query docs not. haw the B:'-JDP.

\Ve next show that thP BNDP is closely related to localit~· <·oncepts.

Theorem 4.17. Let Q be a Gaifmo.n-local m-ary query. 111 > 0. Then CJ has

the BNDP.

Pmof. Let Q lw Gaifrnan-local with lr(Q) = d. \\'e assum<'. without loss of

generality, that m :::;> 2, since unary queries clearly have the BNDP.

!\'ext, we need the following claim. Let nr~(k) be ddi1wd inductively by

nd(O) =d. nr~(k + 1) = :~ · nd(k) + 1. That is, nr~(k) = 3" · rl + (;~' l)/'2 for

k:::,. 0.

Claim 4.18. Let a ~~c~(hJ b. Then there is a b·zjer:tion J : A' __, A" snr:h that

ric~~ bf(() for· ever-y cE A'.

The proof of Claim 4.18 is by induction on k. For k = 0 th<'n' is nothing to

prove. Assunw that it holds fork, and prove it fork+ 1. LPt ,. = nr~(k): then

nr1(k+l) = 3r+ I. Ld fi~~;-'-l b. Then. hy Lemma 1.9, (21.5) -=:,(~.b). That

is, there exists a bijection y: 11-+ A such that for ewry 1· E .L fie ~;1 by(!').

By the induction hypothesis, \Ve then knmv that for each c C: /1. there <'xists

a bijection g, : A" __, A' such that for every r E A".

21
~d

\Ve thus define a bijection .f : A'·+ 1 -+ A"+ 1 as follmYs: if 1-: '""' n", \dwrc

cE A'. then f(C) = g(c)g,(i} Clearly, a?~~ bj'(?} This]ll'OH'S the claim.

Now we prove the BNDP. First, note that for <'Y<'ry vocabulary (J, tlwre

exists a function GIJ : N x N-+ N such that for ev<'ry 21 E STRUCT![(JL th<'

size of JJ~(a) is at most GrT(I. d). Thus, then~ exists a function 1~~ : N x N --4

N such that every structure 21 in STHUCT![(J] can realize at most FIT(!. d)

isomorphism typc~s of d-neighborhoods of a point..

Now ('Onsider Q(21), for 21 E STRUCT,[(JL and note that for an~- t\m

a, b E A with a ~21 (l) b,
'fld I;/-

4.5 Locality of FO Revisited 57

I {cE Am- 1 I acE Q(2l)} I l{cE Am- 1 I beE Q(2l)}l, (4.2)

by Claim 4.18. In particular, (4.2) implies that the degrees of a and b in
Q(2l) (in the first position of an m-tuple) are the same. This is because
degr·ee ~(~) (c), the degree of an element c, corresponding to the first po
sition of the m-ary relation Q(2l), is precisely the cardinality of the set
{c E Am- 1 I cc E Q(2l)}. Thus, the number of different degrees in Q(2l)
corresponding to the first position in them-tuple is at most Fa(l, nd(m- 1)),
and hence

ldeg_set(Q(2l))l ~ m·Fa(l,nd(m-1)). (4.3)

Since the upper bound in (4.3) depends on l, m, d, and u only, this proves the
BNDP. D

Corollary 4.19. Every FO-definable query has the BNDP. D

Balanced Binary Trees Revisited

We now revisit the balanced binary tree test, and give a simple proof of its
inexpressibility in FO. In fact, we show that this test is inexpressible even
if it is restricted to binary trees. That is, there is no FO-definable Boolean
query Ql>bt such that, for a binary tree T, the output Qbbt(T) is true iff Tis
balanced.

Assume, to the contrary, that such a query is FO-definable. We now con
struct a binary FO-definable query Q which fails the BNDP - this would
contradict Corollary 4.19.

The new query Q works as follows. It takes as an input a binary tree T,
and for every two nonleaf nodes a, b finds their successors a', a" and b', b". It
then constructs a new tree Ta,b by removing the edges from a to a', a" and
from b to b', b", and instead by adding the edges from a to b', b" and from b
to a', a". It then puts (a, b) in the output if Qbbt (Ta,b) is true (see Fig. 4.6).
Clearly, Q is FO-definable, if Qbbt is.

Assume that T itself is a balanced binary tree; that is a structure in
STRUCT2 [u]. Then for two nonleaf nodes a, b, the pair (a, b) is in Q(T) iff a, b
are at the same distance from the root. Hence, for a balanced binary tree T of
depth n, the graph Q(T) is a disjoint union of n - 1 cliques of different sizes,
and thus I deg_set(Q(T)) I= n- 1. Hence, Q fails the BNDP, which proves
that Qbl>t is not FO-definable. D

4.5 Locality of FO Revisited

In this section, we start by analyzing the proof of Hanf-locality of FO,
and discover that it establishes a stronger statement than that of Theorem
4.12. We characterize a new notion of expressibility via a stronger version of
Ehrenfeucht-Fralsse games, which will later be used to prove bounds on logics

58 4 Locality and Winning Games

a" b' b"

Fig. 4.6. Changing successors of nodes in a balanced binary tree

with counting quantifiers. The question that we ask then is: arP there more
precise and restrictive locality criteria that can be stated for FO? The answPr
to this is positive, and we shall present two such n•sults: Gaifrnan 's theorem,
and the threshold equivalence criterion.

First, we show how to avoid the restriction that no constant symbols occur
in a; that is, we extend the notions of the T-ball and r-neighborhood to the cas<'
of arbitrary relational vocabularies a (vocabularies without function symbols).
Let c = (c1 , ••• , C 11) list all the constant symbols of a. Then

B~(a)

The T-neighborhood of a, with I a I= m , is defined as the structurp N,21 (a) in
the vocabulary a, (a extended with rn constants), whose univr rse is B;1(a) ,
the interpretations of a-relations and constants arc inherited from 2L and thP
rn extra constants arc interpreted as a.

One can check that all the results proved so far extend to the setting that
allows constants (see Exercise 4.1). From now on, we app ly all the locali ty
concepts to relational vocabularies.

We can also use the notion of locality to state when 2l ==o 23 ; t hat is.
when the duplicator wins the Ehrenfeucht-Frai:ssc game 011 2l and 23 without
even starting. This happens if and only if (0. 0) is a partial isomorphism , or.
equivalently, Nf/(0) ~ N(?"(0).

We now define a new equivalence relation '::::'.~,;1 as follows.

"' hij ru ·f "' ru • :« '::::'.0 · :v 1 :« =o :v ;

4.5 Locality of FO Revisited 59

• 2l ~~~ 1 113 if there is a bijection f : A---+ B such that
b ..

forth: for each a E A, we have (2l, a) ~k•J (113, f(a));
b" back: for each bE B, we have (2l,J- 1(b)) ~k•J (113, b).

One can easily see that just one of forth and back suffices: that is, forth
and back are equivalent, since f is a bijection.

The notion of the back-and-forth described in Sect. 3.5 was equivalent
to the Ehrenfeucht-Fra"isse game. We can also describe the new notion of
back-and-forth as a game, called a bijective Ehrenfeucht-Fraisse game (or just
bijective game). Let 2l and s:B be two structures in a relational vocabulary.
The k-round bijective game is played by the same two players, the spoiler and
the duplicator. If I A I =f. I B I, then the duplicator loses before the game even
starts. In the ith round, the duplicator first selects a bijection fi : A ---+ B.
Then the spoiler moves in exactly the same way as in the Ehrenfeucht-Fra"isse
game: that is, he plays either ai E A or bi E B. The duplicator responds by
either f(ai) or f- 1 (bi)· As in the Ehrenfeucht-Fra"isse game, the duplicator
wins if, after k rounds, the moves (a, b) form a winning position: that is, (a,'&)
and (b, CB) are a partial isomorphism between 2l and lB.

If the duplicator has a winning strategy in the k-round bijective game on
2l and 113, we write 2l =~ij lB. Clearly, it is harder for the duplicator to win the
bijective game; that is, 2l =~ij 113 implies 2l =k 113. In the bijective game, the
duplicator does not simply come up with responses to all the possible moves
by the spoiler, but he has to establish a one-to-one correspondence between
the spoiler's moves and his responses.

The following is immediate from the definitions.

L 4 20 or ~bij ro ·jf or _bij ro emma . . ""-k :v z ""=k :v. D

By Corollary 4.10, (2l, u)==>3d+1 (113, v) implies the existence of a bijection
f : A---+ B such that (2l, uc) ==>d (s:B, vf(c)) for all c EA. Since the winning
condition in the bijective game is that Ngt(a) ~ N~(b), where a and bare the
moves of the game on 2l and s:B, by induction on k we conclude:

Corollary 4.21. If (2l, a) ==>r:1._1);2 (s:B, b), then (2l, a) =~iJ (s:B, b). D

Bijective games, as will be seen, characterize the expressive power of a
certain logic. Since the bijective game is harder to win for the duplicator than
the ordinary Ehrenfeucht-Fra"isse game, such a logic must be more expressive
than FO. Hence, the tool of Hanf-locality will be applicable to a certain ex
tension of FO. We shall see how it works when we discuss logics with counting
in Chap. 8.

Since the most general locality-based bounds apply to more restricted
games than the ordinary Ehrenfeucht-Fra"isse games, and hence to more ex
pressive logics, it is natural to ask whether more specific locality criteria can
be stated for FO. We now present two such criteria.

60 4 Locality and Winning Games

We start with Gaifman's theorem. First, a few observations arc needed. If a

is a relational vocabulary, and m is the maximum arity of a relation symbol in
it, m 2 2, then the Gaifman graph Q(Ql) is definable by a formula of quantifier
rank m- 2. (Note that for the case of unary relations, the Gaifman graph is
simply { (a, a) I a E A} and hence is definable by the formula :r = y.)

We show this for the case of a single ternary relation R; a general proof
should be obvious. The Gaifman graph is then defined by the formula

() --, (R(x,y,z)VR(.r,z,y)VR(y,x.z))
X= y V ::JZ " .

· V R(y, z, x) V R(z, x, y) V R(z, y. :x:)

Since the Gaifman graph is FO-definable, so is the r-ball of any tuple x.
That is, for any fixed r, there is a formula dScr(y, x) such that Ql F= dScT(b, ii)
iff d'J!(b, ii):::; r. Similarly, there arc formulae d=" and d>r. We can next define
local quantification

Vy E B,.(x) r.p

simply as abbreviations: ::Jy E Br(x) <p stands for ::ly (dSc~'(y,:l) 1\ <P), and
Vy E B,.(x) <p stands for Vy (dScr(y,x) --7 r.p).

For a fixed r, we say that a formula 'ij;(x) is r-local around :r, and write this
as 'lj;(rl(x), if all quantification in 't/J is of the form ::lyE Br(x) or Vy E B,.(:r).

Theorem 4.22 (Gaifman). Let a be relational. Then every FO fonnula
<p(x) over a is equivalent to a Boolean combination of the following:

• local for·mulae 'lj;(rl(x) around x;

• sentences of the form

Further·more,

8

::lxl,···,Xs (1\a(rl(xi) 1\

'i=l

1\ d>2r(x;. Xj)).
lS,i<j<:_s

• the transformation from r.p to such a Boolean combination is effective;

• if <p itself is a sentence, then only sentences of the above for-m appear· in
the Boolean combination;

• if qr(<p) = k, and n is the length of x, then the bounds on r and s ar·e
r:s;7k,s:s;k+n. 0

Notice that Gaifman-locality of FO is an immediate corollary of Gaifman 's
theorem (hence the name). However, the proof we presented earlier is much
simpler than the proof of Gaifman's theorem (Exercise 4.9), and the bounds
obtained are better.

4.5 Locality of FO Revisited 61

Thus, Gaifman-locality can be strengthened for the case of FO formulae.
Then what about Hanf-locality? The answer, as it turns out, is positive, if
one's attention is restricted to structures in which degrees are bounded. We
start with the following definition.

Definition 4.23 (Threshold equivalence). Given two structures 2l, 'B in

a relational vocabulary, we write 2l =::;~h;;, 'B if for every isomorphism type T
of a d-neighborhood of a po·int either .

• both 2l and 'B have the same nnmber of points that d-realize T, or

• both 2l and 'B have at least m points that d-r-ealize T.

Thus, if m were allowed to be infinity, 2l !=:;~i~~ 'B would be the usual
definition of 2l !=:; 11 'B. In the new definition, however, we are only interested
in the number of elements that d-realize a type of neighborhood up to a
threshold: below the threshold, the numbers must be the same, but above it,
they do not have to be.

Theorem 4.24. For each k, l > 0, there exist d, m > 0 snch that for 2l, 'B E

STRUCTz[a],
implies 2l =k 'B.

Proof. The proof is very similar to the proof of Hanf-locality of FO. We define
inductively r-0 = 0, ri+ 1 = 3T; + 1, take d = Tk-l, and prove that the duplicator
can play the Ehrenfeucht-Fra·isse game on 2l and 'B in such a way that after
i rounds (or: with k ~ i rounds remaining),

(4.4)

where ai, b, are points played in the first i rounds of the game.
It only remains to specify m. Recall from the proof of Theorem 4.17 that

there is a function Ga : N x N such that the maximum size of a radius d
neighborhood of a point in a structure in STRUCTz[a] is G17 (d, l). We take m
to be k · Ga(r~,, l).

The rest is by induction on i. For the first move, suppose the spoiler plays
a EA. By 2l ::::::;~-7:·~~~ 'B, the duplicator can find bE B with N;2; (a)~ N,~(b).

Now assume (4.4) holds after i rounds. That is, N:~!-+ 1 (a;) ~ N;f;+ 1(b;),
where r = rk-(i+l)· We haw~ to show that (4.4) holds after i + 1 rounds (i.e.,
with k ~ (i + 1) rounds remaining). Suppose in round i + 1 the spoiler plays
a E A (the case of a move in H is identical). If a E B?r+ 1 (a;), the response

is by the isomorphism between N?,.+l (at) and N:f;+ 1 (b;), which guarant<~es
(4.4). If a tt Bit,+ I (a;)' let T be the isomorphism type of the /'-neighborhood
of a. To ensure (4.4), all we need is to find bE B such that b r-realizes Tin

'B, and d93 (b, b;) > 27' + 1 - then such an element b would be the response of
the duplicator.

62 4 Locality and \Vinning Games

Assurrw that there is no such elenH'nt b. Since there is an elPnH'nt o E A
that r-realizes T in 2{, there must be an element b' E lJ that /"-realizes Tin 2.i.
Tlwn all such elements 1/ must be in NjJ.+ 1 (/:;). Let there lw s of tiH'm.

Notice that the cardinality of N};\ 1 (&;) does not exceed 111 = k · (; (T (,.,.I).
This is because the length of&, is at most k, th(' size of each r~, neighborhood
is at most Gu(TJ,:.I), and 2r + 1 S: r,.

Therefore, .s S: m, and from 2!'=;;;}.';11 '13 \Vc se<' that there are exactly s el('
ments a' E A that r-realize Tin 21. But by the isomorphism betwcPn N~~+ 1 (!J,)
and N/{;.+ 1 (/:;) we know that N.j~+ 1 (ii;) alone contains 8 such clemf'nts, and
hence there arc at least 8 + 1 of them in A. This contradiction shows that W<'
can find b that r-realizes T in '13 outside of NJ':+ 1 (/:i), which compl<'tcs tlw
proof of (4.4) and the theorem. [I

The threshold equivalence is a useful tool \vhen in the course of proving
inexpressibility of a certain property, one constructs pairs of strnctures 2t,. '13,
whose universes have different cardinalities: then Hanf-locality is inapplicahlf'.

For example, consider the following query over graphs. Suppose th<' in
put graph is a simple cycle with loops on some nodes (i.P., it has edges
(a1, a2), (a2. o.:;), (an-I, a11). (a,. a1), with all a;s distinct, as well as some
edges of the form (a;, a;)). The question is whdlH'r tlw muniH'r of loops is
even. An attempt to prove that it is not FO-(h~finab](' using Hanf-locality
does not succeed: for any d > 0, and any two structures 2l. '13 with 2l •-.4" '13.
the numbers of nodes with loops in 2l and '13 are equal.

However, the threshold equivalPnce helps us. Assunw that tlw abov<' query
Q is expressible by a sentenu~ of quantifier rank k. Then appl.Y TlworPm '1.24 to
k and 2 (the maximum degree in graphs ckscribed abow), and find d."' > 0.
We now construct a graph Ud. 11 for any n > 0, as a cycle on which the distancc'
between any two consecutive' nodes with loops is 2d+ 2, and the number of such
nodes with loops is n. One can th(~n easily check that Gti.111+l ·=.~/.','11 Gt/.111+2

and hence tlw two must agree on Q. This is cPrtainly impossible. sh(m:ing that
Q is not FO-definablc~.

Note that in this example, Gd., 11 +I *:/+, Gd.m+2 for any r > 0, sine(' the
cardinalities of Gd.m+l and Gt~.m+ 2 are different, and hencP Hanf-locality is
not applicablP.

4.6 Bibliographic Notes

The first locality result for FO was Hanf's theorem, formulated in 1965 bv
Hanf [120] for infinit<' models. The version for tlw finite case was presPnt<'d
by Fagin, Stockrneyer, and Van!i in [76]. In fact, [76] proves what Wf' call thf'
threshold equivalence for FO, and what W<' call Hanf-locality is stated as a
corollary.

4.7 Exercises 63

Gaifrnan's theorem is from [88]; Gaifman-locality, inspired by it, was in
troduced by Hella, Libkin, and Nurrnonen [123], who also proved Theorem

4.11. The proof of Hanf-locality for FO follows Libkin [167].
The bounded number of degrees property (BNDP) is from Libkin and

Wong [169] (where it was called BDP, and proved only for FO-definable queriPs
over graphs). Dong, Libkin and Wong [57] showed that every Gaifman-local

query has the I3NDP, and a simpler proof was given by Libkin [166].
Bijective games were introduced by Hella [121], and the connection be

tween them and Hanf-locality is due to Nurmonen [188]; the pn,sentation

here follows [123].

Sources for exercises:
Exercise 4.9: Gaifman [88]
Exercises 4.10, 4.11, and 4.12: Libkin [166]
Exercise 4.13: Dong, Libkin, and Wong [57]
Exercise 4.14: Schwentick and Barthelrnann [217]
Exercise 4.15: Schwentick [215]

4. 7 Exercises

Exercise 4.1. Verify that all the results in Sects. 4.1-4.4 extend to vocabularies

with constant symbols.

Exercise 4.2. Prove Lemma 4.4.

Exercise 4.3. Prove Lemma 4.5.

Exercise 4.4. Prove Lemma 4.8.

Exercise 4.5. Prove Lemma 4.15.

Exercise 4.6. Use Hanf-locality to give a simple proof that graph acyclicity and

testing if a graph is a tree are not FO-definable.

Exercise 4. 7. Consider colored graphs: that is, structures of vocabulary

{E, U1, ... , Uk} where E is binary and U1, ... , Uk are unary (i.e., Ui defines the

set of nodes of color i). Prove that neither connectivity nor transitive closure are

FO-definable over colored graphs.

Exercise 4.8. Provide a complete proof that testing if a binary tree is balanced is

not FO-definable.

Exercise 4.9. Prove Theorem 4.22.

Exercise 4.10. In all the proofs in this chapter we obtained bounds on locality

ranks of the order 0(3k), whf,re k is the quantifier rank. And yet the exponential

lower bound was 0(2k). The goal of this exercise is to reduce the upper bound from

0(3k) to 0(2k), at the expense of a slightly more complicated proof.

64 4 Locality and Winning Games

Let x = (x1, ... , Xn), and let I= {h, ... ,lm} be a partition of { L ... , n}. The
subtuple of x that consists of the components whose indices are in Ii is denoted by
xJ.

Let r > 0. Given two structures, 2l and 'B, and a E A", bE B", we say that r7
and bare (I, r) -similar if the following hold:

• N';l(aJ) ~ N:S (by) for all j = 1, ... , rn;
• d(a"J, af) > r for alll i=- j;

• d(by,t{) > r for alll i=- j.

We call a and b r-similar if there exists a partition I such that a and bare (I. r)
similar. A formula <.p has the r-separation property if 2l I= <.p(a) ,___, <.p(b) whenever a
and b are r-similar.

Your first task is to prove that a formula has the separation property iff it is
Gaifman-local.

Next, prove the following. If r > 0, 2lt::::>r'B, and a, bare 2r-similar, then there
exists a bijection f: A--> B such that, for every c E .4, the tuples r1x and bf(c) are
r-similar.

Use this result to show that I r(<.p) :::; 2k for every FO formula <.p of quantifier rank
k.

Exercise 4.11. Define functions HanLrankFo, Gaifman_ranknJ : N--> N as follows:

HanfJankF(J(n) = max{hlr(<.p) I <.p E FO. qr('P) = n},

Gaifman_rankFo(n) = max{lr(<.p) I <.p E FO, qr(<.p) = n}.

Assume that the vocabulary is purely relational. Prove that for every n > 1,
Hanf_rankFo(n) = 2n-l- 1 and Gaifman_rankFo(n) = 2"- 1.

Exercise 4.12. Exponential lower bounds for locality rank were achieved on for
mulae of quantifier rank n with the total number of quantifiers exponential in n.
Could it be that locality rank is polynomial in the number of quantifiers?

Your goal is to show that the answer is negative. More precisely, show that there
exist FO formulae with n quantifiers and locality rank 0(v":t).

Exercise 4.13. The BNDP was formulated in a rather asymmetric way: the as
sumption was that V-iE deg_set(2l) (i:::; l), and the conclusion that I dr-g_set(Q(2l)) 1:<:::

JQ(l). A natural way to make it more symmetric is to introduce the following prop
erty of a query Q: there exists a function f~J : N --> N such that

I deg_set(Q(2l)) I :::; fb(l deg_set(2l) I)

for ever structure 2l.
Prove that there are FO-definable queries on finite graphs that violate the above

property.

Exercise 4.14. Recall that a formula <.p(x) is r·-local around x if all the quantifica
tion is of the form 3y E Br(x) and Vy E Br(x). We now say that <.p(:T) is basic r-local
around x if it is a Boolean combination of formulae of the form o:(:r;), where .T; is a
component of x, and o:(x;) is r-local around :r;. A formula is local (or basic local)
around x if it is r-local (or basic r-local) around x for some r.

4. 7 Exercises 65

Prove that every FO formula 'P(x) that is local around xis logically equivalent

to a formula that is basic local around x.
Use this result to prove that any FO sentence is logically equivalent to a sentence

of the form
:l:r1 ... :lxn'iY 'f!(Xl, ... ,Xn,y),

where 'P(X1, ... , Xn, y) is local around (x1, ... , Xn, y).

Exercise 4.15. This exercise presents a sufficient condition that guarantees a win

ning strategy by the duplicator. It shows that if two structures look similar (meaning

that the duplicator has a winning strategy), and are extended to bigger structures in

a "similar way", then the duplicator has a winning strategy on the bigger structures

as well.
Let 2l, 23 be two structures of the same vocabulary that contains only relation

symbols. Let 2lo, 230 be their substructures, with universes Ao and B 0 , respectively,

and let 2l1 and 231 be substructures of 2l and 23 whose universes are A- Au and

B- flo.

For every a E A, d21 (a, 2lo) is, a..s usual, min { d21 (a, ao) I ao E Ao}, and d'S (b, 23o)

is defined similarly. Let 2l(r) (23(r)) be the substructure of 2l (respectively, 23) whose

universe is {a I d21(a,2lo)::.; r} (respectively, {b I d'J3(b,23o)::.; r}). We write

if 2l(r) =k 23(r) and, whenever a;, b, are moves m the ith round, d21(a;, 2lo)

d'13(b;, 23u). We also write

if there is an isomorphism h : 2l1 -+ 231 such that d21(a, 2lo)
every a E A- Ao.

Now assume that the following two conditions hold:

1 Of -tlist <U d
· "'(2') =k :.o(2k)' an

2. Qll ~dist 23).

Prove that 2l =k 23.

d'13(h(a), 23o) for

Exercise 4.16. Let (]' consist of one binary relation E, and let <P be a (]'-sentence.

Prove that it is decidable whether <P has a model in STRUCT![(J']; that is, one can

decide if there is a finite graph G in which all in- and out-degrees are 0 and 1 such

that G F= <P.

5

Ordered Structures

We know how to prove basic results about FO; so now we start adding things
to FO. One way to make FO more expressive is to include additional opera
tions on the universe. For example, in database applications, data items stored
in a database are numbers, strings, etc. Both numbers and strings could be
ordered; on numbers we have arithmetic operations, on strings we have con
catenation, substring tests, and so on. As query languages routinely use those
operations, one may want to study them in the context of FO.

In this chapter, we describe a general framework of adding new operations
on the domain of a finite model. The main concept is that of invariant queries,
which do not depend on a particular interpretation of the new operations. We
show that such an addition could increase the expressiveness of a logic, even
for properties that do not mention those new operations. We then concentrate
on one operation of special importance: a linear order on the finite universe.
We study FO(<) - that is, FO with an additional linear order < on the
universe, and study its expressive power.

Adding ordering will be of importance for almost all logics that we study
(the only exception is fragments of second-order logic, where linear orderings
are definable). We shall observe the following general phenomenon: for any
logic that cannot define a linear ordering, adding one increases the expressive
power, even for invariant queries.

5.1 Invariant Queries

We start with an example. Suppose we have a vocabulary u, and an additional
vocabulary u<,+ = { <, + }, where < is a binary relation symbol, and + is a
ternary relation symbol. The intended interpretation is as follows. Given a set
A, the relation < is interpreted as a linear ordering on it, say a1 < ... < an,
if A = { a 1 , ... , an}. Then + is interpreted as

68 5 Ordered Structures

Recall that the query EVEN(2l) testing if I A I= 0 (mod :Z) is not expressible
over a-structures: we proved this by using Ehrenfcucht-Fra!ss<~ ganws. l\ow
assume that we are allowed to use a<.+- symbols in the query. Then we can
write:

<P = (--,=Jx (x=J·)) V =J:r=Jy ((:r+.r=y) 1\ --,=J: (y< ::)).

That is, either the universe is empty, or y is the larg<~st denH'nt oft he universe
and y = :r + :r for some :r:. Then <P tests if I A I= 0 (mod 2).

However, one has to be careful with this statement. \Ve cannot write 2l f=
<P iff EVEN(2l) for a a-structure 2l, simply because <P is not a sent<mce of
vocabulary a. The structure in which <Pis checked is an c.Tpansion of 2l with
an interpretation of predicate symbols iu a<.+. That is, if 2(< .+ is a structure
with universe A in which <. + are interpreted as \Vas shown abov<'. tlwn

Here by (2l. 2l<.+) we mean the structure whos<' universe is A. the symbols
from a an~ interpreted as in 2l, and <, + are int<•rpreted as in 2(<. +.

Before giving a general definition, we mak<' anotlwr important. observation.
If we find any other interpretation for symbols < and +, as long as < is a
linear ordering on A and + is the addition corn~sponding to <, the result of
the query defined by <P will be the same. This is the idea of invariance: no
matter how the extra relations arc interpreted, the result of th<· <}lH'ry is the
same.

We now formalize this concept. Recall that if a and a' are two disjoint
vocabularies, 2l E STRUCT[a], 2l' E STRUCT[a'], and 2l. 2l' have the same
universe A, then (21, 21') stands for a structure of vocabulary aU a'. in which
the universe is A, and the interpretation of a (n"spectively. a') is inherited
from 21 (21').

Definition 5.1. Let a and a' be two disjoint vocabulari~es, and let C be a dass
of <7 1 -structur~es. Let 21 E STRUCT[a]. A formula ip(x) in the language of aUa'

is called C-invariant on 21 ·if for· any two C stnu:tuTes 2l' and 21" on A we havf'

p[(21, 21')] = p[(2l. 2l")].

A formula p is C-invariant if it is C -invar·iant on every a -str"nctun~.

If y(x) is C-invariant, W(~ associate with it an 111.-ary query Q", where
m =I xl. 1t is given by

{f E Qcp(21) iff (21, 21') F ip(il).

where 2l' is sonw a'-structure inC whose universe is A. By invarianC<', it does
not matter which C-structure 21' is used.

We shall wriU' FO + C for a class of all qu('ries on aU a'-structun~s. and

5.2 The Power of Order-invariant FO 69

(FO +C)inv

for the class of queries Q'P, where cp is a C-invariant formula over O" U a'.

The most important case for us is when C is the class of finit<' linear
orderings. In that case, we write < instead of C and use the notation

(FO+<)inv·

We refer to queries in this class as or·der-invariant queries.

Notice that (FO+ <)inv refers to a class of queries, rather than a logic. In
fact, we shall see in Chap. 9 (Exercise 9.3) that it is undecidable whether an
FO sentence is <-invariant.

Corning back to our example of expressing EVEN with < and +, the sen
tence if> is a C<,+-invariant sentence, where C<.+ is the class of finite structures
(A, <, +), with a 1 < . . . < a77 being a linear order on A, and + defined as

{ (ai, a:i, a,) I i + j = k}. The Boolean query Q<P defined by this invariant
sentence is precisely EVEN.

In some cases, establishing bounds on FO + C and (FO + C)inv is easy. For
example, the proof that the bounded number of degrees property (BNDP)
holds for FO shows that adding any structure of bounded degree would not
violate the BNDP. Thus, we have the following result.

Proposition 5.2. Let C C: STRUCTz[O"'] for a fixed > 0. Then
(FO +C) queries have the BNDP. In particular, (FO +C) cannot expr·css the

transitive closure query. 0

The situation becomes much more interesting when degrees arc not
bounded; for example, when C is the class of linear orderings. We study it
in the next section.

5.2 The Power of Order-invariant FO

While queries in (FO +C)inv are independent of any particular structure from
C, the mere presence of such a structure can have an impact on the expressive
power.

In fact, this can be demonstrated for the class of (FO+ <)inv queries. The
main result we prove here is the following.

Theorem 5.3 (Gurevich). There are (FO+ <) inv queries that are not FO
definable. That is,

FO c
~ (FO+<)inv·

In the rest of the section we present the proof of this theorem. The proof is
constructive: we explicitly generate the separating query, show that it belongs
to (FO+ <)inv, and then prove that it is not FO-definable.

70 5 Or<i<>red Structures

\Ve consider structures in the vocabulary rT = { C:} w her<' c:;; is a binary
rdation symbol. Tlw intr~nded interpretation of o--struct.ures of intr·rest to us
is finite Boolean algebras: that is, (2x. C:), where X is a finit<' set.

WP first show that tlH're is a senterH·e 1>1lA such that 12! f= <f>nA iff 21
is of the form (2x. C:) for a finite X. For that, \Vf' shall need t h<' following
abbn~viations:

• ..l(:r) \/z (.r C: z) (intended interprl'tation of .r then is t h<' <'lll]lty set):

• T(:r) \/z (z C: .r) (:r is the maximal d<~ment with resp<'ct to C:):
• :r u y = .:: (1" c: z) 1\ (y c: z) 1\ \/v. ((:I: c: II.) 1\ (.y c: u) - ' I. z c: /))):
e 1" n if = .: (Z C: :r) 1\ (:~ C: .1J) 1\ \f 11 ((II C: .r) 1\ (U. C: !J) ' (11 C .:)) ;

• atom(.t) --,.l_(.r) 1\ \/z (:: C: 1·--+ (z = .r V ..l(.:))) (i.e., .r is an at.orn,
or a singleton set);

• x = y _ \/:; (.1: U y = z --+ T(z)) 1\ \/z (.r ll if= z --+ J (.:)) (.r is the
complerrwnt of y).

The sent<~nce <PnA is now the usual axiomatizat.ion for atomic I3oo1Pan
algebras; that is, it is a conjunction of sentences that assert that c: is a partial
ordering, U and n exist, are uniqtw, ami satisfy tlH' distributivity law and the
absorption law (.1" n (X U !J) = :r); that t]w least and the grmtesl elemPnts j_

and T are uniqw~; and that cornplPmPnts are unique and satisfy De l\Iorgan 's
laws. Clearly, this can he stated as an FO sentenn·.

We now fonrmlate the separating query Q~~;;;;,:

Q<'ven ("') atom ~ = true 21 f= <PilA and I {a I 21 f= atorn(o)} I== 0 (111od 2).

That is, it checks if the numlwr of atoms in tlw finitP Boolean algebra 21
is even.

Lemma 5.4. Q~~.';;:, E (FO+ <)im.

Pmof. Let < be an ordering on the universe of 21. It orders the atoms of thP
Boolean algebra: u 0 < ... < a 11 _ 1 . To dwck if tlw muniH'r of atoms is <~veiL
we check if there is a set that contains all the atoms in <'V<'Il positions (i.e ..
a0 , a2 , a4 , ...) and does not contain a 11 _ 1 . For that, W<' define the following
formulae:

• firstatom(.r) = atom(:r) 1\ 'iy (atom(y)--+ .r s; y).

• lastatom(:r) = atom(:r) 1\ \/y (atorn(y)--+ .If~ x).

, . (") _ (atorn(x) 1\ atom(y) 1\ (.r < y))
• ncxtdtom x, y = , (() () ()) . 1\ ':::JZ atom z 1\ .r < z 1\ z < y

5.2 The Power of Order-invariant FO 71

That is, firstatom(x) is true of a0 , lastatom(x) is true of an-1, and
nextatom(x, y) is true of any pair (ai-l, ai), 0 < i:::; n- 1.

Based on these, we express Q~~g~, by the sentence below:

(
't/x (firstatom(x)---> x ~ z))

3z 1\ 't/x (lastatom(x)---> --,(x ~ z)) .
1\ 't/x,y (nextatom(x,y)---> ((x ~ z) --,(y ~ z)))

That is, the above sentence is true iff the set containing the even atoms
a 0 , a 2 , ... does not contain an-l· Note that the set z may be different for
each different interpretation of the linear ordering <, but the sentence still
tests if the number of atoms is even, which is a property independent of a
particular ordering. D

Lemma 5.5. Q~~:;~ is not FO-definable (in the vocabulary{~}).

Proof. We shall use a game argument. Notice that locality does not help us
here: in (2x, ~), for any two sets C, D ~ X, the distance between them is at
most 2, since 0 ~ C, D.

The proof illustrates the idea of composing a larger Ehrenfeucht-Fra"isse
game from smaller and simpler games, already seen in Chap. 3.

In the proof, we shall be using games on Boolean algebras. We first observe
that if (2x, ~) =k (2Y, ~),then we can assume, without any loss of generality,
that the duplicator has a winning strategy in which he responds to the empty
set by the empty set, to X by Y, and to Y by X. Indeed, suppose the spoiler
plays 0 in 2x, and the duplicator responds with Y' -=f. 0 in 2Y. If there is one
more round left in the game, the spoiler would play the empty set in 2Y, and
the duplicator has no response in 2x, contradicting the assumption that he
has a winning strategy. Thus, in every round but the last, the duplicator must
respond to 0 by 0. If the spoiler plays 0 in 2x in the last round, it is contained
in all the other moves played in 2x, and the duplicator can respond by 0 in
2 Y to maintain partial isomorphism. The proof for the other cases is similar.

Next, we need the following composition result.

Claim 5.6. Let (2x,, ~) =k (2Y1 , ~) and (2x2 , ~) =k (2Y2 , ~). Assume that
X 1 n X2 = Y1 n Y2 = 0. Then

(5.1)

Proof of Claim 5.6. Let A;, Bi, i :::; k, be the moves by the spoiler and the
duplicator in the game (5.1). Let At = Ai n X 1 , Ar = Ai n X 2 , and likewise
Bf = Bin Y1, Bf = Bin Y2 • The winning strategy for the duplicator is as
follows. Suppose i-1 rounds have been played, and in the ith round the spoiler
plays Ai ~ X1 U X2 (the case of the spoiler playing in Y1 u Y2 is symmetric).
The duplicator considers the position

72 5 Ordered Structures

in the game on (2x1 , <;;;;) and (2Y1 , <;;;;), and finds his response BJ <;;;; Y1 to
A}. Similarly, he finds Br <;;;; Y2 as the response to Af in the position
((Ai, ... ,AT_ 1),(Bi, ... ,BT- 1)) in the game on (2x2 ,<;;;;) and (2Y\<;;;;). His
response to Ai is then Bi = B} U Br. Clearly, playing in such a way, the du
plicator preserves the <;;;; relation. Furthermore, it follows from the observation
made before the claim that this strategy also preserves the constants: that is,
if the spoiler plays X 1 , then the duplicator responds by Y1, etc. Hence, the
duplicator has a winning strategy for (5.1). This proves the claim.

The lemma now follows from the claim below.

Claim 5.7. Let IXI,IYI?: 2k. Then

(2x,c;;;;) =k (2}·.<;;;;).

Indeed, assume Q~~~~ is definable by an FO-sentence of quantifier rank J.:.
Take any X of odd cardinality and any Y of even cardinality, greater than
2k. By Claim 5.7, (2x, <;;;;) =k (2Y. <;;;;),and hence they must agree on Q;;~;;;:,
which is clearly false.

Proof of Claim 5. 7. It will be proved by induction on k. The cases of k = 0. 1
are obvious. Going from k to k+ 1, suppose we have X, Y with I X 1- I Y I?: 2k+ 1 •

Assume, without loss of generality, that the spoiler plays A <;;;; X in (2x. <;;;;).
There are three possibilities.

1. I A I< 2". Pick an arbitrary B <;;;; Y with I B I= I A 1- Then both I X- A I
and I Y- B I exceed 2k. Thus, by the induction hypothesis, (2x ~cl. <;;;;) =~,
(2Y~B, <;;;;).Furthermore, (2A, <;;;;) ~ (2 8 , <;;;;),which implies a weaker fact
that (2A, <;;;;) =k (2B, <;;;;). By Claim 5.6,

(2x.<;;;;,A) =k (2y.<;;;;.B),

meaning that after the duplicator responds to A with B, he can continue
playing for k more rounds. This ensures a winning position, for the dupli
cator, after k + 1 rounds.

2. IX- AI< 2k. Pick an arbitrary B <;;;; Y with IY- Bl=l X- AI. Then tlu•
proof follows case 1.

3. I A 1?: 2" and I X- A 1?: 2". Since I Y 1?: 2k+I, we can find J3 <;;;; Y with
I B I?: 2k and I Y - B I?: 2k. Then, by the induction hypothesis,

(2A. <;;;;) =k (2B, <;;;;).
(2x~A, <;;;;) =1. (2 Y~J3. <;;;;).

and we again conclude (2x. <;;;;,A) =k (2Y. <;;;;,B), thus proving the win
ning strategy for the duplicator in k + 1 moves.

5.3 Locality of Order-invariant FO 73

This completes the proof of the claim, and of Theorem 5.3. D

Gurevich's theorem is one of many instances of the proper containment
C ~ (£+ <)inv, which holds for many logics of interest in finite model theory.
We shall see similar results for logics with counting, fixed point logics, several
infinitary logics, and some restrictions of second-order logic.

5.3 Locality of Order-invariant FO

We know how to establish some expressivity bounds on invariant queries:
for example, if extra relations are of bounded degree, then invariant queries
have the BNDP. There are important classes of auxiliary relations that are
of bounded degree. For example, the class Succ of successor relations: that
is, graphs of the form { (a0, a I), (a1 , a2), ... , (an-l, an)} where all ai's are dis
tinct. Then the BNDP applies to FO + Succ, because for any ~ E Succ,
deg_set(~) = {0, 1 }.

Adding order instead of successor destroys the BNDP, because for an or
dering L on n elements, deg_set(L) = {0, ... , n- 1 }. Moreover, while FO+ <
is local, locality does not tell us anything interesting. With a linear ordering,
the distance between any two distinct elements is 1. Therefore, if a structure
~is ordered by<, then Ni'2!,<)(ii) = (~, <,ii). Hence, every query is trivially
Gaifman-local with locality rank 1.

Gaifman-locality is a useful concept when applied to "sparse" structures,
and structures with a linear order are not such. However, invariant queries
do not talk about the order: they simply use it, but they are defined on a

structures for a that does not need to include an ordering. Hence, if we could
establish locality of order-invariant FO-definable queries, it would give us very
useful bounds on the expressive power of (FO+ <)inv· All the locality proofs
we presented earlier would not work in this case, since FO formulae defining
invariant queries do use the ordering. Nevertheless, the following is true.

Theorem 5.8 (Grohe-Schwentick). Every m-ary query in (FO+ <)inv,
m 2:: 1, is Gaifman-local.

This theorem gives us easy bounds for FO+ <.For example, to show that
the transitive closure query is not definable in FO+ <, one notices that it
is an invariant query. Hence, if it were expressible in FO+ <, it would have
been an (FO+ <)inv query, and thus Gaifman-local. We know, however, that
transitive closure is not Gaifman-local.

The proof of the theorem is quite involved, and we shall prove a slightly
easier result (that is still sufficient for most inexpressibility proofs). We say
that an m-ary query Q, m > 0, is weakly local if there exists a number d 2:: 0
such that for any structure~ and any ii1 , ii2 E Am with

74 5 Ordered Structures

it is the case that
a1 E Q(2t) iff a2 E Q(2t).

That is, the only difference between weak locality and thP usual Gaifman
locality is that for the former, the neighborhoods arc required to bP disjoint.

The result that we prove is the following.

Proposition 5.9. Every unary quer·y in (FO+ <)inv is weakly local.

The proof will demonstrate all the main ideas required to prove Theorem
5.8; completing the proof of the theorem is the subject of ExPrcises 5.8 and
5.9.

The statement of Proposition 5.9 is also very powerful, and suffices for
many bounds on the expressive power of FO+ <. Suppose, for example, that
we want to show that the same-generation query over colored trees is not in
FO+ <. Since same generation is order-invariant, it suffices to show that it is
not weakly local, and thus not in (FO+ <)inv·

We consider colored trees as structures of the vocabulary (E. C), where E
is binary and C is unary, and assume, towards a c:ontradiction, that a binary
query Q.-9 (same generation) is definable inFO+< by a formula cp(J·.y). L<'t

7/J(x) ~y (C(y) 1\ cp(:r. y)).

Then 7/J defines a unary order-invariant query, testing if there is a node y in
the set C such that (.:r:, y) is in the output of Q89 • To show that it is not
weakly local, assume to the contrary that it is, and construct a tree T as
follows. Let d witness the weak locality of the query defined by 4•. Then T has
three branches coming from the root, two of length d + 1 and one of length
d + 2. Let the leaves be a, b, c, with c being the leaf of the branch of length
d + 2. The set C is then {a}. Note that b ~ r c and their balls of radius d an'
disjoint, and yet (T, <) f= 7/J(b) 1\ -,'t/J(c) for any ordering<. Hence, tb is not
weakly local, and thus Q89 is not definable in FO+ <.

We now move to the proof of Proposition 5.9. First, we present the main
idea of the proof. For that, we define the radius r sphere, r > 0, of a tuple a
in a structure 2t as

s~(a) B~(a) - B~~~ (a).

That is, S'j:(a) is the set of elements at distance exactly r from a. As usual, the
superscript 2l will be omitted when irrelevant or understood. We fix, for the
proof, the vocabulary of the structure to be that of graphs; that is, CJ = (E),
where E is binary. This will simplify notation without any loss of generality.

Given a structure 2t and a E A, its d-ball can be thought of as a scquencP
of r-spheres, r ::; d, where E-edges could go between Si(a) and S;+ 1 (a), or
between two elements of the same sphere.

Let Q be a unary (FO+ <)inv query on STRUCT[CJ], defined by a formula
cp(x) of quantifier rank k. Fix a sufficiently large d (exaet bounds will be dPar

5.3 Locality of Order-invariant FO 75

from the proof), and consider a ~~ b, with Bd(a) and Bd(b) disjoint. Let h
be an isomorphism h: Nd(a)--+ Nd(b).

We now fix a linear ordering -<a on Ed (a) such that d21 (a, x) < d21 (a, y)
implies :r -<a y. In particular, a is the smallest element with respect to --<,.
We let -<b be the image of -<a under h. Let -<o be a fixed linear ordering on
A- Bd(a, b). We now define a preorder --< as follows:

x--< y iff X -<a y, x,y E Br1(a)
or x -<I! y, x, y E Br1(b)
or h(x) -<by, x E Br1(a), y E Bd(b)
or x -<b h(y), x E Bd(b), y E Bd(a)
or x -<o y, x, y tf. Bd(a, b)
or x E Bd(a, b), y tf. Bd(a, b).

In other words, --< is a preorder that does not distinguish elements :r and
h(x), but it makes both x and h(x) less than y and h(y) whenever x -<a y
holds. Furthermore, each element of Bd(a, b) is less than each element of the
complement, A- Bd(a, b), which in turn is ordered by --< 0 .

Our goal is to find two linear orderings, ~a and ~b on 2l, such that

(5.2)

This would imply

a E Q(2t) iff (2l, ~a) f= cp(a) iff (2l, ~b) f= cp(b) iff bE Q(2t). (5.3)

These orderings will be refinements of--<, and will be defined sphere-by-sphere.
For the ~" ordering, a is the smallest element, and for the ~" ordering, b is the
smallest. On Sd(a) u 8,1(b), the orderings ~a and ~b must coincide (otlwrwise
the spoiler will win easily).

Note that --< is a preorder: the only pairs it does not order are pairs of
the form (:r, h(x)). To define ordering on them, we select two "sparse" sets of
integers .J = {jl, ... ,j111 } and L = {h, ... , lrn+d with 0 < .h < ... < j, < d
and 0 < h < 12 < ... < lrn+l < d. "Sparse" here means that the difference
between two consecutive integers is at least 2k + 1 (other conditions will b<;
explained in the detailed proof). Assume that x E Sr (a), y E Sr (b), and
y = h(x), for r ~d. Then

and

x ~" y <=? I {j E J I j < r} I is even,
y ~" x <=? I {j E .J I .i < T} I is odd,

:r: ~" y <=? I { l E L ll < r} I is odd,
y ~b :r <=? I { l E L ll < r} I is even.

(5.4)

(5.5)

Thus, the parity of the number of .ii 's or l i 's below r tells us whether the order
on pairs (x, h(x)) prefers the eh;ment from Br1(a) or Bd(b). Note that a is the

76 5 Ordered Structures

least clement with respect to :S:u (in particular, a :S:u b), and h is the least
dement for :S:b, but since the number of switches of prderene<~s diffPrs by one
for :S:a and :S:b, on Sr1 (a, b) both orderings are the same.

Of course a switch can be detected by a first-order formula, but we have
many of them, and they happen at spheres that arc well separated. The ke.v
idea of the proof is to use the sparseness of .! and L to show that the diff<T<'IlC<'
between them cannot be detected by the spoikr in k moves. This \Vill ensure
(Qt. a. :S:a) =~, (Ql, b, :S:b)·

\Ve now present the complete proof; that is, we show how to construct two
orderings, :S:n and :S:b, such that (5.2) holds. First, we may assume, without
loss of generality, that no sphere Sr (o, b), T :S: d, is empty. If any ,'-,', (a, h) wen•
empty, Qt would have been a disjoint union of lJd (a), Bd (b), and /l - B" (o, h).
with no £-edges between these sets. Then, using N,T (a) ~ N,J1 (h). it is msy to
find orderings :S:a and :S:b such that (Ql, a. :S:a) and (Qt, h. :S:Ii) are isomorphic.
and hence (Ql, a, :S:n) =k (Qt. b. :S:b) holds.

To define the radius d for a giwn k (the quantifier rank of a formula
defining Q), we need some additional notation. Let rT(, l IH' the vocalm
lary (E,<.U-r,U-,+I····,U-I,Uo,UI, U,_l·Ur), wlwre all the U,'s are
unary. Let t be the number of rank-(k + 1) typ<'S of rT(, l structures, \dH're
T = 2k (this number, as we know, dep<mds only on k).

Let E be a finite alphabet of cardinality t. Recall that a string s of length
n ov<~r E is n~present<~d as a structure A Is of the vocabulary (<, /1 1 ••••• A 1)

with the universe { L ... , n} ordered by <, and each unary A; int.<~rpreted as
the set of positions between 1 and n where the symbol is the ith svmhol of l,'.

We call a subset X = { x 1 , ... , :rp} of { 1. ... , n} r-sparse if

min l:r;- .r 1 I> r, .r; > r. n- .r; > r. for all i :S: p.
ic;'.) .

Next, we need the following kmrna.

Lemma 5.10. For ever·;y I. k 2.: 0, there exists a number d > 0 such that.
given any string s E E* of length n 2.: d. where 12.,' I~ t. thcr·e c:ci.st two .~·ubscts
J, L c:;; { I , ... , n} such that

• I L 1=1 J I+ I > 2';

• .! and L ar-e 2" + l-spar·se; and

• (AJ,,J) =HL (1\Is.L).

The proof is a standard Ehrenfeucht-Frai'sse gam<' argument. and is left to
the read<'r as an exercise (Exercise 5.6).

vVe now let d Iw given by Lemma 5.10, fork the quantifier rank of a formula
defining Q, and t the number of rank-(k + 1) types of rT(2')-structures.

Fix a ;::,:;;~1 b, with Bd(a) and nd(h) disjoint, and let h be an isomorphism
Nd(a)-+ Nd(b). Fori. r :S: d, let R;(a) he a rT(rl-structure \vho-;e universe is
tlw union

5.3 Locality of Order-invariant FO 77

;+r·

U Sj(a)
j=i-r

(if j < 0 or j > d, we take the corresponding sphere to be empty), and
each UP is interpreted as S;+p(a), and the ordering is --<a, the fixed linear
ordering on Bd(a) such that d21(x, a) < d21(y, a) implies x --<a y (restricted
to the universe of the structure). Structures R~(b) are defined similarly, with
the ordering being --<1, the image of --<a under the isomorphism h. Note that
R~(b) ~ R~(a).

Let E be the set of rank-(k + 1) types of a(2k)-structures. Define a strings
oflength d+ 1 which, in position i = 1, ... ,d+ 1, has the rank-(k+ 1) type of
R;-,; 1 (a). Applying Lemma 5.10, we get two 2k + 1-sparse sets J, L such that
(M." J) '=-k (Ms, L). Let J = {jl, ... ,jm} with]o = 0 <]I < ... < Jm < d
and L = {l1, ... , lm+I} with lo = 0 < h < l2 < ... < lm+l <d. Using these J
and L, define ::;a and ::;I> as in (5.4) and (5.5).

Let Nd,J(a) and Nd,L(a) be two structures in the vocabulary (E, <, U, c)
with the universe Bd(a). In both, the binary predicate E is inherited from 2.l,
the ordering< is --<a, and the constant cis a. The only difference is the unary
predicate U: it is interpreted as ujE.l Sj(a) in Nd,J(a), and as ulEL Sz(a) in
Nd,L(a).

Let 2.la stand for (2.l, :=;a, a) and 2.lb for (2.l, :=;b, b). The winning strategy for
the duplicator on 2.la and 2.lb is based on the following lemma.

Lemma 5.11. The duplicator has a winning strategy in the k-round game
on Nd,J(a) and Nd,L(a). Moreover, if PI, ... ,pk are the moves on Nd,J(a),
and q1 , ... , Qk are the moves on Nd,L(a), then the following conditions can be
guaranteed by the winning strategy:

1. If p; E Sr(a) and d- r:::; 2k-i, then Qi =Pi·

2. If (r 1 , ... , Tk) and (r~, ... , r~) are such that each Pi is in the sphere 8,., (a)
and Qi is in the sphere Sr' (a), then ((r1, ... , rk), (r~, ... , rU) define a par
tial isomorphism betweer:: (Ms, J) and (M 8 , L).

The idea of Lemma 5.11 is illustrated in Fig. 5.1. We have two structures,
(lv1." J) and (Ms, L), which are linear orders with extra unary predicates,
and two additional unary predicates, J and L of different parity, which are
shown as short horizontal segments. Using the fact that (Ms, J) '=-k+ 2 (M._, L),
we prove that Nd,J(a) '=-k Nd,L(a). These are shown in Fig. 5.1 as two big
circles, with concentric circles inside representing spheres Sr with r being in
J or L, respectively. These spheres form the interpretation for an extra unary
predicate in the vocabulary of structures Nd,.J(a) and Nd,L(a).

Next, we show that Proposition 5.9 follows from Lemma 5.11; after that,
we prove Lemma 5.11.

78 5 Ordered Structures

(M,, J) (AJ,, L)

Fig. 5.1. Games involved in the proof of Proposition 5.9

From Nd,J(a) =k Nd,L(a) to 2ta =k 2l/J. We now show how Lemma 5.11
implies Proposition 5.9; that is, 2ta =k 2l!J. The idea for the winning strategy
on 2ta and 2lb is that it almost mimics the one in Nd,.J(a) =k N,,,L(a).

We shall denote moves in 2ta by a 1 , ... , and moves in 2l, by IJI Suppose
the spoiler plays a; E 2ta (the case of a move in 2lb is symnwtric). If a; tfc
Bd(a, b), then b; =a;, and we also set p; = q; =a.

If a; E Bd(a,b), we define p; E Bd(a) to be a; if a; E Bd(a). and h- 1(a;)
if a; E Bd(b). The duplicator then determines the response q; top;, according
to the Nd,.J(a) =k N,u,(a) winning strategy. The response b; is going to be
either q; itself, or h(q;), and we use sets J and L to determine if b; lives in
Bd(a) or Bd(b).

We define two mappings

V.J: Bd(a,b)---> {0, 1} and VL: Bd(a.b)---> {0, l}

such that for every x E Bd (a),

VJ(x) + v.1(h(x)) = vL(x) + vL(h(:r:)) 1.

For ;r; E Bd(a), find r:::; d such that x E Sr(a). Then

VJ(x) = {~ if I {.j E .J I j < r} I is even,
otherwise,

and VJ(h(x)) = 1 - 11J(:r:). Similarly, for :r E Bd(b), we find r such that
x E Sr(b) and set

if I { l E L I l < r} I is cwn.
otherwise,

and define vL(.r,) = 1- vL(h(x)) for :r E Bd(a).
We now look at q; and h(q.;); we know that vL(q;) + vL(h(q.;)) = 1. W0

choose b; to be one of q; or h(q.;) such that vL(b;) = u.~(a;).

5.3 Locality of Order-invariant FO 79

This describes the strategy; now we prove that it works. Dealing with the
constant is easy: if the spoiler plays a in 2la, then the duplicator has to respond
with b in Qlb and vice versa.

We now move to theE-relation. Since the parity of I J I and I L I is different,
condition 1 of Lemma 5.11 implies that for any move in Bd(a, b)- Bd-2"' (a, b)
with m moves to go, the response is the identity. Hence, if E(a;, a1) holds,
and one or both of a;, a1 are outside of Bd (a, b), then E (b;, b1) holds (and vice
versa). Therefore, it suffices to consider the case when E(a;,a1) holds, and
a;, aJ E Bd(a, b).

Assume, without loss of generality, that a;,a1 E Bd(a). Then E(p;,p_j)
holds, and hence E(q;,qj) holds. Given the duplicator's strategy, to conclude
that E(b;, b1) holds, we must show that both b; and bj belong to the same
ball- Bd(a) or Bc1(b).

The elements a; and a1 could come either from the same sphere Sr(a), or
from two consecutive spheres Sr(a) and Sr+l(a). In the first case, if they come
from the same sphere, VJ(a;) = v.1(a1) and thus vL(b;) = vL(bj)· Furthermore,
since a; and aj are in the same sphere, we conclude that p; and PJ are in the
same sphere, and hence, by the winning strategy of Lemma 5.11, q; and qj are
in the same sphere. This, together with vL(b;) = VL(bj), means that b; and bi
are in the same ball.

Assume now that a; E Sr (a) and aj E Sr+l (a). From condition 2 of Lemma
5.11, for some r' :::; d we have q; E Sr'(a) and qj E Sr'+l(a). Now there are
two cases. In the first case, VJ(a;) = VJ(aj)· Then there are two possibilities.
If r,r + 1 rf. J, then r',r' + 1 rf. L (by condition 2 of Lemma 5.11), and
hence vL(b;) = VJ(a;) = VJ(aj) = vL(bj) implies that b;,bj are in the same
ball, and E(b;, bj) holds. The other possibility is that r + 1 E .J, r rf. .J. Then
r' + 1 E L,r' rf. L, and again we conclude E(b;,b1).

The second case is when V.J(a;) i= V.J(a1). This could only happen if r is
in J (and thus r + 1 rf. .J). Then again by condition 2 of Lemma 5.11, r' E

L,r' + 1 rf. L. Suppose V.J(a;) = 0. Then VL(b;) = 0, and vL(bj) = v.1(a1) = 1.
Since b; E Sr'(a,b) and bj E Sr'+l(a,b), and r' E L, both b; and bi must
belong to the same ball (Bc1(a) or Bd(b)), and hence E(b;, bj) holds.

Thus, E(a;, aj) implies E(b;, b1); the proof of the converse- that E(b;, b.i)
implies E(a;,aj) --is identical.

Finally, assume that a; :::;a aj. If a; E Sr (a, b), aj E Sr' (a, b) and r < r',
then, by condition 2 of Lemma 5.11, b; E Sr0 (a,b),bj E Srb(a,b) for some
r0 < r!J, and hence b; :::;b b1.

Thus, it remains to consider the case of a;, a1 being in the same sphere;
that is, a;, aj E Sr (a, b). If p; i= PJ, then p; -<a Pj and hence q; -<a PJ, which
in turn implies b; :::;b b1. The final possibility is that of p; = P.i; then either
(1) a; E Sr(a) and a1 = h(a;), or (2) a1 E Sr(a) and a; = h(a:i)· We prove
case (1); the proof of case (2) is identical.

Note that the orderings :::;a and :::;bare defined in such a way that whenever
x = h(y), then :Sa orders them according to VJ; that is, if VJ(x) < VJ(y), then
x :::;a y, and if V.J(Y) < V.J(x), then y :::;ax. The ordering :::;b behaves likewise

80 5 Ordered Structures

with respect to the function v L. Hence, if a.i = h(a;) and a; <::::a a.i, then
VJ(ai) = 0 and VJ(aJ) = 1. From Lemma 5.11, q; = q1, and thus b; and bi are
related by the isomorphism h. Since v L(b;) = 0 and v L(bi) = 1, we know that
bi :S::b bj.

This concludes the proof that ai :S::a aj implies b;. :S::b bi; the proof of the
converse is identical. Thus, we have proved, using Lemma 5.11, that 2ta =~c 2t1,

which is precisely what is needed to conclude (weak) locality of q. It thus
remains to prove Lemma 5.11.

Proof of Lemma 5.11. We shall refer to moves in the game on Nd.J(a) and
Nd,L(a) asp; (in Nd,.J(a)) and qi (in Nd.L(a)), and to moves in the game on
(Ms, J) and (Ms, L), provided by Lemma 5.10, as e; for (Ms . .J) and .{.; for
(Ms, L).

For two elements :1:, y in the universe of l\I8 (which is { 1, d + 1}), tlH'
distance between them is I x - y 1- The next claim shows that after i rounds.
distances up to 21.:-i between played elements, and elements of the sets .J and
L, are preserved.

Claim 5.12. Let e1 , ... , ei and h, ... , J; be elements played m the fir·st
rounds of the game on (M 8 , .!) and (M 8 , L). Then:

• if leh- c12l<:::: 2k-i, then l.fh- f12l=leh- eh 1:

• if I ej1 - ehi> 2k-i, then I h - fh I> 21.-i;

• if min .lx- ei 1<:::: 21.:-i, then min .lx- Cj I= min .IY- fi 1:
xE.l.J~' .TE./ . .J~., yEL . .J~!.

• if min .i:r- ej I> 2k-i, then min .IY- /i I> 2"-i·
.TE.l . .J~' !!EL.J~1

Proof of Claim 5.12. Since we know that (llf8 , .!) '=1.+2 (liis, L), it suffices to
show that for any x, y, p <:::: k, and any r <:::: 2P, there is a formula of quantifier
rank p + 1 that tests if I x - y I= r, and there is a formula of quantifier
rank p + 2 that tests if the minimum distance from x to au element of tlH'
set (interpreted as .J and L in the models) is exactly ·r. \VP prove thP first
statement; the second is an easy exercise for the wader.

We define a 0 (x, y) = (x = y); this tests if the distance is zero. To test if
the distance is one, we see if x is the successor of y or y is thP successor of .r:

a 1 (x,y) = (x<yf\--,::Jz(x<zl\z<y)) V (y<:r:l\•::iz(y<zl\z<.r)).

Now, suppose for each r <:::: 2~', we have a formula a, (:r, y) in FO[p+ 1] testing
if the distance is r. We now show how to test distances up to 2~'+' using
FO[p + 2] formulae. Suppose 2P < r- <:::: 2~'+ 1 . The formula n, is of the form
((x < y) 1\a~.(x,y)) V ((y < x) 1\o:~'(x,y)). We present o:;.(:r.y) below. L<'t
r-1 , r 2 <:::: 2P be such that r 1 + r 2 = r. Then

5.3 Locality of Order-invariant FO 81

Clearly, this increases the quantifier rank by 1. This proves the claim.

Given :r E S,.(a) andy E s,..(a), define 6(x, y) as T-7"1 • Given X]' ... ' :rm in

Ed(a), and u 2' 0, we define a structure 6u[xl, ... , Xrn] as follows. Its universe

is {x 1-u::; 6(x,:ri)::; u, i::; rn}. It inherits binary relations E and--< from

Ed(a). Note that the universe of 6u[x1, ... , Xrn] is a union of spheres. Suppose

these are spheres S,., (a), ... , S,., (a), with r-1 < ... < rw. Then the vocabu

lary of 6u [x1, ... , Xm] contains w unary predicates Ut, ... , Uw, interpreted as

s,.l (a), ... ' 8,., (a).
Furthermore, 6.~[X[, ... ,xm] and 6t[x[, ... ,xm] extend 6u[X[, ... ,xm]

by means of an extra unary relation U interpreted as the union of spheres

s,.,(a) with TiE J (riEL, respectively).
We shall be interested in the parameter 7L of the form 2k-i, i ::; k, and now

define a relation 6£,_, [xt, ... ,xm] "'k-i 6~,_, [y1, ... ,ym]· The first condition
is as follows:

If the universe of 6£,_, [xt, ... , Xrn] is a union
of 11) spheres, s,.l(a) u ... u s,.w(a), then the
universe of 6~,-i [Yt, ... , Ym] is a union of w

spheres, s,.; (a) u ... u S,.;v (a), and Tj E J iff
rj E L.

(5.6)

Define L1u (r1, ... , Tw) as {j > 1 I Tj+ 1 - Tj > u}. The second condition is:

(5.7)

For 1::; j < j'::; w+ 1, define the restriction 6!,[x1 , ... ,:rm]j'
to include only the spheres from s,.J (a) up to s,.j,-1 (a) (and likewise for

6t [YJ, ... , Yrn J{). The next condition is:

For each consecutive j, l E { 1, w + 1} - L1 2,_, (r1, ... , T 111),

6£, _, [x 1, ... , Xml;' =i. 6~•-· [Yt, · · ·, YrnJ{ ·
(5.8)

We now write 6£._, [xt, ... , Xm] "'k-i 6f,_, [yJ, ... , Yrn] if (5.6), (5.7), and

(5.8) hold.

Our goal is to show that the duplicator can play in such a way that, after

i moves,
(5.9)

where Po= qo =a.
The proof is by induction on i. The case of i = 0 (i.e., 6£,_, [Po] "'"

6~,_,[q0]) is immediate from the sparseness of J and L. We also set c0 =

fo = 1.
Now suppose (5.9) holds, and the spoiler plays Pi+l E Nd,J(a), such that

Pi+l E S,.(a) (the case of the move Qi+l E Nd,L(a) is symmetric:). The dupli

cator sets ei+l E { L ... , d + 1} to be r + 1, and finds the response h+l to e;+J

82 5 Ordered Structures

in the game on (Ms, J) and (Ms, L), from position ((e0 , ... , c;). (f0• .f;)).
Let fi+ 1 = r' + 1; then the response q;+ 1 will be found in s.,., (a).

Assume that 6~k-,[Po,PJ, ... ,p;] is the union of spheres S,,(a) U ... U

Srw (a), and erk-dqo, q1 , ... , q;] is the union of spheres S,; (a) U ... U S',.;, (a).

We distinguish two cases.

Case 1. In this case I b(p;+J,PJ) I> 21.--(i+l) for all j ·:; U' (i.e., I
e;+l- e:i I> 2k-(i+ll). From Claim 5.12, we conclude lb(qi+ 1 .q.J) I> 2k-(i+Jl
for all j. Since ei+ 1 and fi+ 1 satisfy all the same unary predicates over
(lYI,., J) and (1\1 s, L), we see that there is an element q i+ 1 in s,, (a) such
that 6 2 k [pi+ I] '=k+ 1 6 2 k [q;+J] and hence

Moreover, by Claim 5.12, r ± l E J iff r' ± l E L, for every l <::: 2A-(i+ 1 l, and
hence

From here

follows easily. This implies (5.8), and (5.6), (5.7) follow from the construction.
The final note to make about this case is that if d- r <::: 2k-(i+lJ, then qi-+ 1

can be chosen to be equal to Pi+l, while preserving (5.9).

Case 2. In this case I 6 (Pi+ 1, P.io) I<::: 2k- (i+ 1) for som1~ .io <::: w. Find two

consecutive j.j' E L1 2<·-i(r1 , ...• r 11 .) such that Pi+J is in 6fk_,[p0 ,p;J::'·
From Claim 5.12, IS(qi+ 1 ,q:i) 1<::: 2k-(i+tl. We then use (5.8) and find q;+J in
s,,(a) so that

(5.10)

Conditions (5.6) and (5.7) for 2k-(i+l) now follow from Claim G.12, and condi
tion (5.8) then follows from (5.10), since for every sphere which is a part of one
of the structures mentioned in (5.10), there is a unary predicate interpreted
as that sphere.

Finally, if d + 1 - ei+ 1 <::: 2k-(i+l), then d + 1 - c.in ::;: 2'·-i. and thus

P:io = q.io and the structures 6£k_,[po, ... ,p;]~' and 6i, ,[qu qt]:;' are
actually isomorphic. Hence, responding to Pi+ 1 with IJ;+J = Pi+ 1 will pre
serve the isomorphism of structures of the form 6£, (-tll[Po· p;.JJ;ttll'

and 6~<k-(i+ll [qo, ... , q;, Qi+1lf containing the sphere with Pi-t 1 = lfi+l·

This finally shows that the duplicator plays in such a way that (5.9) is
preserved. After k moves, the moves of the game (jJ, if) form a partial isomor-

phism. Indeed, if p;1 , p;2 are in different structures 6{ [P1:;' and 6{ [z~l', then

q;,, q.; 2 are in different structures 6f [qJ1' and 6{' [qJf, and hence then· is no

5.5 Exercises 83

E-relation between them. Furthermore, since ei, < Ci 2 iff /i 1 < f; 2 , we see
that Pi 1 --< p;2 iff Q;, --< Qi 2 • If Pi" p;2 are in the same structure 6{ lPJ{, then

Qi,, Qi2 are in 6f[<lJ{, and hence by (5.8), theE and--< relations between them
are preserved. Finally, since ei E J iff fi E L, we have Pi E U iff q; E U. This
shows that (p, if) is a partial isomorphism between Nd,J(a) and Nd,L(a), and
thus finishes the proof of Lemma 5.11 and Proposition 5.9. D

5.4 Bibliographic Notes

While the concept of invariant queries is extremely important in finite model
theory, over arbitrary models it is not interesting, as Exercise 5.1 shows.

The separating example of Theorem 5.3 is due to Gurevich, although he
never published it (it appeared as an exercise in [3]). Another separating
example is given in Exercise 5.2.

Locality of invariant FO-definable queries is due to Grohe and Schwentick
[113]. Their original proof is the subject of Exercises 5.8 and 5.9; the proof
presented here is a slight simplification of that proof. It uses the concept of
weak locality, introduced in Libkin and Wong [170].

Sources for exercises:
Exercise 5.1: Ebbinghaus and Flum [60]
Exercise 5.2: Otto [192]
Exercises 5.3 and 5.4: Libkin and Wong [170]
Exercises 5. 7 5.9: Grohe and Schwentick [113]
Exercise 5.11: Rossman [210]

5. 5 Exercises

Exercise 5.1. Prove that over arbitrary structures, FO = (FO+ <)inv·
Hint: use the interpolation theorem.

Exercise 5.2. The goal of this exercise it to give another separation example for
FO ~ (FO+ <)inv· We consider structures in the vocabulary u = (U1, U2, E, R, S)
where Ut, U2 are unary and E, R, S are binary. We consider a class C of structures
~ E STRUCT[u] that satisfy the following conditions:

1. ul and u2 partition the universe A.
2. E ~ ul X [h and s ~ u2 X u2.
3. The restriction of~ to (U2, S) is a Boolean algebra (we refer to its set of atoms

as X).
4. I X 1=1 ul I= 2m; moreover, if ul = {?It) ... , 1I2m} and X = {XI' ... , .T2m}, then

m

R = U {u2,-J, u2;} X {x2,-1,x2;}.
j_-= 1

84 5 Ordered Structures

First, prove that the class C is FO-definable. Next, consider the following Boolean
query Q on C:

Q(Ql) = true iff (U1 , E) is connected.

Prove that Q E (FO+ <)inv on C, but that Q is not FO-definable on C.

Exercise 5.3. Give an example of a query that is weakly local, but is not Gaifman
local.

Exercise 5.4. Prove that weak locality implies the BNDP for binary queries. Does
this implication hold for m-ary queries, where m > 2?

Exercise 5.5. Using Proposition 5.9, prove that acyclicity and k-colorability are
not definable inFO+<.

Exercise 5.6. Prove Lemma 5.10.

Exercise 5.7. In the proof of weak locality of invariant queries presented in this
chapter, we only dealt with nonoverlapping neighborhoods. To deal with the case of
overlapping Bd(a) and Bd(b), prove the following.

Let d' = 5d + 1, and let a ~;:, b. Then there exists a set X containing {a. b} and
an automorphism g on N;}l(X) such that g(a) =b.

Exercise 5.8. Prove that every unary query in (FO+ <)inv is Gaifman-local.
The main ingredients have already been presented in this chapter, but for thP

case of nonoverlapping neighborhoods. To deal with the case of overlapping neigh
borhoods Nd(a) and Nd(b), defined', g, and X as in Exercise 5.7.

Now note that each sphere S,.(X) is a union of g-orbits; that is, sets of the form
{gi(v) I i E Z}. For each orbit 0, we fix a node co and define a linear ordering :S;o
on 0 by co :S;o g(co) :S;o g2(co) :S;o Let :S;m be the image of :S;o under g"'.

The definition of ::=a and :S;b is almost the same as the definition we used in the
proof of Proposition 5.9. We start with a fixed order on orbits that respects distance
from X. It generates a preorder on Bd(X), which we refine to two different orders
in the following way. On So(X), we let ::=a be :S;o and :S;b be :S;1= g(:S;o). Then, for
suitably defined J and L (cf. the proof of Proposition 5.9), we do the following. Let
J = {jJ, ... ,jrn},jl < ... < Jm· For all spheres Sr(X),r < .h, the order on each
orbit is :S;o, but on SJI (X) we use :S;t instead. We continue to use :S;1 until Sh--1 (X),
and on Si2 (X) we switch to :S;2, and so on. For =S;b, we do the same, except that we
use the set L instead. We choose J and L so that I J 1=1 L I +1, which means that
on Sd(X), both ::=a and :S;b coincide.

The goal of the exercise is then to turn this sketch (together with the proof of
Proposition 5.9) into a proof of locality of unary queries in (FO+ <)inv·

Exercise 5.9. The goal of this exercise is to complete the proof of Theorem 5.8.
Using Exercise 5.8, show that every m-ary query in (FO+ <)inv, for m > 1, is
Gaifman-local.

Exercise 5.10. Calculate the locality rank of an order-invariant query produced in
the proof of Theorem 5.8. You will probably have to use Exercise 3.10.

5.5 Exercisf~s 85

Exercise 5.11. We know that FO ~ (FO+ <)inv· What about (FO + Succ)inv'?
Clearly

FO <;:: (FO + Succ)inv <;:: (FO+ <)inv,

and at least one containment must be proper. Find the exact relationship between
these three classes of queries.

Exercise 5.12; Consider again the vocabulary a<.+ and a class C<.+ of IT<.+
structures where < is interpreted as a linear ordering, and + as the addition corre
sponding to <. Prove that every query in (FO + C< ,+)inv is local.

6

Complexity of First-Order Logic

The goal of this chapter is to study the complexity of queries expressible
in FO. We start with the general definition of different ways of measuring
the complexity of a logic over finite structures: these are data, expression, and
combined complexity. We then connect FO with Boolean circuits and establish
some bounds on the data complexity. We also consider the issue of uniformity
for a circuit model, and study it via logical definability. We then move to
the combined complexity of FO, and show that it is much higher than the
data complexity. Finally, we investigate an important subclass of FO queries
- conjunctive queries - which play a central role in database theory.

6.1 Data, Expression, and Combined Complexity

Let us first consider the complexity of the model-checking problem: that is,
given a sentence P in a logic C and a structure ~' does ~ satisfy P? There
are two parameters of this question: the sentence l]), and the structure ~
Depending on which of them are considered parameters of the problem, and
which are fixed, we get three different definitions of complexity for a logic.

Complexity theory defines its main concepts via acceptance of string lan
guages by computational devices such as Turing machines. To talk about
complexity of logics on finite structures, we need to encode finite structures
and logical formulae as strings. For formulae, we shall assume some natural
encoding: for example, enc(if?), the encoding of a formula if?, could be its syn
tactic tree (represented as a string). For the notion of data complexity, defined
below, the choice of a particular encoding of formulae does not matter.

There are several different ways to encode structures. The one we use here
is the one most often used, but others are possible, and sometimes provide
additional useful information about the running time of query-evaluation al
gorithms.

Suppose we have a structure~ E STRUCT[a]. Let A= { a 1 , ... , an}· For
encoding a structure, we always assume an ordering on the universe. In some

88 6 Complexity of First-Order Logic

structures, the order relation is a part of the vocabulary; in others, it is not,
and then we arbitrarily choose one. The order in this case will have no effect
on the result of queries, but we need it to represent the encoding of a structure
on the tape of a Turing machine, to be able to talk about computability and
complexity of queries.

Thus, we choose an order on the universe, say, a 1 < a2 < ... < a,. Each
k-ary relation R'<l will be encoded by an n'"-bit string enc(R'<l) as follows.
Consider an enumeration of all k-tuples over A, in the lexicographic order
(i.e., (a1, ... , al), (a1, ... , a1, a2), ... , (an, ... , ar, an-1), (a~~., ... , an)). Let a.i
be the jth tuple in this enumeration. Then the jth bit of enc(R'<l) is 1 if
aj E R'<l, and 0 if aj rf_ R'<l. We shall assume without any loss of generality
that u contains only relation symbols, since a constant can be encoded as a
unary relation containing one element.

If u = { R 1 , ... , Rp}, then the basic encoding of a structure is the con
catenation of the en co dings of relations: enc(R~) · · · enc(R~). In some com
putational models (e.g., circuits), the length of the input is a parameter of
the model and thus I A I can easily be calculated from the basic encoding; in
others (e.g., Turing machines), I A I must be known by the device in order to
use the encoding of a structure. For that purpose, we define an enc(~) which
is simply the concatenation of on 1 and all the enc(R~) 's:

enc(~) = on1·enc(R~)···enc(R~). (6.1)

The length of this string, denoted by II~ II, is

1'

II~ II = (n + 1) + L narity(R;). (6.2)
'i=l

Definition 6.1. Let K be a complexity class, and£ a logic. We say that

• the data complexity of£ is K if for every sentence if> of£, the language

{ enc(~) I ~ f= if>}

belongs to K;

• the expression complexity of £ is K if for· ever·y finite structure ~. the
language

{ enc(if>) I~ f= if>}

belongs to K; and

• the combined complexity of£ is K if the language

{(enc(~), enc(if>)) I~ f= if>}

belongs to K.

6.2 Circuits and FO Queries 89

• Furthermore, we say that the combined complexity of L is hard for JC (or
JC-har·d) if the language {(enc(21), enc(<I>)) 121 f= <I>} is a /C-hard problem.
The data complexity ·is JC-har·d if for some <I>, { enc(21) I 21 f= <I>} is a hard
problem for JC, and the expr·ession complexity is /C-hard if for· some 21,
{ enc(<I>) I 21 f= <I>} is /C-hard.

• A problem that is both in JC and /C-hard is complete for JC, or JC-complete.
Thus, we can talk about data/expression/combined complexity being JC
complete.

Given our standard choice of encoding, we shall sometimes omit the nota
tion enc(-), instead writing {211 21 f= <I>} E JC, etc.

The notion of data complexity is most often used in the database context:
the structure 21 corresponds to a large relational database, and the much
smaller sentence <I> is a query that has to be evaluated against 21; hence <I> is
ignored in this definition. The notions of expression and combined complexity
are often used in verification and model-checking, where a complex specifica
tion needs to be evaluated on a description of a finite state machine; in this
case the specification <I> may actually be more complex than the structure
21. We shall also see that for most logics of interest, all the hardness results
for the combined complexity will be shown on very simple structures, thereby
giving us matching bounds for the combined and expression complexity. Thus,
we shall concentrate on the data and combined complexity.

We defined the notion of complexity for sentences only. The notion of data
complexity has a natural extension to formulae with free variables defining
non-Boolean queries. Suppose an m-ary query Q is definable by a formula
<p(:r: 1 , ... , xm)· Then the data complexity of Q is the complexity of the lan
guage {(enc(21),enc({a})) I a E Q(21)}. This is the same as the data com
plexity of the sentence (:J!x S(x)) 1\ (Vx (S(x) -+ <p(x))), where Sis a new
m-ary relation symbol not in a (we assume that the logic L is closed under the
Boolean connectives and first-order quantification). Recall that the quantifier
:J!x means "there exists a unique x". Thus, as long as L has the right closure
properties, we can only consider data complexity with respect to sentences.

6.2 Circuits and FO Queries

In this section we show how to code FO sentences over finite structures by
Boolean circuits. This coding will give us bounds for both the data and com
bined complexity of FO.

Definition 6.2. A Boolean circuit with n inputs :r1 , ... , Xn is a tuple

C = (V,E,.X,o),

where

90 6 Complexity of First-Order Logic

1. (V, E) is a dir·ected acyclic graph with the set of nodes V (which we call

gates) and the set of edges E.

2. ,\ is a fnnction from V to { :1:1, ... , .Tn} U { V, 1\, '} .mch that:

• .A(v) E { :r1, ... , :Tn} implies that v has in-degree 0;

• .A(v) = ' implies that v has in-degree 1.

3. o E V.

The in-degr·ee of a node is called its fan-in. The size of C is the number· of

nodes in V; the depth of C is the length of the longest path fmm a node of

in-degree 0 to o.

A circuit C computes a Boolean function with n inputs .r 1 ..••• , .1:, as fol

lows. Suppose we are given values of .r 1, ... ,:r11 • Initially, Wf' compute the

values associated with each node of in-degree 0: for a node labeled .r;, it is

the value of x;; for a node labeled V it is false; and for a noel<> labelf'cl 1\ it is

trne. Next, we compute the value of each node by induction: if we havf~ a node

v with incoming edges from v 1 , •••• vz, and we know the vahws of a 1 •••• , a,
associated with v 1 , •••• vz, then the value a associated with vis:

• a 1 V ... Va1 if .A(v) = V;

• a 1 1\ ... 1\ uz if .A(v) = /\;

• -,a 1 if ,\ (v) = ' (in this case Wf~ know that I = 1).

The output of the circuit is the value assigned to tlw nod(~ o. An example

of a circuit computing the Boolean function (.r 1 1\ '.r2 1\ .r:1) V ' (:r:1 1\ '.r 1) is
shown in Fig. 6.1; the output node is depicted as a doublP cirde.

Note that a circuit with no inputs is possible, and its in-degn~e zero g;ates

are labeled V or /\. Such a circuit always outputs a mnstant (i.e., tr·ne or

false).
We next define families of circuits and languages in { CL 1} * they ace<' pt.

Definition 6.3. A family of cirraits is a sequence C = (C,), 20 wher-e each

Cn ·is a cir·cuit with n inputs. It accepts the langMge L(C) c;; {0, l }* defined

as follows. Let s be a str-ing of length n. It can be v·iewed as a Boolean vector·

X8 such that the i th component of :Cs is the i th symbol in ,, . Then s E /, (C)

iff Cn outputs 1 on :Cs.
A family of c-ir·cuits C is sa·id to be of polynomial .size if ther-e is a polyno

mial p : N __, N snch that the size of each Cn is at most p(n). For a function

f : N __, N, we say that C is of depth f(n) if the depth of C, is at most f(n).

We say that C is of constant depth ·if there 'is d > 0 s·nch tlwt fri1' all n, the

depth of Cn is at most d.
The cla8s of languages accepted by polynomial-size con8tant-depth families

of cir-cu-its is called nonuniform AC11 •

6.2 Circuits and FO Queries 91

Fig. 6.1. Boolean circuit computing (x1 1\ •X2 1\ X3) V •(x3 1\ •X4)

For example, the language that consists of strings containing at least two
ones is in nonuniform AC0 : each circuit Cn, n > 1, has /\-gates for every pair
of inputs Xi and Xj, and then the outputs of those /\-gates form the input for
one V-gate.

A class of structures C ~ STRUCT[a] is in nonuniform AC0 if so is the
language { enc(2l) I 2l E C}. An example of a class of structures that is not
FO-definable, but belongs to nonuniform AC0, is the class EVEN of structures
of the empty vocabulary: that is, {(A, 0) I I A I mod 2 = 0}. The coding of
such a structure with I A I= n is simply onl; hence ck always returns true for
odd k (as it corresponds to structures of even cardinality), and false for even
k.

Next, we extend FO as follows. Let P be a collection, finite or infinite, of
numerical predicates; that is, subsets of Nk. For example, they may include <,
+considered as a ternary predicate {(i,j,l) I i + j = l}, etc. For P including
the linear order, we define FO(P) as an extension of FO with atomic formulae
of the form P(x1 , ... ,xk), for a k-ary P E P. The semantics is defined as
follows. Suppose 2l is a a-structure, and its universe A is ordered by < as
ao < ... < an-I· Then 2l f= P(ai1 , ••• , aik) iff the tuple of numbers (i1 , ... , ik)
belongs to P.

For example, let P2 C N consist of the even numbers. Then the query
EVEN is expressed as an FO({ <, P2}) sentence as follows:

\fx (Vy (y S:: x) ---> P2(x)).

We are now interested in the class FO(AII) where All stands for the family
of all numerical predicates; that is, all subsets of N, N2 , N3 , etc. We now show
the connection between FO(AII) and nonuniform AC0 •

92 6 Complexity of First-Order Logic

Theorem 6.4. Let C be a class of structures definable by an FO(AII) sentence.

Then C is in nommifomt AC 0 . That is,

FO(AII) C nonuniform AC 0 .

Furthemwre, for every FO(AII) sentence <P, then~ is a fam.ily of cir·c·nits of

depth O(II<PII) accepting {2ll2l f= <!J}.

Proof. We describe Pach circuit C, in the family C accepting { 2l I 2l f= P}. If
k is not of the form 112lll for some structure 2l, then C, always r<'t.urns false.
Assume k is given by (6.2); that is, k is the size of tlH' encodings of structun~s 2l
with an n-element universe. \Ve then convert cp into a quantifier-free sent.c!l{:e

<P' over the vocabulary a, predicate symbols in AIL and constants 0, n - 1
as follows. Inductively, we replace each quantifier ::l.I:yJ(.r. ,lj) or \/.ryJ(:r. if) wit b

n-1 n~l v y(c. m and 1\ y(r:. if).
r=ll ('=ll

respectively. Notice that tlw number of connectives V, 1\. -.. V ./\ in 1'' is ex
actly tlw same as the number of conrwctives V. 1\,-. and qnantifiers 3.\/ in
<P.

We now build the circuit to evaluate <P'. l\ot<~ that <P' is a BoolP<W combi
nation (using connectives V. /\, -.. V, /\)of formulae of the fmm l'(i 1 ••••• ik).
where P is a numerical predicate, and R('i 1 •... , im). where R is an m-ar~·
symbol in a. The former is replac<~d by its truth value (which is either a V m
a 1\ gate with zero inputs), and the latter corresponds to one hit in enc(2l):
that is, the input of the circuit.. Tlw depth of the n~sulting; circ·uit. is hounded
by the number of connectives V. /\, -., V, 1\ in <P', and hence dqwnds only 011

<P, and not on k. The size of the circuit C"' is dearly polynomial in k. which
completes the proof. D

Corollary 6.5. The data cornple1:ity of FO(AII) is nonunifrmn AC 11 •

v\'e conclude this section with another bound 011 tlw ('Olllplexity of FO
queries. This time we determine the running time of such a query in t<Trns of
the sizes of encodings of a query and a structure.

Given an FO formula yJ, its width is thP maximum number of free \'ariables
in a subformula of :p.

Proposition 6.6. Let <P be an FO sentence in vocalmlar-y a, rmd let 2l E

STRUCT[a]. If the width of<P is!.:, then checking whether- 2l f= <P r:an he done

in time
0(11 cp II X ll2tll/,).

Pmof. Assume, without loss of generality, t.hat <P uses /\. -,, and 3 but not V

and \/. Let :p1 • ...• cp 111 enumerate all the subforrnulae of <P; W<' know that tlwy

6.3 Expressive Power with Arbitrary Predicates 93

contain at most k free variables. We now inductively construct <p;(2l). If <p; has
k; free variables, then <p;(2l) ~ Ak'. It will be represented by a Boolean vector
oflength nk', where n =I AI, in exactly the same way as we code relations in
21..

If <p; is an atomic formula R(x1 , ... , xkJ, then <p;(2l) is simply the encoding
of R in enc(2l). If <p; is --,<p1(2l), we simply flip all the bits in the representation
of <p1(2t). If <p; is <pj 1\ <p1, there are two cases. If the free variables of <pj and
<p1 are the same, then <p;(2l) is obtained as the bit-wise conjunction of <pj(2l)
and <p1(2l). Otherwise, <p;(x, if, Z) = <pJ(x, if) 1\ <p1(x, z), and <p;(2l) is the join
of <p1(2t) and <p1(2l), obtained by finding, for all tuples over a E AIXI, tuples
bE AIYI and c E AIEl such that the bits corresponding to (a, b) in <pj (21.) and to

(a, C) in <p1(2l) are set to 1, and then setting the bit corresponding to (a, b, C)
in <p;(2l) to 1. Finally, if <p;(x) = 3z<p1(z, x), we simply go over <p1(2l), and if
the bit corresponding to (a, a) is set to 1, then we set the bit corresponding
to a in <p; (21.) to 1.

The reader can easily check that the above algorithm can be implemented
in time 0(11 cf> II x ll2tllk), since none of the formulae <p; has more than k free
variables. 0

6.3 Expressive Power with Arbitrary Predicates

In the previous section, we introduced a powerful extension of FO - the logic
FO(AII). Since this logic can use arbitrary predicates on the natural numbers,
it can express noncomputable queries: for example, we can test if the size of
the universe of 2l is a number n which codes a pair (k, m) such that the kth
Turing machine halts on the mth input (assuming some standard enumera
tion of Thring machines and their inputs). Nevertheless, we can prove some
strong bounds on the expressiveness of FO(AII): although we saw that EVEN

is FO(AII)-expressible, it turns out that the closely related query, PARITY, is
not.

Recall that PARITYu is a query on structures whose vocabulary CJ contains
one unary relation symbol U. Then

PARITYu(2l)

We shall omit the subscript U if it is understood from the context.
To show that PARITY is not FO(AII)-expressible, we consider the Boolean

function parity with n arguments (for each n) defined as follows:

{ 1 if l{ilx;=1}1 mod2=0,

0 otherwise.

We shall need the following deep result in circuit complexity.

94 6 Complexity of First-Order Logic

Theorem 6. 7 (Furst-Saxe-Sipser, Ajtai). Ther·e is no constant-depth
polynomial-size family of cir-cnits that computes par-ity. D

Corollary 6.8. PARITY is not e.rpr·essible in FO(AII).

Pmof. Assume, to the contrary, that PARITY is expressible. By Theorun 6.4.
there is a polynomial-size constant-depth circuit family C that comput<~s
PARITY on erwodings of structures. Such an encoding of a structure 2l with
I A I= n is 0"1 · s, where s is the string of length 11 whose ith dement is 1 iff
the ith element of A is in lJ'21.

We now use C to construct a new family of circuits <IE'fining parity. Th<>
circuit with n inputs :r 1, ••• , J'n works as follows. For each J:,, it adds au in
degree 0 gate g; labeled V, and for J:11 it also adds an in-dq;rf'e 0 gate q;,
labeled /\. Then it puts C2n+l, tlw circuit with 2n + 1 inputs from C on tlw
outputs of g1 , ... , 9n, g;, followed by :r 1· ... , ;E 11 , as shown below:

Clearly this circuit computes par-ity(:r1 , ... , .I'n), and by Tlworem 6.:1 the re
sulting family of circuits is of polynomial size and hounded depth. This con
tradicts Theorem 6. 7. []

As another example of inexpressibility in FO(All), we show the following.

Corollary 6.9. Gmph connectivity is not expr-essible in FO(AII).

Proof. We shall follow the idea of the proof of Corollary 3.1!); however, that
proof used inexpressibility of the query EVEN, which of com~<' is definable in
FO(AII). We modify the proof to make use of Corollary 6.8 instead.

First, we show that for a graph G = (V. E), where Eisa successor rdatim1
on a set U <;;;; V of nodes, FO(AII) cannot t<~st if th<~ cardinality of U is
even. Indeed, suppose to the contrary that it can; then this can h(' donC'
in nonuniform AC 0 , by a family of circuits C. \V<~ now show how to use C
to test PARITY. Suppose an encoding on1 ·.sofa unary relation U is giwn,
where U = {i 1, ... , id <;;;; {1, ... , n}. We transform U into a succPssor relation
Su = {(it.i2), ... ,(ik-J,ik)}. W<~ leave it to the reader to show how to nse
bounded-depth circuits to transform 0 11 l · s into 0" l · .s' where s' of length n 2

codes Su. Then using tlw circuit C,2 +n+ 1 from C on 0"1 · .s' we can test if U
is even.

Finally, using inexpressibility of parity of a successor rdation, W(' show
inexpressibility of connectivity in FO(AII) using the same proof as in Corollary
3.19. D

6.4 Uniformity and AC0 95

6.4 Uniformity and AC0

We have noticed that nonuniform AC0 is not truly a complexity class: in fact,
the function that computes the circuit Cn from n need not even be recursive.
It is customary to impose some uniformity conditions that postulate how Cn is
obtained. While it is possible to formulate these conditions purely in terms of
circuits, we prefer to follow the logic connection, and instead put restrictions
on the choice of available predicates in FO(AII).

We now associate a finite n-element universe of a structure with the set
{0, ... , n-1 }, and consider an extension of FO over a-structures by adding two
ternary predicates, + and x, which are graphs of addition and multiplication.
That is,

+={(i,j,k)li+j=k} and X={(i,j,k)li·j=k}.

Note that we have to use + and x as ternary relations rather than binary
functions, to ensure that the result of addition or multiplication is always in
the universe of the structure. The resulting logic is denoted by FO(+, x).

Definition 6.10. The class of structures definable inFO(+, X) is called uni
form AC0 .

We shall normally omit the word uniform; hence, by referring to just AC0 ,

we mean uniform AC0 . Note that many examples of AC0 queries seen so far
only use the standard arithmetic on the natural numbers; for example, EVEN

is in AC0 .

It turns out that AC0 is quite powerful and can define several interesting
numerical relations on the domain { 0, ... , n- 1}. One of them, which we shall
see quite often, is the bit relation:

BIT(x,y) is true the yth bit of the binary expansion of x is 1.

For example, the binary expansion of x = 18 is 10010, and hence BIT(x, y)
is true if y is 1 or 4, and BIT(x, y) is false if y is 0, 2, or 3.

We now start building the family of functions definable in FO(+, x).
Whenever we say that a k-ary function is definable, we actually mean that
the graph of this function, a k + 1-ary relation, is definable. However, to
make formulae more readable, we often use functions instead of their graphs.
First, we note that the linear order is definable by x ~ y {:::} ::lz +(x, z, y) (i.e.,
:=iz (x+z = y)), and thus the minimum element 0, and the maximum element,
denoted by max, are definable.

Lemma 6.11. The integer division lxfyJ and (x mod y) are definable in
FO(+, x).

96 6 Complexity of First-Order Logic

Proof. If y cf. 0, then

11 = l :r / y J ¢;> ((u · /J) :::; :r 1\ (3u < y (.r = u · y + 1 ·))) •

Furthermore,

71=(:rmody) ¢;> 3t• ((u= l.rjyj)/\(u+y·t'=J·)). D

In particular, WP can express divisibility :r I y as (.r mod y) = 0.

1\;"ow our goal is to show the following.

Theorem 6.12. BlT is expressible 1:n FO(+. x).

Proof. \Ve shall prove this in sewral stages. First, note that the following tests
if :r is a power of 2:

'V 11. u ((.r: = IL · u) 1\ (1' cf. 1)) ---+ (3z (n = z + ;:;)) .

This is because pmu2 (:r) asserts that 2 is the only primC' factor of .r. Next. W<'
define the pn,dicate

BIT'(:r, y) (l.rjyj mod 2) = J.

Note that if y = 2°, then BIT' (:r. y) is true iff the .-::th bit of .r is l. Assunl<'
that we can d(~fine the predicate y = 22 • Then

IHT(:r. y) 3v. (v = 2'1 1\ BIT'(.r.v)).

Thus, it remains to show how to express the binary predicate .r· = 2.'1. \VP do
so by coding an iterative computation of 2Y. Tlw codes of such computations
will he numbers, and as we shall see, those nmnbers can !)(' as large as f 1 .

Since we only quantify over {0, ... , n -- I}. wlwre n is 1h<' size of tiH' finit<'
structure, we show IH,]mv how to express the prcdicatP

P2(:r. y) = :r = 2.'1 1\ :r1 :::; 11- L.

With P2 , we can define .r: = 2!1 as follows:

\Ve now show how to express P2(.r,y). Let y = L~~~; y, · 2', so that .If is
:th-tYh-2···YtYo in binary (we assume that the most significant bit .1/k--t is
L). Then 2!1 = Il~;r: 2ll• 2 '. \Ve now define the following recurrences for i < k:

Po= I

Pi+1 = 2p;

!1() = ()
a,+ t = a; + .IJ; · 2'

ho cc=]

bit-t= b, · 2v,·'2'

6.4 Uniformity and AC0 97

Thus, p; = 2;, ai is the number whose binary representation is Yi--1 ... Yo,
and b, = 2n,. We define sequences p = (po, ... ,pk), a = (ao, ... , ak), b =
(bo, ... , bk)·

Next, we explain how to code these sequences. Notice that in all three
of them, the ith element needs at most 2i bits to be represented in binary.
Suppose we have an arbitrary sequence c = (c0, ... , ck), where each c; has
at most 2; bits in binary. Such a sequence will be coded by a number c such
that its 2; bits from 2i to 2i+l - 1 form the binary representation of c;. These
codes, when applied top, a, and b, result in numbers p, a, and b, respectively.
These numbers turn out to be relatively small. Since the length of the binary
representation of y is k, we know that y 2: 2k~ 1 . If x = 2Y, then x 2: 22k _,

and x4 2: 22"+'. The binary representation of p, a, and b has at most 2k+ 1 - 1
bits, and hence the maximum value of those codes is 22'+' ~ 1 - 1, which is
bounded above by x 4 • Hence, for defining P2 , codes of all the sequences will
be bounded by the size of the universe.

How can one extract numbers ci from the code c of c? Notice that

is Ci. In general, we define extract (x, u) l x / u J mod u, and thus c;
2' . 2' 2 2'+ 1 2' extract(c, 2) . Notice that since (2) = 2 , for u = 2 we have c;

extract(c,u) and ci+ 1 = extract(c,u2).

Assume now that we have an extra predicate ppow2 (u) which holds iff u
is of the form 22' . With this, we express P2 (x, y) by stating the existence of
a, b, p (coding a, b, f)) such that:

• extract(p, 2) = 1, extract(a, 2) = 0, extract(b, 2) = 1 (the initial concli
tions of the recurrences hold).

• If u < x and ppow2 (u), then extract(p, u2) = 2 · extract(p, u) (the recur
rence for p is correct).

• If u < x and ppow2 (u), then either

1. extract(a, u 2) = extract(a, u) and extract(b, u 2) = extract(b, u), or
2. extract(a, u2) = extract(a, u) + extract(p, u) and extract(b, u 2) = v ·

extract(b, u).

That is, the recurrences for a and b are coded correctly: the first case
corresponds to Yi = 0, and hence a;+ 1 = ai and bi+ 1 = bi; the second case
corresponds to y; = 1, and henn~ a;+ 1 = ai +Pi and bi+ 1 = b; · 22' = b;. · u.

• There is u such that ppow2 (u) holds, extract(a, u) y, and
extract(b, u) =:c. That is, the sequences show that 2Y = x.

Clearly, the above can be expressed as an FO formula.

98 6 Complexity of First-Order Logic

All that remains is to show how to express the predicate ppow~ (v). This
in turn is done in two steps. First, we define a predicate h (1') that holds iff
v is of the form I:;'= 1 22 ' (i.e., in its binary representation, onf's appear only
in positions corresponding to powers of 2). With this predicatP. we define

Note that if ppow~(v) holds, one can find w with BIT' (w, u) such that ll' ::::; u 2 ;

given that allnumlwrs for which ppow2 (·) is checked are below ,yn=l. tlw
::Jw is guaranteed to range over the finite universe.

To express P1 , we need an auxiliary formula pow.1 (v) '=]1011''2 (u) 1\
(u mod 3 = 1) testing if 1l is a power of 4. Now P 1(u.) is tlw conjunction
of ·BIT' (11, 1) 1\ BIT' (u, 2) and the following formula:

\fv (2 < u::::; 11--. (BIT'(n.v) +--+ (pou•4 (v)l\3w [(u··u.· = 1')/\BIT'(u.w)]))).

This formula states that 1-bits in the binary representation uf u are 2 and
others given by the sequence c 1 = 2, e~ = 1, ~'i+l = c}; that is, bits in
positions of the form 22 '. This defines ? 1 , and thus compld,es the proof of thf'
theorem. D

The BIT pn~dicaw turns out to be quite powerful. First note the follmving.

Lemma 6.13. Addition is definable inFO(<. BIT).

Proof. We use the standard carry-lookahead algorithm. Given :r. y, and 11, wP
define carry(:c, y. u) to be true if, while adding 1·, :y given as binary numiH~rs.
the carry bit with number u is 1:

::Jv ((v<u.ABIT(.r.v)ABIT(:y,v)))
1\ \fw ((w < u 1\ w > v)--. (BIT(;r. w) V BIT(y.1c))) ·

Then :c + y = ;:; iff

\fv (mT(z.u) +--+ ((BIT(T,u)]lBIT(y,u))8'<"arry(.r.y.u))).

where cp E8 7./J is an abbreviation for cp +--+ •I}J. D

A more complicated result (see Exercise 6.5) states tlw following.

Lemma 6.14. Mv,ltiplication is definable inFO(<. I3JT).

We thus obtain:

Corollary 6.15. FO(<,BIT) = FO(+. x).

Hence, uniform AC0 can be characterized as tlw dass of structures dPfin
able inFO(<, BIT).

6.6 Parametric Complexity and Locality 99

6.5 Combined Complexity of FO

We have seen that the data complexity of FO(AII) is nonuniform AC0 , and
the data complexity of FO is AC0 . What about the combined and expression
complexity of FO? It turns out that they belong to a much larger class than
AC0 .

Theorem 6.16. The combined complexity of FO is PSPACE-complete.

Proof. The membership in PSPACE follows immediately from the evaluation
method used in the proof of Proposition 6.6. To show hardness, recall the
problem QBF, satisfiability of quantified Boolean formulae.

Problem: QBF
Input: A formula tP = QI XI ... Qnxn a(XI, ... , Xn), where:

each Q; is either 3 or V, and
a is a propositional formula in XI, ... , Xn·

Question: If all x;'s range over {true,false}, is tfJ true?

It is known that QBF is PSPACE-hard (see the bibliographic notes at the
end of the chapter). We now prove PSPACE-hardness of FO by reduction from
QBF.

Given a formula tfJ = QIXI ... QnXn a(xi, ... , Xn), construct a structure
~ whose vocabulary includes one unary relation U as follows: A = {0, 1},
and U21 = { 1}. Then modify a by changing each occurrence of x; to U (x;),
and each occurrence of •X; to -.U(x;). Let au be the resulting formula. For
example, if a(xi, x2, x3) = (xu\x2) V (•XI /\x3), then au is (U(xi) !\ U(x2)) V
(•U(xi) !\ U(x3)). Then

<P is true

which proves PSPACE-hardness. D

Since the structure ~ constructed in the proof of Theorem 6.16 is fixed,
we obtain:

Corollary 6.17. The expression complexity of FO is PSPACE-complete.

For most of the logics we study, the expression and combined complexity
coincide; however, this need not be the case in general.

6.6 Parametric Complexity and Locality

Proposition 6.6 says that checking whether ~ F tfJ can be done in time
0(11 <P II · II~ Ilk), where k is the width of tfJ: the maximum number of free
variables of a subformula of tfJ. In particular, this gives a polynomial time

100 6 Complexity of First-Order Logic

algorithm for evaluating FO queries on finite structures, for a fixed sentence
P. Although polynomial time is good, in many cases it is not sufficient: for
example, in the database context where ll2t II is very large, even for small k

the running time O(ll2tlll.:) may be prohibitively expensive (in fact, the goal
of most join algorithms in database systems is to reduce the running time
from the impractical 0(n 2) to 0(n log n) - at least if the result of the join
is not too large - and running time of the order n 10 is completely out of the
question).

The question is, then, whether sometimes (or always) one can find bd
ter algorithms for evaluating FO queries on finite structures. In particu
lar, it would be ideal if one could always guarantee time linear in II 2l II·
Since the combined complexity of FO queries is PsPACE-complete, something
must be exponential, so in that case we would expect the complexity to be
O(g(II<PII)·II2tll), where g: N---> N is some function.

This is the setting of parameter·ized complexity, where the standard input of
a problem is split into the input part and the parameter part, and one looks
for fixed parameter tractable problems that admit algorithms with running
time O(g(n) · nP) for a fixed p; here n is the size of the parameter, and n is the
size of the input. It is known that even some NP-hard problems become fixed
parameter tractable if the parameters are chosen correctly. For example, SET
COVER is the problem whose input is a set V, a family :F of its subsets, and
a number k, and the output is "yes" if there is a subset of V of size at most
k that intersects every member of :F. This problem is NP-complete, but if we
choose 1r = k + maxFEF IF I to be the parameter, it becomes solvable in time
O(w1r+l ·IFI), thus becoming linear in what is likely the largest part of tlw
input.

We now formalize the concept of fixed-parameter tractability.

Definition 6.18. Let £ be a logic, and C a class of structures. The model
checking problem for £ on C is the problem to check, for· a given structure
2l E C and an £-sentence P, whether 2l f= P.

We say that the model-checking problem for £ on C is fixed-parameter
tractable, if there is a constant p and a function g : N ---> N such that for
every 2(E C and every £-sentence P, checking whether 2l f= P can be done in
time

We say that the model-checking problem for £ on C is fixed-parameter
linear, if p = 1; that is, if there is a function g : N ---> N such that for· every
2(E C and every £-sentence P, checking whether 2l f= P can be done in time

g(II<PII)·II2tll·

We now prove that on structures of bounded degree, model-checking for
FO is fixed-parameter linear. The proof is based on Hanf-locality of FO.

6.6 Parametric Complexity and Locality 101

Theorem 6.19. Fix l > 0. Then the model-checking problem for FO on

STRUCTz [cr] is fixed-parameter linear.

Pr-oof. We use threshold equivalence and Theorem 4.24. Given l and <!>, we can
find numbers d and m such that for every~' 23 E STRUCTt[cr], it is the case
that ~!=;~.'~,23 implies that ~ and 23 agree on <!>.

We know that for structures of fixed degree l, the upper bound on the num
ber of isomorphism types of radius d neighborhoods of a point is determined
by d, l, and cr. We assume that T1 , ... , TM enumerate isomorphism types of all
the structures of the form N,T(a) for~ E STRUCTz[cr].

Let ni(~) =I {a I Nl(a) of type Ti} I· With each structure ~' we now
associate an M-tuple i(~) = (t 1 , ... , tM) such that

if n.;(~) <::: m,

otherwise.

LetT be the set of all M-tuples whose elements come from {1, ... , m} U { * }.
Note that the number of such tuples is (rn + 1) M, which depends only on l
and <!>, and that each t(~) is a member ofT.

From Theorem 4.24, i(~) = i(23) implies that ~and 23 agree on<!>. Let To
be the set oft E T such that for some structure ~ E STRUCTz[cr], we have
~ I= <!> and i(~) = f. We leave it as an exercise for the reader (see Exercise
6. 7) to show that T0 is computable.

The idea of the algorithm then is to compute, for a given structure ~'
the tuple i(~) in linear time. Once this is done, we check if t E T0 . The
computation of T0 depends entirely on <!> and l, but not on ~; hence the
resulting algorithm has linear running time.

For simplicity, we present the algorithm for computing t(~) for the case
when~ is an undirected graph; extension to the case of arbitrary~ is straight
forward. We compute, for each node 'l (assuming that nodes are numbered
0, ... , n ~ 1), T(i), the isomorphism type of its d-neighborhood. For this, we
first do a pass over the code of~' and construct an array that, for each node
i, has the list of all nodes j such that there is an edge (i, j). Note that the size
of any such list is at most l. Next, we construct the radius d neighborhood
of each node by looking up its neighbors, then the neighbors of its neighbors,
etc:., in the array constructed in the first step. After d iterations, we have
radius d neighborhood, whose size is bounded by a number that depends ou
the<!> and l but not on~. Now for each i, we find j <::: M such that T(i) = Ti;
since the enumeration T 1 , ... , TJ\f does not depend on ~' each such step takes
constant time. Finally, we do one extra pass over (T(i))i and computet(~).
Hence, i(~) is computed in linear time. As we already explained, to check
if ~ I= <!>, we check if t E T0 , which takes constant time. Hence, the entire
algorithm has linear running time. D

Can one prove a similar n~sult for FO queries on arbitrary structures?
The answer is most likely no, assuming some separation results in complexity

L02 6 Complexity of First-Order Logic

theory (see Exercise 6.9). In fact, these results shmv that even fixecl-paramf'ter
tractability is very unlih•ly for arbitrary structures.

Nevertheless, fixed-parameter tractability can he shown for sumC' interC'st
ing classes of structun~s.

Recall that a graph His a minor· of a graph C if H can lw obtained from a
subgraph of G by contracting edgC's. A dass C of graphs is called minor-closed
if for any G E C and ll a minor of G, W(' have HE C.

Theorem 6.20. If C is a minor·- closed class of gmphs which does not include
all the gmphs, then rn.odel-eheeking for FO on C i.s fi:red-pamrn.eter· tractable.

The proof of this (hard) theorem is not given here (see Exercise 6.10).

Corollary 6.21. Model-checking for- FO on the class of planar· gmphs ·is ji.ud
pamrneter tractable. D

6. 7 Conjunctive Queries

In this section we introduce a subclass of FO queries that plays a central
role in database theory. This is the class of conjnnr:tivc queries. These are
the queries most commonly asked in relational databases; in fact any SQL
SELECT-FROM-WHERE query that only uses conjunction of attribute equalitiC's
in the WHERE clause is such. Logically this class has a simpl<~ ('haracterization.

Definition 6.22. A first-or·der· fonnula :p(f) over· a relational vocalmlar-y IT

is called a conjunctive query if it is bnilt fmrn atomic formulae using only
conjunction 1\ and existential quantification 3.

By renaming variabl<~s and pushing existential quantifiers outside. we can
see that every conjunctive query can be expressed as

k

:p(.E) 3TJ 1\ o,(.f,l7). (G.3)
I= I

where each o; is either of the form R('a), where R E cr and 11 is a tupl<~ of
variables from :1, :/J, or n = v, where 11. u are variables from .f. FJ or constant
symbols.

We hav<~ seen an example of a conjunctive query in Chap. 1: to test if there
is a path of length k + 1 bt>tween x and .r' in a graph E, one can write

To see how conjunctive queries can lw evaluat<~d. we introduce the <'Oil

cept of a join of two relations. Suppose \Ve have a formula :p(.r 1 •••• .. r 1n) over
vocabulary cr. For each 2t E STRUCT[cr], this formula definC's an m-ary r<'

lation cp(2t) ={a I 2t f= :p(o)}. We can view :p(2t) as an m.-ary relation with

6.7 Conjunctive Queries 103

attributes x 1 , ... , Xm: that is, a set of finite mappings { x1, ... , :Em} ---+ A.
Viewing cp(2l) as a relation with columns and rows lets us name individual
columns.

Suppose now we have two relations over A: an m-ary relation S and an
l-ary relation R, such that R is viewed as a set of mappings t : X ---+ A and S
is view(~d as a set of mappings t : Y ---+ A. Then the join of R and S is defined

as
R~S = {t:XUY---.A I tlxER,tlyES}. (6.4)

Suppose that R is cp(2l) where cp has free variables (X', z), and S is v;(Ql)
where ·1/J has free variables (if, z). How can one construct R ~ S? According

to (6.4), it consists of tuples (a, b, C) such that cp(a, C) and 7/J(b, C) hold. Thus,
R ~ s = [cp ;\ v;J(2l).

As another operation corresponding to conjunctive queries, consider again
a relation R viewed as a set of finite mappings t : X ---+ A, and let Y c::; X.
Then the pmjection of R on Y is defined as

Jry(R) = {t: y---+ A I ==Jt' E R: t'ly= t}. (6.5)

Again, if R is cp(2l), where cp has free variables (X', if), then Jrg(R) is simply
[==Jx cp(x, if)J(R).

Now suppose we have a conjunctive query

(6.6)

where each n;(17i) is an atomic formula S(ili) for someS E a, and 71;. is a list
of variables among x, if. Then for any structure 2l,

(6.7)

A slight extension of the correspondence between conjunctive queries and
the join and projection operations involves queries of the form

(6.8)

where f3 is a conjunction of formulae u 1 = u 2 , where u 1 and u 2 are variables
occurring among fi 1, ... , 1Ln.

Suppose we have a relation R, again viewed as a set of finite mappings
t : X ---+ A, and a set C of conditions x; = x.i, for x;, x .i E X. Then the
selection operation, ac(R), is defined as

{t:X---.A ItER, t(x1)=t(xj) forallxi=Xj EC}.

If R is cp(2l), then ac(R) is simply [cpA f3](R), where f3 is the conjunction of
all the conditions .r; = x.i that occur in C.

For f'J being as in (6.8), let Cf:J be the list of all equalities listed in ,6. Then,
using the selection operation, the most general form of a conjunctive query
above can be translated into

104 6 Complexity of First-Order Logic

(6.9)

Many common database queries are of the form (6.9): they compute the
join of two or more relations, select some tuples from them, and output
only certain elements of those tuples. These can be expressed as conjunctive
queries.

The data complexity of conjunctive queries is the same as for general FO
queries: uniform AC0 . For the combined and expression complexity, we can
lower the PsPACE bound of Theorem 6.16.

Theorem 6.23. The combined and expression complexity of conjunctive
queries are NP-complete (even for Boolean conjunctive queries).

Proof. It is easy to see that the combined complexity is NP: for the query
given by (6.3) and a tuple a, to check if 'P(a) holds, one has to guess a tuplP
band then check in polynomial time if/\; n;(a, b) holds.

For completeness, we use reduction from 3-colorability, defined
in Chap. 1 (and known to be ~P-complete). Define a structure
2l = ({0, 1, 2}, N), where N is the binary inequality relation: N =
{ (0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}. Suppose we are given a graph with
the set of nodes U = {a 1 , ... , an}, and a set of edges E c:;: U x U. We then
define the following Boolean conjunctive query:

1\ N (;r:;. J'.J).

(a;.a1)EE

(6.10)

Note that for a given graph (U, E), the query <P can be constructPd in ddPr
ministic logarithmic time.

For the query <P given by (6.10), 2l f= <P iff there is an assignment of
variables x;, 1 :::; i :::; n, to { 0, 1, 2} such that for every edge (o.;, a.i), the corn•
sponding values x; and J:.i are different. That is, 2l f= <P iff (U. E) is 3-colorablP,
which provides the desired reduction, and thus proves NP-completenPss for
the combined (and expression, since 2l is fixed) complexity of conjunctive
queries. D

As for the data complexity of conjunctive queries, so far we have seen no
results that would distinguish it from the data complexity of FO. We shall
now see one result that lowers the complexity of conjunctive query evaluation
rather significantly, under certain assumptions on the structurP of qtwriPs.
Unlike Theorem 6.19, this result will apply to arbitrary structures.

Recall that in general, an FO sentence <I> can be evaluated on a structure
2l in time 0(11 <I> II ·ll2tiiA:), where k is the width of <P. We shall now lower this
to 0(11 <I> II · ll2tll) for the class of acyclic conjunctive queries. That is, for a
certain class of queries, we shall prove that they are fixed-parameter linear Oil

the class of all finite structures. To define this class of queries, we need a few
preliminary definitions.

6. 7 Conjunctive Queries 105

Let H be a hypergraph: that is, a set U and a set E of hyper-edges, or subsets
of U. A tree decomposition of H is a tree T together with a set Bt <:;;; U for
each node t of T such that the following two conditions hold:

1. For every a E U, the set { t J a E Bt} is a subtree of T.

2. Every hyper-edge of His contained in one of the Bt'S.

A hypergraph H is acyclic if there exists a tree decomposition of H such that
each Bt, t E T, is a hyper-edge of H.

Definition 6.24. Given a conjunctive query r.p(Y) 3x (o:1 (ul) 1\ ... 1\

o:n(un)), its hypergraph 7-i(r.p) is defined as follows. Its set of nodes is the set
of all variables used in r.p, and its hyper-edges are precisely u1 , ... , Un.

We say that r.p is acyclic if the hypergraph H(r.p) is acyclic.

For example, let P = 3x3y3z R(x, y) 1\ R(y, z). Then 7-i(P) is a hyper
graph on {x,y,z} with edges {(x,y),(y,z)}. A tree decomposition of 7-i(P)
would have two nodes, say ii and t2 , with an edge from t1 to t 2 , and
Bt1 = {x,y},Bt2 = {y,z}. Hence, Pis acyclic.

As a different example, let P1 = ::3x3y::3z R(x, y) 1\ R(y, z) 1\ R(z, x). Then
7-i(P') is a hypergraph on {x, y, z} with edges { (x, y), (y, z), (z, x)}. Assume it
is acyclic. Then there is some tree decomposition of 7-i(P') in which the sets
Bt include {x,y},{y,z},{x,z}. By a straightforward inspection, there is no
way to assign these sets to nodes of a tree so that condition 1 of the definition
of tree decomposition would hold. Hence, cp' is not acyclic.

In general, for binary relations, hypergraph and graph acyclicity coincide.
To give an example involving hyper-edges, consider a query

l]t = ::3x::3y::3z::3n:3v (R(x, y, z) 1\ R(z, u, v) 1\ S(u, z) 1\ S(x, y) 1\ S(v, w)).

Its hypergraph has hyper-edges { x, y, z }, { z, u, v }, { u, z }, {x, y }, { v, w }. The
maximal edges of this hypergraph are shown in Fig. 6.2 (a). This hypergraph
is acyclic. Indeed, consider a tree with three nodes, t 1 , t 2 , t3 , and edges (t1 , t 2)

and (t1, t;{)· Define Bt1 as { z, u, v }, Bt2 as { x, y, z }, and Bt3 as { v, w} (see
Fig. 6.2 (b)). This defines an acyclic tree decomposition of H(w).

If, on the other hand, we consider a query

l]t' = 3x::3y3z::3u3v (R(x, y, z) 1\ R(z, u, v) 1\ R(x, v, w))

then one can easily check that 7-i(P') (shown in Fig. 6.2 (c)) is not acyclic.

We now show that acyclic conjunctive queries are fixed-parameter
tractable (in fact, fixed-parameter linear) over arbitrary structures. The result
below is given for Boolean conjunctive queries; for extension to queries with
free variables, see Exercise 6.13.

106 6 Complexity of First-Order Logic

(a)

t'2

{z.v.11}
t!

{ .r. y, .? }

(b)

f:l
{u.w}

Fig. 6.2. Cyclic and acyclic hypergraphs

(c)

Theorem 6.25. Let <P be a Boolean acyclic conjunctive qner·y over- CJ

structnres, and let l.2l E STRUCT[CJ]. Then ch;xking whether· l.2l f= <P can be
done in time O(II<PII · ll1.2tlll·

Proof. Let <l> be
II

<P = =:ixt ... :I:m /\ o;(i7,l.
i=l

where each a, (11;) is of the form S (fi; l for S E CJ, and i7; contains some
variables from .i. The case when some of the o; 's are variable equalities can
be shown by essentially the same argument, by adding one sekc:ticm over the
join of all a;(l.2l)'s.

We use a known result that if H is acyclic, then its 1 ree decomposition
satisfying the condition that each B1 is a hyper-edge of H can be computed in
linear time. Furthermore, one can construct this decomposition so that B,, 9'c
B 12 for any t 1 =f t2 . Hence, we assume that we have such a decomposition
(T, (Bt)tET) for H(<P), computed in time 0(11 <PIll· Let -< deno1e tlw partial
order ofT, with the root being the smallest node.

From the acydicity of H, it follows that there is a bijection between max
imal, with respect to <;;, sets FI1, and nodes t of T. FcJr <~ach i, let v, lw tlw
node t such that ·i7; is contained in B 1 . This node is unique: we look for tlw
maximal i11 that contains il,, and find the unique node t such that B1 = F7.~.

We now define
Rt = lXI ct;(l.2ll. (6.11)

1E[l.n]
Vi=1

Our goal is now to compute the join of all R1's, since (6.7) implies that

(6.12l

To show that (6.lll and (6.12) yield a linear time algorithm, we
need two complexity bounds on computing projections and joins: r.x(R)
can be computed in time 0(11 Rill, and R 1><1 8 can be computed in time
0(11 R II + 11811 + II R 1><1 S II l (se(~ Exercise 6.12).

6. 7 Conjunctive Queries 107

To see that each R 1 can be computed in linear time, let it be such that

?Li, = Bt (it exists since the query is acyclic). Then

Rt = a;, (ui,) ~ ai, ('ui,) ~ ... ~ a;k (i1ik),

where all 71;1 ~ i1;,, j :::; k. Hence R 1 ~ ai, (Qt). Using the above bounds for
computing joins and projections, we conclude that the entire family R 1 , t E T,
can be computed in time 0(11 4> II · II Q(II).

We define

where >: is the partial order ofT, with the root r being the smallest element.
If t is a leaf of T, then P1 = R1• Otherwise, let t be a node with children

t1, ... ,tz. Then

(6.13)

Using (6.13) inductively, we compute PT 1><1 1R1 in time

0(11 T II ·max1 II R 1 II). We saw that II R1 II:'SII Q(II for each t, and, further
more, T can be computed from 4> in linear time. Hence, Pr can be found in

time 0(11 4> II · II Q(II), which together with (6.12) implies that Q(f= 4> can be
tested with the same bounds. This completes the proof. D

There is another interesting way to connect tree decompositions with
tractability of conjunctive queries. Suppose we have a conjunctive query zp(x)
given by (6.3). We define its graph Q(zp), whose set of vertices is the set of
variables used in zp, with an edge between two variables u and v if there

is an atom ai such that both u and v are its free variables. For exam
ple, if zp(x,y) = 3z3v R(x,y,z) 1\ S(z,v), then Q(zp) has undirected edges
(x, y), (x, z), (y, z), and (z, v).

A tree decomposition of Q(zp) is a tree decomposition, as defined earlier,
when we view Q(zp) as a hypergraph. In other words, it consists of a tree T,
and a set B 1 of nodes of Q (zp) for each t E T, such that

1. { t I v E Bt} forms a subtree ofT for each v, and

2. for every edge (u, v), both 'U and v are in one of the B 1 's.

The width of a tree decomposition is max1 I B 1 I -1. The treewidth of Q (zp)

is the minimum width of a tree decomposition of Q (zp). It is easy to see that
the treewidth of a tree is 1.

For k > 0, let CQ., be the class of conjunctive queries zp such that the
treewidth of Q (zp) is at most k. Then the following can be shown.

Theorem 6.26. Let k > 0 be fixed, and let zp be a query from CQ,.
Then, for every structure Q(, one can compute zp(Qt) in polynomial time in

II 4> II + II Q(II + II zp(Qt) II· In particular, Boolean queries from CQ., can be

evaluated 'in polynomial time in II 4> II + II Q(II- D

108 6 Complexity of First-Order Logic

In other words, conjunctive-query evaluation becomes tractabk for queries
whose graphs have bounded treewidth. Exercise 6.15 shows that the converse
holds, under certain complexity-theoretic assumptions.

6.8 Bibliographic Notes

The notions of data, expression, and combined complexity an~ clue to \'anli
[244], see also [3].

Representation of first-order formulae by Boolean circuits is fairly stan
dard, see, e.g., books [133] and [247]. Proposition 6.6 was explicitly shown by
Vardi [245].

Theorem 6. 7 is perhaps the deepest result in circuit complexity. It \Vas
proved by Furst, Saxe, and Sipser [86] (see also Ajtai [10] and Denenlwrg.
Gurevich, and Shelah [55]).

The notion of uniformity and its connection \vith logical descriptions of
complexity classr's was studied by Barrington, Immerman, and Straubing [16].
Proofs of FO(<.BIT) = FO(+.x) are given in [133] and partially· in
[247]. The proof of expressibility of BIT (Theorem 6.12) follows closely the
presentation in Buss [29] and Cook [40].

PSPACE-completeness of FO (expression complexity) and of QBF is due
to Stockrm~yer [222].

The idea of using parameteri;r,ed complexity as a refinenwnt of the notions
of the data and expression complexity was proposed by Yannakakis [250]. and
developed by Papadimitriou and Yannakakis [196]. Parameterized cornpkxity
is treated in a book by Downey and Fellows [58]: see also surv<'ys by Grohe
[109, ll1]. Theorem 6.19 is from Seese [219], Thmrem 6.20 is from Flurn and
Grohe [81].

The notion of conjunctivr~ queries is a fundamental one in datahas!~ theory,
see [3]. NP-completeness of conjunctive queries (combined complexity) is due
to Chandra and Merlin [34]. Fixed-parameter linearity of acyclic conjunctive
queries is due to Yannakakis [249]: the pn~sentation here follows closely Flum,
Frick, and Grohe [80]. A linear time algorithm for producing tn'!~ decomposi
tions of hypergraphs, used in Theorem 6.25, is dlH' to Tarjan and Yannakakis
[228]. Flurn, Frick, and Grohe [80] show how to ext<md the notion of acydicity
to FO formulae. Theorem 6.26 and Exercise 6.15 are from GrolH', Sdnventick,
and Segoufin [ll4]. See also Gottlob. Leone, and Scarcdlo [96] for additional
results on the complexity of acyclic conjunctive queries.

6.9 Exercises 109

Sources for exercises:
Exercise 6.4: Dawar et al. [50]
Exercise 6.5: Immerman [133], Vollmer [247]
Exercise 6.9: Papadimitriou and Yannakakis [196]
Exercise 6.12: Flum, Frick, and Grobe [80]
Exercises 6.13 and 6.14: Flum, Frick, and Grobe [80]

Exercise 6.15:
Exercise 6.16:
Exercise 6.18:
Exercise 6.19:

6.9 Exercises

Yannakakis [249]
Grobe, Schwentick, and Segoufin [114]
Flum and Grobe [81]
Gottlob, Leone, and Scarcella [96]
Chandra and Merlin [34]

Exercise 6.1. Show that none of the following is expressible in FO(AII): transitive
closure of a graph, testing for planarity, acyclicity, 3-colorability.

Exercise 6.2. Prove that LJXJ is expressible inFO(+, x).

Exercise 6.3. Consider two countable undirected graphs. For the first one, the uni
verse is N, and we have an edge between i and j iff BIT(i,j) or BIT(j, i) is true. In
the other graph, the universe is N+ = {n EN In> 0} and there is an edge between
n and m, for n > m, iff n is divisible by Pm, the mth prime. Prove that these graphs
are isomorphic.

Hint: if you find it hard to do all the calculations required for the proof, you may
want to wait until Chap. 12, which introduces some powerful logical tools that let
you prove results of this kind without using any number theory at all (see Exercise
12.9, part a).

Exercise 6.4. Show that the standard linear order is expressible in FO(BIT). Con
clude that FO(+, x) = FO(BIT).

Exercise 6.5. Prove Lemma 6.14.
You may find it useful to show that the following predicate is expressible in

FO (+, X): BitSum(x, y) iff the number of ones in the binary representation of x is
y.

Exercise 6.6. Prove that QBF is PSPACE-complete.

Exercise 6.7. We stated in the proof of Theorem 6.19 that the set of tuples f E T
for which there exists a structure 2l with t(2l) =rand 2l F cp is computable. Prove
this statement, using the assumption that 2l is of bounded degree. Derive bounds
on the constant in the 0(112lll) running time.

Exercise 6.8. Give an example of a two-element structure over which the expression
complexity of conjunctive queries is NP-hard. Recall that in the proof of Theorem
6.23, we used a structure whose universe had three elements.

110 6 Complexity of First-Order Logic

Exercise 6.9. In this exercise, we refer to parameterized complexity class lt'[l]
whose definition can be found in [58, 81]. This class is believed to contain problems
which are not fixed-parameter tractable.

Prove that checking !X f= P, with P being the parameter, is W[1]-hard, even if
Pis a conjunctive query. Thus, it is unlikely that FO (or even conjunctive queries)
are fixed-parameter tractable.

Exercise 6.10. Derive Theorem 6.20 from the following facts. H is an excluded
minor of a class of graphs C if no G E C has H as a minor. If such an H exists, then
C is called a class of graphs with an excluded minor.

• If Cis a minor-closed class of graphs, membership inC can be verified in PTIME
(see Robertson and Seymour [205]).

• If Cis a PTIME-decidable class of graphs with an excluded minor, then checking
Boolean FO queries on Cis fixed-parameter tractable (see Flum and Grohe [81]).

Exercise 6.11. Prove that an order-invariant conjunctive query IS FO-definable
without the order relation. That is, (CQ+ <)inv ~ FO.

Exercise 6.12. Prove that H M ,','can be evaluated in O(IIRII +liS II+ IIR M Sll).

Exercise 6.13. Extend the proof of Theorem 6.25 to deal conjunctiw queries with
free variables, by showing that tp(!X), for an acyclic tp, can be computed in time
0(11 'P II · II !X II · II tp(!X) II). Also show that if the set of free variables of tp is contained
in one of the Bt's, for a tree decomposition ofH(tp), then the evaluation can be done
in time O(ll 'P II · II !X II).

Exercise 6.14. Extend Theorem 6.25 and Exercise 6.13 to conjunctive queries with
negation; that is, conjunctive queries in which some atoms are of the form :r f y,
where x and y are variables.

Exercise 6.15. Under the complexity-theoretic assumption that W[l] contains
problems which are not fixed-parameter tractable (see Exercise 6.9), the con
verse to Theorem 6.26 holds: if for a class of graphs C, it is the case that ev
ery conjunctive query tp with Q(tp) E C can be evaluated in time polynomial in
II P II + II !X II + II tp(!X) II, then C has bounded treewidth (i.e., there is a constant
k > 0 such that every graph inC has treewidth at most k).

Exercise 6.16. We say that a class of structures C ~ STRUCT[u] has bounded
treewidth if there is k > 0 such that for every !X E C, the treewidth of its Gaif
man graph is at most k. Prove that FO is fixed-parameter tractable on classes of
structures of bounded treewidth.

Exercise 6.17. Give an example of a conjunctive query which is of treewidth 2 but
not acyclic. Also, give an example of a family of acyclic conjunctive queries that has
queries of arbitrarily large treewidth.

Exercise 6.18. Given a hypergraph H, its hypertree decomposition is a triple
(T, (Bt)tET, (Ct)tET) such that (T, (Bt)tET) is a tree decomposition of H, and each
Ct is a set of hyper-edges. It is required to satisfy the following two properties for
every t E T:

6.9 Exercises 111

1. Bt c_:; UCt;
2. UCt n UB, c_:; Bt.

'V~t

The hypertree width of H is defined as the minimum value of maxtET I Ct I, taken

over all hypertree decompositions of H.
Prove the following:

(a) A hypergraph is acyclic iff its hypertree width is 1.
(b) For each fixed k, conjunctive queries whose hypergraphs have hypertree width

at most k can be evaluated in polynomial time.

Note that this does not contradict the result of Exercise 6.15 which refers to

graph-based (as opposed to hypergraph-based) classes of conjunctive queries.

Exercise 6.19. Suppose 'PI(£) and <p2(£) are two conjunctive queries. We write

'Pl c_:; <p2, if <p1 (m) c_:; <p2(m) for all Ql (in other words, Vx <p1(x)-+ <p2(x) is valid in

all finite structures). We write <p1 = <p2 if both <p 1 c_:; '{!2 and <p2 c_:; <p 1 hold.
Prove that testing both <p1 c_:; <p2 and <p1 = <p2 is NP-complete.

Exercise 6.20: Use Ehrenfeucht-Frai"sse games to prove that PARITY is not ex

pressible in FO (+, x).

7

Monadic Second-Order Logic and Automata

We now move to extensions of first-order logic. In this chapter we introduce
second-order logic, and consider its often used fragment, monadic second
order logic, or MSO, in which one can quantify over subsets of the universe.
We study the expressive power of this logic over graphs, proving that its
existential fragment expresses some NP-complete problems, but at the same
time cannot express graph connectivity. Then we restrict our attention to
strings and trees, and show that, over them, MSO captures regular string and
tree languages. We explore the connection with automata to prove further
definability and complexity results.

7.1 Second-Order Logic and Its Fragments

We have seen a few examples of second-order formulae in Chap. 1. The idea is
that in addition to quantification over the elements of the universe, we can also
quantify over subsets of the universe, as well as binary, ternary, etc., relations
on it. For example, to express the query EVEN, we can say that there are two
disjoint subsets U1 and U2 of the universe A such that A = U1 u U2 and there
is a one-to-one mapping F : U1 ---> U2 . This is expressed by a formula

where 'Pis an FO formula in the vocabulary (U1 , U2, F) stating that U1 and U2
form a partition of the universe (Vx (Ul(x) <--+ ·U2(x))), and that F <:;;; ul X u2
is functional, onto, and one-to-one.

Note that the formula 'Pin this example has three second-order free vari
ables U1, U2, and F. We now formally define second-order logic.

Definition 7.1 (Second-order logic). The definition of second-order logic,
SO, extends the definition ofFO with second-order variables, ranging over sub
sets and relations on the universe, and quantification over such variables. We

114 7 J'vlonadic Second-Order Logic and Automata

as.surne that for· ever'y k > 0, there ar·e infinitely many var·iables X t·. X~ ,
ranging over k-ary n~lations. A for·rnula of SO can have both jiTst-order- and

second-order freP- variable.s; we wTite zp(.r. X) to indicate that .? an~ free first

order· var·iable.s, and X are free second-order variables.

Given a vocabulary rr that consi.sts of r·elation and ron.stant symbols, we
define SO terms and formulae, and their fn:e variables, as follows:

• Every first-onler· variable :r, and ever·y constant symbol c, are first-or·der·

terms. The only free var·iable of a tenn J" is the vrwiable J'. and c has no
free var·iables.

• There ar·e three kind.s of atomic forrnulw::

- FO atomic formulae; that is, formulae of the fonn

t = t', where t, t' are terms, and

- R(t), where t i.s a tuple of tcmts, and R E rr, and

-- X (t 1 , ... , t !.-), where t 1 , ... , t k ar·e terms, and X is a secor1.d- or·d(:r- var"i-

able of ar·ity k. The fr·ee first-or·der· variablc.s of this for-m·1da an~ fr-ee

first-or·der variables oft 1 •... , t~;; the fn:e 8ecorul-onier- variable is X.

• The formulae of SO are closed under· the Boolean connective_, V. /\. --,, and
first-order quantification, with the ·usual rules for fr·ee vm,iables.

• If zp(:r, Y. X) is a formula, then 3Y zp(.i, Y X) and \iY zp(.?. Y. }() an;

fonnulae., whose fr·ee var"iables an: .t and X.

The semant?:cs is defined as follows. Suppose '2! E STHUCT[rr]. For- eru:h

formula zp(.T, X), we define the notion '2! f= zp(b. i}). wheTe I~ is a tuple of

elements of A of the .same length a.s .i, and for· X = (X 1 ••.•• Xr). with each

X; being of arity n;, B = (B 1 ••••• Bz), wheTe each B; is 11, subset of A"'.
We give the semantics only for constnu:toTs tho.t o.r-e di.ffen:nt fmm those

for FO:

• If zp(.T, X) is X (t 1 •...• tic), where X i.~ k-ar-;t; and t1 • •••• I~, ar·e tenn.s. with

f7'ee variables among .i, then '2! f= zp(b, B) iff the tnpll' (t~(b) 1~1 (b)) is

in B.

• If zp(x. X) is ::JY 11J(:f. Y X), wher·e Y is k-ar'y, then '2! f= zp(b. B) if for·

some C c:;; A k, it is the case that '2! f= 011(b. C. ti).
•If zp(:r,X) is VY 1f!(x. Y.X), andY is k-m·y, then '2! f= zp(h. ii) if for· all

C c:;; Ak, we have '2! f= 1/'(b.C.I~).

\\'e know that every FO formula can be writt<~n in the pr<>n<>x normal form
Q 1:r1 •.. q,:r 11 J•, where Cj.;'s arc 3 or \7, and li' is quantifier-fre<'. Like\vis<':
every SO formula can be written as a sequencp of first- ancl S<'cond-onlPr
quantifiers, followE'd by a quantifier-frPE' formula. Fnrt hermore. note t lw fol
lowing equivalences:

7.1 Second-Order Logic and Its Fragments 115

3x Q cp(x, ·) +--+ ::JX Q (:3x (X(x) 1\ cp(x, ·))) (7.1)

\lx Q cp(x, ·) +--+ \IX Q (:3!x X(x)-> \lx (X(x)-> cp(x, ·))), (7.2)

where Q stands for an arbitrary sequence of first- and second-order quantifiers.
Using those inductively, we can see that every SO formula is equivalent to a
formula in the form

(7.3)

where QiXi are second-order quantifiers, QjXj are first-order quantifiers, and
'lj; is quantifier-free.

We now define some restrictions of the full SO logic of interest to us. The
first one is the central notion studied in this chapter.

Definition 7.2. Monadic SO logic, or MSO, is defined as the restriction of
SO where all second-order variables have arity 1.

In other words, in MSO, second-order variables range over subsets of the
universe.

Rules (7.1) and (7.2) do not take us out of MSO, and hence every MSO
formula is equivalent to one in the normal form (7.3), where the second-order
quantifiers precede the first-order quantifiers.

Definition 7.3. Existential SO logic, or ::JSO, is defined as the restriction of
SO that consists of the formulae of the form

:3X1···:3Xn cp,

where cp does not have any second-order quantification. If, furthermore, all
Xi's have arity 1, the resulting restriction is called existential monadic SO,
or ::JMSO.

If the second-order quantifier prefix consists only of universal quantifiers,
we speak of the universal SO logic, or \ISO, and its further restriction to
monadic quantifiers is referred to as \/MSO.

In other words, an ::JSO formula starts with a second-order existential prefix
:3X1 ... 3Xn, and what follows is an FO formula cp (in the original vocabulary
expanded with X1, ... ,Xn).

Formula (1.2) from Chap. 1 stating the 3-colorability of a graph is an
example of an ::JMSO formula, while (1.3) stating the existence of a clique of
a given size is an example of an :380 formula.

Definition 7.4. The quantifier rank of an SO formula is defined as the max
imum depth of quantifier-nesting, including both first-order and second-order
quantifiers. That is, the rules for the quantifier rank for FO are augmented
with

• qr(::JX cp) = qr(\/X cp) = qr(cp) + 1.

116 7 Monadic Second-Order Logic and Automata

7.2 MSO Games and Types

MSO can be characteri11ed by a type of Ehrenfeucht-Frai:ss{~ game, which is
fairly close to the game we have used for FO. As in the case of FO, the ganw

is also closely connected with the notion of type.
Let MSO[k] consist of all MSO formulae of quantifier-rank at most k.

An MSO rank-k rn, l-typc is a consistent set S of l\ISO[k] formulae with m
free first-order variables and l free second-order variables such that for ewry
cp(x1 , .•. , .T111 , X 1 , •.. , Xt) from MSO[k], either cp E S or •cp E S.

Given a structun~ Ql, an m-tuple a E A, and an l-tuph~ V of subsets of A,
the MSO mnk-k type of (a, lf) in Ql is the set

mso-tpk(Ql,a, V) = {cp(x,X) E MSO[k]

Clearly, mso-tpdQl, a, V) is an MSO rank-k type.

When both a and V are empty, rnso-tpdQl) is the s<~t of alll\ISO[k] s<~n
tences that are true in Qt.

Just as for FO, a simple inductive argument shows that for <'ach m and
l, up to logical equivalence, there are only finitely many different formulae
cp(:r: 1 , ... ,xm,X 1 , ... ,X1) in MSO[k]. Hence, MSO rank-k m,l types (wh<'n~
rn and l stand for the number of free first-order and second-order variables,
respectively) are essentially finite objects. In fact, just as for FO, one can show
the following result for MSO.

Proposition 7.5. Fi:r: k, I, m.

• There exist only finitely many MSO mnk-k m, l types.

• Let T1 , ... , T,, enumerate all the MSO mnk-k m, I types. Then~ e:r:i.~t

MSO[k] for-rnulae o:;(:f, X), i = L ... , s, such that for· ever-;tJ stmcture

Ql, ever-y m-tuple a of elements of A, and every !-tuple 0 of subsets of A,

it is the case that Ql F a; (a, r7) iff mso-tpk (Ql, a, rl) =' T;.

Furthermore, each MSO[k] for-rnula with m free first-onlcr var·iables

and l free second-or·der· variables is equivalent to a disjunction of so'me of

the a; 's.

Hence, just as in the case of FO, we shall associat<~ rank-k typPs with their
defining formulae, which are also of quantifier rank k.

\Ve now present the modification of Ehrenfeucht-Fra1ss{~ garrws for l\ISO.

Definition 7.6. An MSO game is played by two player·s, the spoilfT and the

duplicator, on two structnr·es Ql and 23 of the same vocalrnlar·y a. The game

has two differ·ent kinds of moves:

7.2 MSO Games and Types 117

Point move This is the same move as in the Ehrenfeucht-Fraisse game for FO:
the spoiler chooses a structure, Ql or ~, and an element of that structure;
the duplicator responds with an element in the other structure.

Set move The spoiler chooses a structure, Ql or~' and a subset of that struc
ture. The duplicator responds with a subset of the other structure.

Let a 1 , ... , ap E A and b1 , ... , bp E B be the point moves played in the
k-round game, with V1, ... , Vs ~ A and U1, ... , Us ~ B being the set moves
{i.e., p + s = k, and the moves of the same round have the same index). Then
the duplicator wins the game if (ii, b) is a partial isomorphism of (Ql, V) and
(~, U). If the duplicator has a winning strategy in the k-round MSO game on
Ql and ~, we write Ql =11so ~.

Furthermore, we write (Ql, ii0 , V0) =1180 (~, b0 , U0) if the duplicator has a
winning strategy in the k-round MSO game on Ql and ~ starting with position
((iio, Vo), (bo, U0)). That is, when k rounds of the game ii, b, V, U are played,
(ii0 ii, b0 b) is a partial isomorphism between (Ql, V0 , V) and(~, U0 , U).

This game captures the expressibility in MSO[k].

Theorem 7. 7. Given two structures Ql and~' two m-tuples ii0 , b0 of elements
of A and B, and two [-tuples Vo, Uo of subsets of A and B, we have

~ MSO ~ ~ ~

That is, (Ql, iio, Vo) =k (~, bo, Uo) iff for every MSO[k] formula r.p(x, X),

Ql F= r.p(iio, Vo) {=} ~ f= r.p(bo, Uo).

The proof is essentially the same as the proof of Theorem 3.9, and is left
to the reader as an exercise (see Exercise 7.1).

In the case of sentences, Theorem 7.7 gives us the following.

Corollary 7.8. If Ql and ~ are two structures of the same vocabulary, then
Ql =11so ~ iff Ql and ~ agree on all the sentences of MSO[k].

As for FO, the method of games is complete for expressibility in MSO.

Proposition 7.9. A property P of O"-structures is expressible in MSO iff there
is a number k such that for every two O"-structures Ql, ~' if Ql has the property
P and ~ does not, then the spoiler wins the k-round MSO game on Ql and ~.

Proof Assume P is expressible by a sentence P of quantifier rank k. Let
0:1, ... , O:s enumerate all the MSO rank-k types (without free variables). Then
P is equivalent to a disjunction of some of the o:; 's. Hence, if Ql has P and ~
does not, there is some i such that Ql f= o:; and~ f= •o:;, and thus Ql ~11so ~-

118 7 Monadic Second-Order Logic and Automata

Conversely, suppose that we can find k 2 0 such that for every 2l having
P and 113 not having P, we have 2l ¢:~so 113. Now take any two structures
2l1 and 2l2 such that 2l1 =t'80 2l2. Suppose 2l1 has P. If 2l2 does not havP
P, we would conclude 2l1 ¢=t'so 2l2 , which contradicts the assumption; hence
2l2 has P as well. Thus, P is a union of rank-k MSO types. Since there arP
finitely many of them, and each is definable by a rank-k MSO sfmtence, W('

conclude that P is MSO[k]-definable. 0

Most commonly, we use the contrapositive of this proposition, which tells
us when some property is not expressible in MSO.

Corollary 7.10. A property P of a-structures is not expressible in MSO iff
for every k 2 0, one can find 2lk, 113k· E STRUCT[a] such that:

• 2lk has the property P,

• 23k does not have the property P, and

• 2lk =~so 113 k.

Our next goal it to usf~ games to study expressibility in MSO. A usf'ful
technique is the composition of MSO games, which allows us to construct more
complex games from simpler ones. Similarly to Exercise 3.15, we can show the
following.

Lemma 7 .11. Let 2l1, 2l2, 113 1 , 1132 be a -structur·es, and let 2l be the disjoint
union of 2l1 and 2l2, and 113 the disjoint union of 113 1 and 1132 . As.mme
or =MSO ro and of =MSO ro Then of =MSO ro
"-'1 -A: "-'1 "-'2 -k "-'2· "-'-A: "-'·

Proof sketch. Assume the spoiler makes a point move, say a in 2l. Then a is
in 2l1 or 2l2. Suppose a is in 2l1; then the duplicator selects a response b in
1131 according to his winning strategy on 2l1 and 1131 .

Assume the spoiler makes a set move, say U <;;;; A. The universe A is the
disjoint union of A1 and A2, the universes of 2l1 and 2l2. Let U; = UnA;, i =
1, 2. Let Vi be the response of the duplicator to U; in 113;, i = 1, 2, according
to the winning strategy. Then the response to u is v = VI u v2. It is routine
to verify that, using this strategy, the duplicator wins in 1.~ rounds. D

As an application of the composition argument, we prove the following.

Proposition 7.12. Let a= 0. Then EVEN is not MSO-expressible.

Proof. We claim that for every 2l and 113 with I AI, IBi 2 2k, it is the case that
2l =~180 113. Clearly this implies that EVEN is not MSO-definable. Since a = 0,
we shall write U =t180 V instead of the more formal (U, 0) =t180 (V, 0).

We prove the statement by induction on k. The cases of k = 0 and k = 1
are easy, so we show how to go from k to k + 1.

Suppose 2l and 113 with I A I, IBI 2 2k+ 1 are given. We only consider a
set move by the spoiler, since any point move a can be identified with the
set move {a}. Assume that in the first move, the spoiler plays U <;;;; A. \Vf'
distinguish the following eases:

7.3 Existential and Universal MSO on Graphs 119

1. lUI :::; 2k. Then pick an arbitrary set V s;;; B such that IV I=IU I· We have
U ~ V (and thus U =~so V), and A-U =~soB- V- the latter is by
the induction hypothesis, since lA- Ul, IB- VI 2': 2k. Combining the two
games, we see that from the position (U, V) on Q(and ~' the duplicator
can continue the game fork rounds, and hence Q(=~!? ~-

2. lA- Ul :::; 2k. This case is treated in exactly the same way as the previous
one.

3. lUI > 2k and lA - Ul > 2k. Since IBI 2': 2k+l, we can find a subset
V ~ B such that both I VI and I B - VI are at least 2k. By the induction
hypothesis, we know that U =~so V and A-U =~soB- V, and hence
from (U, V), the duplicator can play for k more rounds, thus proving

-MSO !.X=~1 ~- D

Suppose now that the vocabulary is expanded by one binary symbol <
interpreted as a linear ordering; that is, we deal with finite linear orders. Then
EVEN is expressible in MSO. To see this, we let our MSO sentence guess the
set that consists of alternating elements a1, a3, ... , a2n+I, ... in the ordering
a 1 < a2 < a3 < ... , such that the first element is in this set, and the last
element is not:

(
'Vx (first(x) --> X(x)))

::JX A 'Vx (last(x)--> ,x(x)) ,
A 'Vx'Vy succ<(x, y) --> (X(x) ~ --,X(y))

where first(x) stands for 'Vy (y 2': x), last(x) stands for 'Vy (y :::; x), and
succ<(x, y) stands for (x < y) A --,::Jz (x < z A z < y).

Thus, as for FO, we have a separation between the ordered and unordered
case. Noticing that EVEN is an order-invariant query, we obtain the following.

Corollary 7.13. MSO ~ (MSO+ <)inv· D

Note the close connection between Corollary 7.13 and Theorem 5.3: the
latter showed that FO ~ (FO+ <)inv, and the separating example was the
parity of the number of atoms of a Boolean algebra. We used the Boolean
algebra to simulate monadic second-order quantification; in MSO it comes for
free, and hence EVEN worked as a separating query.

7.3 Existential and Universal MSO on Graphs

In this section we study two restrictions of MSO: existential MSO, or ::JMSO,
and universal MSO, or 'VMSO, whose formulae are respectively of the form

and

120 7 Monadic Second-Order Logic and Automata

where rp is first-order.
These also are commonly found in the literature under the names monadic

Ei for ::JMSO and monadic Ifl for \.fMSO, where monadic, of course, refers to
second-order quantification over sets. In general, Et consists offormulae whos{'
prefix of second-order quantifiers consists of k blocks, with the first block
being existential. For example, a formula ::JXaX2\.fYaZ14' is a E:l-forrnula.
The class IIt is defined likewise, except that the first block of quantifiers is
universal.

Another name for :3M SO is monadic NP, and \.fMSO is referwd to as
monadic coNP. The reason for these names will become clear in Chap. 9,
when we prove Fagin's theorem.

We now give an example of a familiar property that separates monadic Ill
from monadic Ei (i.e., \.fMSO from ::JMSO).

Proposition 7.14. Graph connectivity is expr·essible in \.fMSO, but is not e:J:
pressible in ::JMSO.

Proof. A graph is not connected if its nodes can be partitioned into two
nonempty sets with no edges between them:

::JX (::Jx X(:r:) 1\ ::Jx -,X(x))
1\ (\fx\fy (X(x) 1\ -,X(y)--+ -,E(x,y)))

(7.4)

Since (7.4) is an ::JMSO sentence, its negation, expressing graph connectivity,
is a universal MSO sentence.

For the converse, we use Hanf-locality. Suppose that connectivity is de
finable by an ::JMSO sentence P = :3X1 ... :3X111 rp. Assume without loss of
generality that m > 0. Since rp is a first-order sentence (over structures of
vocabulary a extended with X 1, ... , Xn), it is Hanf-local. Let d = hlr(ip), the
Hanf-locality rank of rp. That is, if (G, U1, ... , Um)'=>d(G'. V1 V,"), where
G, G' are graphs and the U/s and the V,'s interpn~t X;'s over them, then
(G, U1, ... , Urn) and (G', V1, ... , Vrn) agree on rp.

We now set K = 2m(2d+l) and r = (4d+4)K. We claim the following: if G
is an m-colored graph (i.e., a graph on which m unary predicates are defined),
which is a cycle of length at least r, then there exist two nodes a and b such
that the distance between them is at least 2d + 2, and their d-neighborhoods
are isomorphic.

Indeed, for a long enough cycle, the d-neighborhood of each node a is a
chain of length 2d + 1 with a being the middle node. Each node on the chain
can belong to some of the U; 's, and there are 2m possibilities for choosing
a subset of indexes 1, ... , m of U/s such that a E U;. Hence, there are at
most K different isomorphism types of d-neighborhoods. If the length of the
cycle is at least (4d + 4)K, then there is one type of d-neighborhoods which

7.3 Existential and Universal MSO on Graphs 121

a a'

b' b

Fig. 7.1. Illustration for the proof of Proposition 7.14

is realized by at least 4d + 4 elements, and hence two of those elements will
be at distance at least 2d + 2 from each other.

Now let G be a cycle of length at least r. Since G is a connected graph,
we have G F <J>. Let U], ... 'Um witness it; that is, (G, ul' ... 'Um) F 'P·
Choose a,b such that a ;::::;~c.u 1 •...• u,) band d(a,b) > 2d + 1, and let a',b' be
their successors (in an arbitrarily chosen orientation of G; the one shown in
Fig. 7.1 is the clockwise orientation).

We now construct a new graph G' by removing edges (a, a') and (b, b')
from G, and adding edges (a, b') and (b, a'). We claim that for every node c,

N (G,UJ, ... ,Um)() Co,! N(G',UJ, ... ,Um)()
r1 c ~ r1 c. (7.5)

First, since a and bare at the distance at least 2d + 2, the d-neighborhood
of any point in G or G' is a chain of length 2d + 1. If c is at the distance d or
greater from a and b, its d-neighborhood is the same in (G. U1 , ... , Um) and
(G', U1 , ... , U,), which means that (7.5) holds.

Suppose now that the distance between c and a is do < d, and assume
that c precedes a in the clockwise orientation of G. Then the d predecessors
of care the same in both structures. Furthermore, since a ;:::o~c,u1 , ...• U"') b, in
both structun~s the d- d0 successors of a agree on all the U/s. Hence, (7.5)
holds for c. The remaining cases (again, viewing Gin the clockwise order) are
those of c preceding b, or following a or a' and being at the distance less than
d from them. In all of those cases the same argument as above proves (7.5).

We have thus established a bijection f between the universes of
(G,UJ, ... ,Um) and (G',U], ... ,Um) (which is in fact the identity) that wit
nesses

(G, U1, ... , Urn) '=+r1 (G', U1 , U,).

Since d = hlr(<p), we conclude that (G',U1 , ... ,Um) f= <p, and hence G' f=
:JX1 ... 3Xm <p; that is, G' f= <J>. But G' is not a connected graph, which
contradicts our assumption that <J> is an 3MSO sentence defining graph con
nectivity. D

122 7 Monadic Second-Order Logic and Automata

Notice that the formula (7.4) from the proof of Proposition 7.14 shows
that the negation of graph connectivity is :::JMSO-expressible, which means
that =:IMSO can express queries that are not Hanf-local. One can also show
that other forms of locality are violated in :::JMSO (see Exercise 7.6).

We now consider a related property of reachability. V/e assume that the
language of graphs is augmented by two constants, s and t, and we are intc>r
ested in the property, called (s, t)-reachability, that asks whPther ttwre is a
path from .s to t in a given graph. \Ve have seen that unclin~cted connectivity
is not :::JMSO-definable; surprisingly, undirected (s. t)-reachability is!

Proposition 7.15. For· undirected gmphs W'ithout loops, (s. t)-rmchafrility is

expressible in :::JMSO.

Proof. Consider the sentence cp in the language of graphs expanded with one
unary relation X that says the following:

1. both s and t are in X,

2. both s and t have an edge to exactly one member of X, and

3. every member of X except s and t has edges to precisely two mernlwrs of
X.

Let <P be :::JX cp. We claim that G f= <P iff there is a path from s to t in G.
Indeed, if there is a path from s to t, we can take X to lw the shortest path
from s tot. Conversely, if (G. X) f= cp, then X is a path that starts in s; since
the graph G is finite, X must contain the last node on the path, which could
be only t. D

The approach of Proposition 7.15 does not work for directed graphs, h<'

c:ause of back edges. Consider, for example, a directed graph which consists of
a chain { (s, a I), (a1 , a2), (a 2, a:1), (a:3, t)} together with the edge (o:1.at). The
only path between s and t consists of edges s, a 1 , a 2 • o:3• t; however. if v.re let
X= {s,at,a2,a:l,t}, the sentence cp from the proof of Proposition 7.15 is
false, since a3 has one incoming edge, and two outgoing edges. It seems that
the approach of Proposition 7.15 could be generali~ecl if then~ is a bound on
degrees in the input graph, and this is indeed tlw case (Exercise 7. 7). However,
in general, one can show a negative result.

Theorem 7.16. Reachability for directed gmphs is not r:rpressible in ::31\ISO.

We conclude this section by showing that there are games that charactfTize
expressibility in :::JMSO, much in thf~ same way as Ehwnfeucht-Fra!sse games
and MSO games characterize expressibility in FO and !\ISO.

Definition 7.17. The I. k-Fagin game on two stnu:tnn~s Qt. 'BE STHUCT[J]
i.s played as follows. The .spoiler- .selects l subsets U1 Ur of i1. Then the
rl11.plicator· selects I subsets V1, •••• V, of B. After· that. the spoiler· and the

7.3 Existential and Universal MSO on Graphs 123

duplicator play k rounds of the Ehrenfeucht-Fraisse game on (2l, Ut, ... , Uz)
and (113, Vt, ... , Vi).

The winning condition for the duplicator is that after k rounds of
the Ehrenfeucht-Fraisse game, the elements played on (2l, U1, ... , Ut) and
(113, V1 , ... , Vi) form a partial isomorphism between these two structures.

A fairly simple generalization of the previous game proofs shows the fol
lowing.

Proposition 7.18. A property P of CJ-structures is 3MSO-definable iff there
exist l and k such that for every 2l E STRUCT[CJ] having P, and for every
113 E STRUCT[CJ] not having P, the spoiler wins the l, k-Fagin game on 2l and
113. D

This game, however, is often rather inconvenient for the duplicator to play
(after all, we use games to show that a certain property is inexpressible in a
logic, so we need the win for the duplicator). A somewhat surprising result
(see Exercis(~ 7.9) shows that a different game that is easier for the duplicator
to win, also characterizes the expressiveness of 3MSO.

Definition 7.19. Let P be a property of CJ-structures (that is, a class of CJ
structures closed under isomorphism). The P, l, k-Ajtai-Fagin game is played
as follows:

1. The duplicator selects a structure 2l E P.

2. The spoiler selects l subsets U1 , ... , U1 of A.

8. The duplicator selects a structure 113 tj. P, and l subsets V1 , ... , Vi of B.

4. The spoiler and the duplicator play k rounds of the Ehrenfeucht-Fraisse
game on (2l, U1, ..• , Uz) and (113, V1 , ... , Vi).

The winning condition for the duplicator is that after k rounds of
the Ehrenfeucht-Fraisse game, the elements played on (2l, U1 , ... , U1) and
(113, Vt, ... , Vi) form a partial isomorphism between these two structures.

Intuitively, this game is easier for the duplicator to win, because he selects
the second structure 113 and the coloring of it only after he has seen how the
spoiler chose to color the first structure 2l.

Proposition 7.20. A property P of CJ-structures is 3MSO-definable iff there
exist l and k such that the spoiler has a winning strategy in the P, l, k-Ajtai
Fagin game. D

Hence, to show that a certain property P is not expressible in 3MSO, it
suffices to construct, for every l and k, a winning strategy for the duplicator
in the P, l, k-Ajtai-Fagin game. This is easier than a winning strategy in the
l, k-Fagin game, since the duplicator sees the sets U/s before choosing the
second structure 113 for the game. An example is given in Exercise 7.10.

124 7 Monadic Second-Order Logic and Automata

7.4 MSO on Strings and Regular Languages

We now study MSO on strings. Recall that a string over a finite alphabet can
be represented as a first-order structure. For example, tlw string s = ahooh

is represented as ({ 1, 2, 3, 4. 5}, <, !~1 , Pb), where < is the usual ordering, and
Pa and Pb contain positions in s where a (or h, respectively) occurs: that is.
Pu. = {1, 3, 4} and H = {2, 5}.

In general, for a finite alphabet 1:', we define thf' vocabulary a~· that
contains a binary symbol < and unary symbols I~, for eaC"h a E E. A string
8 E E* of length n is then represented as a structun~ "Us E STRUCT[a~,J

whose universe is {], ... , n}, with < interpreted as the order on the natural
numbers, and ~' being the set of positions when~ the letter a occurs. for each
a in E.

Suppose we have a sentence <P of some logic £, in the vocabulary a E. Such
a sentence defines a language, that is, a subset of E*, given by

L(<P) { 8 E E* I M., F (p}. (7.6)

vVe say that a language L is definabk in a logic £ if there <~xists an £-sentenC"e
<P such that L = L(<P).

The following is a fundamental result that connects l'viSO-definability and
regular languages.

Theorem 7.21 (Biichi). A language is definable in :VISO iff it is r-eq·ular.

Pr-oof. We start by showing how to define ew~ry regular language Lin l\180. If
Lis regular, then its strings an~ accepted by a deterministic finite automaton
A= (Q,q0 ,F.6), where Q = {q0 , ... ,q,_J} is the set ofst.at<'s, q0 E Q is
the initial state, F <,;; Q is the set of final states, and 6 : Q x L' ---+ Q is tlw

transition function. \\'e take <P to be the MSO sentence

3Xo · . · 3Xm-l ypart 1\ \Ostart 1\ \Otrans 1\ ip;H'ccpl. (7. 7)

In this sentence, we are guessing m sets X 0 , X 111 __ 1 that correspond to
elements of the universe of Afs (i.e., positions of 8) wlwre the automaton A is
in the state qo, q1 , ... , Qm-·l, respectively, and the remaining three first-on!t~r
formulae ensure that the behavior of A is simulated correctly. That is:

• \Opart asserts that X 0 , ... , Xrn-l partition the universe of 1\l,. This is easy
to express in FO:

rn-1

V;t V (X;(:r) 1\ 1\ -.X1 (.ri)
i=ll rfi

7.4 MSO on Strings and Regular Languages 125

• 'Pstart asserts that the automaton starts in state qo:

\:fx (\ ((Pa(x) 1\ \:fy (y;::: x)) -+ X8(qo,a)(x))
aEE

Note some abuse of notation: 8(qo, a)= qi for some i, but we write X8(qo,a)
instead of xi.

• 'Ptrans asserts that transitions are simulated correctly:

rn-1

\:fx\:fy 1\ 1\ (((x-< y) 1\ Xi(x) 1\ Pa(Y)) -+ X8(qi,<L)(Y)) ,
i=O aEE

where x -< y means that y is the successor of x.

• 'Paceepts asserts that at the end of the string, A enters an accepting state:

\:fx ((Vy (y ~ x)) -+ V Xi(x)) .
qiEF

Hence, (7.7) captures the behavior of A, and thus L(<P) = L.

For the converse, let <P be an MSO sentence in the vocabulary aE, and
let k = qr(<P). Let To, ... , Tm enumerate all the rank-k MSO types of aE
structures (more precisely, rank-k 0, 0 types, with zero free first- and second
order variables, or, in other words, sentences).

Let IJ!i be an MSO sentence of quantifier rank k defining the type Ti. That
is,

Ms ~ IJ!i {:} mso-tpk(Ms) = Ti.

Since qr(<P) = k, the sentence <Pis a disjunction of some of the IJ!;'s. We define
F ~ {To, ... , Tm} to be the set of types consistent with <P. Then <Pis equivalent
to V riEF IJ!i.

We further assume that To is the type of M., where E denotes the empty
string. That is, this is the only type among the T; 's that is consistent with
-,::Jx (x = x).

We now define the automaton

(7.8)

with the set of states S ={To, ... ,Trn}, the initial state To, the set of final
states F, and the transition function 8<1> : S x E-+ 28 defined as follows:

;: () ::J ~* (mso-tpk(Ms) = Ti)
Tj E u F Ti, a {:} :::18 E u , d t (M) _ . . an mso- Pk s·a - T 1

(7.9)

We now claim that the automaton A<P is deterministic (i.e., for every Ti and
a E E there is exactly one Tj satisfying (7.9)). For that, notice that by a

126 7 Monadic Second-Order Logic and Automata

composition argument similar to that of Lemma 7.11, if s 1 , 8 2 , t 1 , t 2 E E* an'
such that l\1s, =tiso kft, and kf82 =~so Aft2 , then 11181 . 82 =~180 l'lf1 t. 12 .

Now suppose that mso-tpk(.l\18 ,) = mso-tpk(A182) = T;. In particular,
.l'vfs, =~so kfs 2 • Then l'vfs,·a =ti80 Jlv{,2 .a· Suppose also that we have .h i=)2
such that mso-tpk(11{, 1 .a) = Tj, and mso-tpJJAI82 .a) = Th. Then 11!., 1 ." f= !JrJ,,
but since 111s2 ·a f= !Jrh and qr(!Jrh) = k, we obtain 111,1 ." f= !Jrh, which implies
mso-tpk(.l'vfs,·a) = T)2 i= Tj 1 • This contradiction proves that the automaton
(7.8) is deterministic.

Now by a simple induction on the length of the string we prove that for
any strings, after readings the automaton A<P ends in the state T; such that
mso-tpk(Jivf.,) = Ti. For the empty string, this is our choice of To. Suppose now
that mso-tpk(Afs) = Ti and A<P is in state Ti after reading 8. By the definition
of the transition function O<P and the fact that it is deterministic, if A<P reads
a, it moves to the state Ti such that mso-tpk(llfs·u) = T" which proves the
statement.

Therefore, A<P accepts a strings iff mso-tpdl'vi.,) is in F, that is, is consis
tent with <P. The latter happens iff Afs f= <P, which proVPs that the language
accepted by A<P is L(<P). This completes the proof. 0

We have seen that over graphs, there are universal MSO-sentences which
are not expressible in ::JMSO. In contrast, over strings every MSO sentence
can be represented by an automaton, and (7.7) shows that the behavior of
every automaton can be captured by an ::JMSO sentence. Hence, we obtain
the following.

Corollary 7.22. Over strings, MSO = ::JMSO. 0

As an application of Theorem 7.21, we prove a few bounds on the expres
sive power of MSO. We have seen before that MSO over the empty vocabulary
cannot express EVEN. What about the power of MSO on linear orderings? Re
call that Ln denotes a linear ordering on n elements. From Theorem 7.21, we
immediately derive the following.

Corollary 7.23. Let X~ N. Then the set {L, In EX} is MSO-definable iff
the language {an I n E X} is regular. 0

Thus, MSO can test, for example, if the size of a linear ordering is even,
or-- more generally- a multiple of k for any fixed k. On the other hand, one
cannot test in MSO if the cardinality of a linear ordering is a square, or the
kth power, for any k > 1; nor is it possible to test if such a cardinality is a
power of k > 1.

As a more interesting application, we show the following.

Corollary 7.24. It is impossible to test in MSO if a graph is Hamiltonian.

7.5 FO on Strings and Star-Free Languages 127

Proof. Let Kn.m denote the complete bipartite graph on sets of cardinalities
n and m; that is, an undirected graph G whose nodes can be partitioned
into two sets X, Y such that lXI = n, IYI = m, and the set of edges is
{ (:c, y), (y, :r) I x EX, y E Y}. Notice that Kn,rn is Hamiltonian iff n = rr1.

Assume that Hamiltonicity is definable in MSO. Let E = {a,b}. Given a
strings, we define, inFO, the following graph over the universe of J\1.,:

tp(x,y)

That is, tp(l\18) is Kn,m, where n is the number of a's in s, and m is the
number of b's. Thus, if Hamiltonicity were definable in MSO, the language
{ s E E* I the number of a's in s equals the number of b's} would have been
a regular language, but it is well known that it is not (by a pumping lemma
argument). 0

7.5 FO on Strings and Star-Free Languages

Since MSO on strings captures regular languages, what can be said about tlw
class of languages captured by FO? It turns out that FO corresponds to a
well-known class of languages, which we define below.

Definition 7.25. A star-free regular expression over E is an expression built

from the symbols 0 and a, for each a in E, using the operations of union (+),
complement (-), and concatenation (·). Such a regular expression e denotes a
language L(e) over E as follows:

• £(0) = 0; L(a) ={a} for a E E.

• L(el + e2) = L(el) U L(e2).

• L(i') = E*- L(e).

• L(et · e2) = {s1 · -"2l.s1 E L(cl) . .s2 E L(e2)}.

A language denoted by a star-free expr·ession is called a star-free language.

Note that some of the regular expressions that use the Kleene star * are ac
tually star-free, because in the definition of star-free expressions one can use
the operation of complementation. For example, suppose E = {a, b }. Then
(a+ b)* defines a star-free language, denoted by the star-free expression 0.
Likewise, e = a*b* also denotes a star-free language, since it can be charac
terized as a language in which there is no b preceding an a. A language with
a b preceding an a can be defined as (a+ b)* · ba · (a+ b)*, and hence L(e) is
defined by the star-free expression

0 · b ·a· 0.

Theorem 7.26. A langnage is definable inFO iff it is star-free.

128 7 l\lonadic: Second-Order Logic and Automata

Pmof. We show that every star-free language is definable in FO by induction
on the star-free expression. The empty language is <h~finable by fal.~e, the
language {a} is definable by ::J!:r (.J: = :r) 1\ 'v'x P,(:r). If c = i; 1 and L(c 1) is
definable by <P, then ,p defines L(e). If e = e1 + c2 , with L(et) and L(c2)

definable by <JJ 1 and <JJ2 n~spec:tively, then <JJ1 V <JJ2 defines L(e).
Now assume that e = e1 · e2, and again L(c 1) and L(e2) are <kfinabl<>

by <P 1 and <1>2 . Let x be a variable that does not ()(:cur in <JJ 1 and </>2 , andlPI
cp;(:r:), i = 1, 2 .. be the formula obtained from <P 1 by rdativizing f~ac:h quantifier
to the set of positions { .IJ I :y ::.; :r;} for cp 1 , and to { y I y > .r} for tp:z. !\lore
pn~cisely, we inductively replace each subfonnula ::Jy~' of <P 1 by ::Jy (y ::.; .r) 1\

and each such subformula of <P2 by ::J:y (y > .r) 1\ t'. Then, for a strings and a
position p, we have 1\{, f= cp 1 (p) iff !vf~P f= <1> 1, where ,U:fi' is the substructur<'
of AI, with the domain { L ... , p}. Furthermore, M, p~ cp2 (p) iff M.? 1' f= <P2 .

where !vl/:P is the substructure of 11!, whose universe is the complenwnt of
{l, ... ,p}. Hence, s E L(e) iff M, f= ::l:r cp 1(.r) 1\ cp2 (.r), \vhich prows that
every star-free language is FO-definable.

We nmv prove the other direction: every FO-definahh~ language is star-fr<'P.
For technical reasons (to get the induction off the ground), ,,_.-e expand (J2"· with
a constant max, to be interpreted as the largest dE~rnent of the universe. Since
max is FO-definahle, this does not affect the set of FO-definabh~ languages.

The proof is now by induction on the quantifier rank /,: of a sent.f•nce </>.
l\'ote that since star-free languages are closed under tlw Boolean operations,
an arbitrary Boolean combination of sentences defining star-frn~ languages
also defines a star-fref~ language.

For k = 0, we have Boolean combinations of tlw sentences of the form
Pa (max), as well as tr·ue and false. The sentence Pa (max) clcfirws the language
denoted by 0 · rL true defines L(0), and false defines L(0).

Givf~n the closure under Boolean combinations, for the inductiv<~ st<'p it
suffices to consider sentences <P = ::l:rcp(:r), where qr(cp) = k.

Let To, ... , T111 enumerate all the rank-k FO-typr~s (again. with r<:'SJH'cl to
sentences: we do not have free variables). \"'p define

S' _ { (.) I for some s and. a position p.]\]" f== Y.~(p). }
'<[>- T,.Tl ('f<P)- ' i (~j>Ji - . tp~,; 11 ii - T 1 diH tpk 11 s) -- T 1

Our goal is now to show the following: for every string u, J\111 f== <P iff tlwre
exists a position pin 11 such that for some (T;, T 1) in S',1,, w<' hav<'

t ('JS1')- .. l t (1\]>P)-· Pk H 11 - T, dll(P~c . II - lj. (7.10)

First, we notice that this claim implies that the language L(<J>) is star-freP.
Indeed, each ofT; is definable by an FO sentence iJt, of quantifier rank A:, and
hence by thf' induction hypothesis, f~ach language L(llJ;) is star-freP. Thus,

L(<P) = u

7.6 Tree Automata 129

That is, L(<P) is a union of concatenations of star-free languages, and hence
it is star-free.

If Jlv1, f= <P, then the existence of p and a pair (Ti, Tj) follows from the
definition of S<J>. Conversely, suppose we have a string u and a position p such
that (7.10) holds. Since (Ti,Tj) E sp, we can find a strings with a position p'

in it such that M., f= 'fJ(p'), tpk(M~P') = Ti, and tpk(M?P) = T1. Hence,

M <p - '1<p' '1 ,>p - M>p' u =k 1V .:: l lV. u =k s '

and thus (M,,p) '=k (M8 ,p1). Since qr('P) = k, it follows that Mu f= l.fJ(p),
and hence Mu f= <P, as claimed. This completes the proof. D

Corollary 7.27. There exist regular languages which are not star-free.

Proof. The language denoted by (aa)* is regular, but clearly not star-free,
since EVEN is not FO-definable over linear orders. D

7.6 Tree Automata

We now move from strings to trees. Our goal is to define trees as first-order
structures, and study MSO over them. We shall connect MSO with the notion
of tree automata. Tree automata play an important role in many applications,
including rewriting systems, automated theorem proving, verification, and
recently database query languages, especially in the XML context.

We consider two kinds of trees in this section. Ranked trees have the prop
erty that every node which is not a leaf has the same number of children (in
fact we shall fix this number to be 2, but all the results can be generalized
to any fixed k > 1). On the other hand, in unmnked trees different nodes can
have a different number of children. We shall start with ranked (binary) trees.

Definition 7 .28. A tree domain is a subset D of { 1, 2} * that is prefix-closed;
that is, if s E D and s' is a prefix of D, then s' E D. Furthermore, if s E D,
then either both s · 1 and s · 2 are in D, or none of them is in D.

A L' -tree T is a pair (D, f) where D is a tree domain and f is a function
from D to L' (the labeling function).

We refer to the elements of D as the nodes ofT. Every nonempty tree
domain has the node E, which is called the root. A node s such that s ·1, s · 2 ric D
is called a leaf.

The first tree in Fig. 7.2 is a binary tree. We show both the nodes and the
labeling in that picture. The nodes ll1, ll2, 12, 21,22 are the leaves.

We represent a tree T = (D, f) as a first-order structure

130 7 Monadic Second-Order Logic and Automata

a

11 b

lll 112
(J b

]]

Ill JU

112

(J

2 b

12 b 21 22
(L

~:l

I\ I :n
21 22 :;

:n1

(}

Fig. 7.2. Examples of a ranked and an unranked tre<'

of vocabulary a :!J expanded with two binary relations succ 1 and succ 2 . HPn'
--< is interpreted as the prefix relation on D (in particular, it is a partial order,
rather than a linear order, as was the case with strings), 1~, is interpr<'tcd as
{8 ED I f(s) =a}, and succ; is {(s,s · i) ls,s · i ED}, fori= 1.2.

\Ve let Trees(E) be the set of all L'-trees. If we have a c.entence <P of some
logic, it defines the set of trees (also called a tree language)

{T E n·ees(L') I Air F <P}.

Thus, we shall he talking about tree languages definahlP in various logics.

Definition 7.29 (Tree automata and regular tree languages). A (non
deterministic) tree automaton is a htple A = (Q, q0 , S. F), where Q ·is a fi
nite set of states, q0 E Q, F c;;; Q is the set of .final (accepting) states, and
S : Q x Q x E ---+ 2Q is the transition function.

Given a tr·ee T = (D, f), a run of A on T is a fanction r : D ·--• Q such
that

• if s is a leaf labeled a, then r (s) E S (qu, lJo, o);

• if r(s · 1) = q, r(s · 2) = q' and f(s) =a, then r(s) r=: S(q, q', o).

A nm is called successful if r(f) E F (the mot is in the accepting state). The
set of trees accepted by A is the set of all tn:es T for which there e:rists a
successful run.

A tn~e language is called regular if it is accepted by a tree automaton.

7.6 Tree Automata 131

In a· deterministic tree automaton, the transition function is 6 : Q x Q x
E--. Q, and the definition of a run is modified as follows:

• if sis a leaf labeled a, then r(s) = 6(qo,q0 ,a);

• if r(s · 1) = q, r(s · 2) = q' and f(t) =a, then r(s) = 6(q, q', a).

For example, consider a deterministic tree automaton A whose set of states
is { q0 , Qa, Qb, q, q'}, with F = { q'}, and the transition function has the follow-
ing:

6(qo, Qo, a) = Qa

6(qo, qo, b) = Qb

6 (q,' Q/, b) = q
6 (Qa, Qa, b) = q'
6(q, Qb, a) = q
6 (q, q', a) = q' .

Then this automaton accepts the ranked tree shown in Fig. 7.2: following the
definition of the transition function, we define the run r such that:

• for the leaves, r-(111) = r-(21) = r-(22) = Qa and r-(112) = r-(12) = Qb;

• r(ll) = 6(q0 , Qb, b)= q;

• r-(1) = 6(q, Qb, a) = q;

• r(2) = 6(q0 , q"' b) = q'; and finally,

• r(e) = 6(q,q',a.) = q', and since q' E F, the automaton accepts.

We now establish the analog of Theorem 7.21 for trees, by showing that
regular tree languages are precisely those definable in MSO.

Theorem 7.30. A set of trees is definable in MSO iff it is regular.

Proof. The proof is similar to that of Theorem 7.21. To find an MSO definition
of the tree language accepted by an automaton A, we guess, for each state
q, the set Xq of nodes where the run of A is in state q, and then check, in
FO, that each leaf labeled a is in Xq for some q E 6(q0 , q0 , a), that transitions
are modeled properly, and that the root is in one of the accepting states. The
sentence looks very similar to (7.7), and is in fact an ::JMSO sentence.

The proof of the converse, i.e., that MSO only defines regular languages,
again follows the proof in the string case. Suppose an MSO sentence iP of
quantifier rank k is given. We let To, ... , Tm enumerate all the rank-k MSO
types, with To being the type of the empty tree, and take {To, ... , Trn} as the
set of states of an automaton A<J>. Since iP is equivalent to a disjunction of
types, we let F = { T; [T; is consistent with <P}. Finally,

132 7 Monadic Second-Order Logic and Automata

a

T .7

Fig. 7.3. Illustration for the proof of Theorem 7.30

if there are trees T1 and T2 whose rank-k MSO types are T, and TJ, n~spectively,

such that the rank-k MSO type of the tree obtained by hanging T1 and T2 as
children of a root node labeled a is Tz (see Fig. 7. 3).

Again, similarly to the proof of Theorem 7.21, one can show that A,p is a
deterministic: tree automaton accepting the tree language {T [T f= <P}. 0

Corollary 7.31. Every tree automaton is equivalent to a deterministic tn'.e
automaton, and every MSO sentence over trees is equivalent to an 31\ISO
sentence. D

The connection between FO-definability and star-free languages does not,
however, extend to trees. There are several interesting logics lwtween FO and
MSO, and some of them will be introduced in exercises.

We next show how to extend these results to unmnked trees.

Definition 7.32 (Unranked trees). An unranked tn~e domain -i.s a sulm'.t
D of {1, 2, ... } * (finite words over· positive integer·s) that is pncfix-r.losed, and
such that for s · i E D and j < i, the strings· .j is ·in D as well. An unmnked
tree is a pair (D, f), wher·e D is an unmnked tr·ee domain, and f is the labeling
function f : D -+ E.

Thus, a node in an unranked tree can have arbitrarily many children. An
example is shown in Fig. 7.2 (the second tree). Some nodes the root, nodes
11 and 3 -have three children; some have two (node 2), sorrw have one (nodes
1 and 3:1).

The transition function for an automaton working on binary trees was
of the form 6 : Q x Q x E -+ Q, based on the fact that each nonl<~af node
has exactly two children. In an unranked tree, the number of children could
be arbitrary. The idea of extending the notion of tree automata to the tm

ranked case is then as follows: we havn additional string automata that nm on
the children of each node, and tlw acceptance conditions of t host' automata
determine the state of the parent node. This is formali>~nd in the definition
below.

7.7 Complexity of MSO 133

Definition 7.33 (Unranked tree automata). An unranked tree automa

ton is a triple A = (Q, q0 , 6), where a.s before Q i.s the .set of .states, qo is an

element of Q, and 6 i.s the transition function 6 : Q x E __, 2Q* such that

6 (q, a) i.s a regular language over Q for every q E Q and a E E.

Given an unranked tree T = (D, f), a run of A on T i.s defined a.s a

function r : D __, Q .such that the following holds:

• if s is a node labeled a, with children s · 1, ... , s · n, then the str·ing

r(s · l)r(s · 2) ... r(s · n) is in 6(r(s), a).

In particnlar, if s ·is a leaf, then r(s) = q implies that the empty string belongs

to 6(q, a).

A r-un is successful if r(E) = q0, and T i.s accepted by A if there exists an

accepting r-un. An unranked tree language L i.s called regular if it i.s accepted

by an unranked tr·ee automaton.

To connect regular languages with MSO-definability, we have to represent

unranked trees as structures. It is no longer sufficient to model just two suc

cessor relations, since a node can have arbitrarily many successors. Instead,

we introduce an ordering on successor relations. That is, an unranked tree

T = (D, f) is represented as a structure

(D, -<, (~,)uEE, <sib!), (7.11)

where -<, as before, is the prefix relation, Pa is interpreted as { s E D I f(s) =

} d I II • ff th • d d . . ThT • • h l I . a ,an s <sibiS 1 ere1sano esan z,JEn,z<J,SUC t1ats =s·'l,
s" = s · j. In other words, s' and s" are siblings, and s' precedes s".

Thus, when we talk about. FO-definability, or MSO-definability over un

ranked trees, we mean definability over structures of the form (7.11).
Finally, the connection between automata and MSO-definability extends

to unranked trees.

Theorem 7.34. An v.nranked tree lang-uage i.s regular iff it is MSO-definable.

The proof of this theorem is similar in spirit to the proofs of Theorems

7.21 and 7.30, and is left as an exercise for the reader.

7. 7 Complexity of MSO

In this section we study complexity of MSO. We have seen that MSO, and

even ::JMSO, are significantly more expressive than FO: ::JMSO can express

NP-complete problems (3-colorability, for example), and by using negation,
we can express coNP-complete problems in MSO.

134 7 Monadic Second-Order Logic and Automata

This suggests a dose connection between :\ISO and the polynomial hier
archy, PH, for which NP and coNP are the two lowest levels above poly
nomial time. Recall that tlw lew~ls of the polynomial hierarchy are df~fined

. ,~p Jifi P·. . Ef! 'TPL•)' 1 1111 • l f ll I as .00 = () = I lM!-,, i = ·' •--J, anc i IS t W set 0 pro J f~IILS \V lOS('

complement is in L';' (sef~ Sect. 2.3).
\Vc next show that the data complexity of MSO is well approximated hy

the polynomial hierarchy (although MSO does not capture PH: for example,
Hamil tonicity is not .\!SO-expressible).

Proposition 7.35. For each level E;' OT nr of the polynomial hiemn:h:lf, then·
e:J:i8t8 a pr-oblem complete for· that level which is c:r,pn~s8ible in i\ISO.

Proof. We show how to express a variant of QBF (quantifil'd Boolf'an for
mulae), which Wf~ used in the proof of PSPACE-complf~Umcss of the combirwd
complexity of FO. We define the problem E;-SAT as follows. Its input is a
formula of the form

(3 ... =:J)(v ... v)(=:J ... :J) ... ~- (7.12)

where ~ is a propositional Boolean formula in conjunctive normal form. such
that each conjunct contains three propositional variables. The quantifier prdix
starts with a block of existential quantifiers, followed by a block of universal
quantifiers, followed by a block of existential quantifiers, and so on such that
there an~ i blocks of quantifiers. The output is "Fs" if th(' formula (7.12) is
true.

The problem !I;-SAT is defined similarly, except that in (7.12), the first
block of quantifiers is universal. vYe use the knm\m fact that L',-SAT is com
plete for Er, and n-SAT is cornp!Pte for IIf.

\Ve now show how to encock an instance <P (7.12) of E;-SAT as a structure
Q{,J,. Its universe is the set of variablf~s used in (7.12). It has four binary re
lations Ro, R t. R2. R:>, and i + 1 unary relations E t. U2. E:; Each relation
E~,; or U, is interpreted as the set of variablE's quantifi<'d hy the kth block of
quantifiers. Rdations R0 • R 1 , R2. R:; erH:ode th<' formula ~: relation R; cOIT<'

sponds to all the conjuncts of~ in which exactly i variables appear positively.
That is, R0 has all the triples (x. y, z) such that (--1.1· V -,_If V is a conjunct
of rp, R1 has all the triplf~s (x, y, z) such that (:r V "'Y V is a conjunct of .p.
and so orr.

Next, we find an MSO sentence if/ such that 2L,. f= if/ iff (/J is true. This
sentence is of the form

where each X; corresponds to tlw set of variables set to tnJe in the ith quanti
fier block. The formula rp' says that the variab!P assignment of the quantifif'r
prefix of![/ makes ~ true. For example, for each triple (.r. y. -~) in H 1 , it would
state that either y or z belongs to sornf' of the X; 's. or .r belongs to 1wither

7.7 Complexity of MSO 135

of them, and similarly for R0 , R2 , and R3. We leave the details to the reader.
The proof for IIi-SAT is almost identical: the sentence P must start with a
universal MSO quantifier. D

We shall return to complexity of SO in Chap. 9. For the combined com
plexity of MSO, see Exercise 7.21.

Even though the complexity of MSO is quite high, for many interesting
structures, in particular, strings and trees, the connection with automata pro
vides nice bounds in terms of parameterized complexity.

Corollary 7.36. Over strings and trees (ranked and unranked}, evaluating
MSO sentences is fixed-parameter linear. In particular, over strings and trees,
the data complexity of MSO is linear.

Proof. Suppose we have a sentence P and a structure Qt (string or tree). We
convert Pinto a deterministic automaton, by Theorems 7.21, 7.30, and 7.34,
and run that automaton over Q(, which takes linear time. D

Can Corollary 7.36 be extended to a larger class of structures? The answer
to this is positive, and it uses the concept of bounded treewidth we first
encountered in Section 6.7. Recall that a class C of a-structures is said to be
of bounded treewidth if there is a number k such that for every Q(E C, the
treewidth of its Gaifman graph is at most k. (See Sect. 6.7 for the definition
of treewidth.)

Theorem 7.37 (Courcelle). Let C be a class of structures of bounded
treewidth. Then evaluating MSO sentences over C is fixed-parameter linear.
In particular, the data complexity of MSO over C is Unear.

Proof sketch. We outline the idea of the proof. For simplicity, assume that
our input structures are graphs. Given a graph 9, compute, in linear time, its
tree decomposition, consisting of a tree T and a set Bt for each node t ofT.
Since the treewidth is fixed, say k, each Bt is of size at most k + 1, and thus
all the graphs generated by Bt 's can be explicitly enumerated. This allows
us to express MSO quantification over the original graph g in terms of MSO
quantification overT. Thus, we are now in the setting where MSO sentences
have to be evaluated over trees, and this problem is fixed-parameter linear,
which can be shown by converting MSO sentences into tree automata, as in
Corollary 7.36. D

Fixed-parameter linearity implies that the complexity of the model
checking is of the form !(II P II)· II Qt II· What can be said about the function f?
Even over strings, to achieve fixed-parameter linearity, one has to convert P to
an automaton. We have seen this conversion in the proof of Theorem 7.21, and
it was based on computing all rank-k MSO-types. One can also convert MSO
sentences into automata directly, with existential quantifiers corresponding to

136 7 Monadic Second-Order Logic and Automata

nondeterministic guesses. For such a conversion, the main problem is nega
tion, since complementing nondeterministic automata is not easy: OIH' has to
make them deterministic first, and then reverse the roles of accepting and
rejecting states. Going from a nondPterrninistic: automaton to a deterministic
one entails an exponential blow-up.

\Vhen we try to apply this wasoning to an MSO sentence of tlw form

(3 ... 3)('V ... 'V)(3 ... 3) ... p.

we see that at each quantifier alternation, one needs to mak<~ the automat011
deterministic. Hence, the size of the resulting automaton will be bounded by
(roughly)

where n is the size of the automaton corresponding to p, and k is the number
of alternations of quantifiers. That is, the size of tlw autornaton is actually
nonelementar·y in terms of II <P 11. \Ve recall that a function .f : N ~ N is
dernentary if for some fixf~d /,

f(n) <
" } 2· I times

2 for all n.

In fact, it is known that converting MSO formulae into automata is inlwrently
nonelernentary. Thus, even though over some classes of structures l\lSO is
fixed- parameter linear, the function of the parameter (that dqwnds on the
MSO sentence) is extremely large. Exercise 7.22 shows that the complexity
cannot bP lowered unless NP collapses to PT!tv1 E.

7.8 Bibliographic Notes

Second-order logic: is described in most logic tf~xtbooks. Monadic sC'cond order
logic and its games can be found in Ebbinghaus and Flum [60].

Proposition 7.14 is from Fagin [71], the proof is from Fagin, Stockme.vPr,
and Vardi [76]. Expressibility of undirected n~achability in 31\ISO is due to
Kanellakis; the proof was published in [11]. Inexpressibility of dir<'ctecl reach
ability in 3MS 0 is due to Aj tai and Fagin [ll].

The Fagin game is from Fagin [71], and thE' Ajtai-Fagin game is from [11].
For additional results on 31\ISO and its rdatives, see a survey by Fagin [7G]
and Ajtai, Fagin, and Stoc:kmeyer [12], Janin and l\Ian:inkmvski [137], and
Schwentick [216].

Theorem 7.21 is due to Biic:hi [27], and the proof prPsf•nt.<~d her<' follows
Ladner [160], seE' also Nevm and Schwentick [187]. Corollary 7.2~1 is due to
Turan [236] and de Rougemont [56]; tlw proof hen• follows l\lakowsh [176].

Theorem 7.26 was proved by l\Icl\aughton and PaJH'rt [182]: the proof
based on games follows Thomas [233].

7.9 Exercises 137

For connections between automata theory, logical definability, and circuit
complexity, see Straubing [225].

In the proofs of Proposition 7.12 and Theorems 7.21 and 7.26 we used
the composition method already encountered in Chap. 3. The composition
techniques used here are a special case of the Feferman-Vaught Theorem [79].
For more on the composition method, see a recent survey by Makowsky [177],
as well as Exercises 7.25 and 7.26.

Tree automata are treated in several books and surveys [38, 90]. Theorem
7.30 is due to Thatcher and Wright [230]. The corresponding result for un
ranked trees seems to be a part of folklore, and can be found in several papers
dealing with querying XML, e.g., Neven [186].

Proposition 7.35 also appears to be folklore. Completeness of Ef-SAT and
/If-SAT is due to Stockmeyer [223] (it is also known that the quantifier-free
formula can always be taken to be 3-CNF [59]). Theorem 7.37 was proved by
Courcelle [44]. Linearity of finding a tree decomposition of small treewidth is
from Bodlaender [24]. The nonelementary complexity of the translation from
MSO to automata is due to Stockmeyer and Meyer [224].

Sources for exercises:
Exercises 7.2-7.5: Courcelle [45, 46]
Exercise 7.11: Schwentick [215]
Exercise 7.12: Cosmadakis [42]
Exercise 7.13: Otto [190]
Exercise 7.14: Matz, Schweikardt, and Thomas [180]
Exercise 7.16: Thomas [231]
Exercises 7.18 and 7.19: Thomas [232, 233]
Exercise 7.20: Blumensath and Gradel [23]

Exercise 7.22:
Exercise 7.23:

Exercise 7.25:
Exercise 7.26:
Exercise 7.27:

7. 9 Exercises

Bruyere et al. [26], Benedikt et al. [21]
Benedikt and Libkin [20]
Frick and Grohe [85]
Grandjean and Olive [105]
Schwentick [216], Lynch [174]
Makowsky [177]
Courcelle and Makowsky [4 7]
Seese [218]

Exercise 7 .1. Prove Theorem 7. 7.

Exercise 7.2. Prove that the following properties of an undirected graph G are
expressible in MSO:

• G is planar;
• G is a tree.

138 7 Monadic Second-Order Logic and Automata

Exercise 7.3. Prove that the following properties of an undirect<>d graph G are
expressible in ::JMSO:

• G is not planar;
• G is not a tree;
• G is not chordal (recall that a chord of a cycle C: is an <~dge (a. b) such that n, b

are nodes of C, but the edge (a, b) is not inC; a graph without loops is chordal
if it has no cyc:le of length at least 4 without a chord).

Exercise 7.4. Consider a different representation of graphs as first-order structures.
Given a graph G, we create a structure 2(G = (A c. Pn) whose universe is tlw disjoint
union of nodes and edges of G, and Pc; is a ternary rdation that consists of pairs
(a,e,b), where e is the edge (a, b) in G.

Prove that over such a representation of graphs, Hamiltonicity is l\ISO-clefinabk

Exercise 7.5. Corollary 7.24 and Exercise 7A show that the expressive power of
MSO is different over two representation of graphs: one with the universe consisting
of nodes, and the other one with the universe consisting of both nodes ancl edges.

Prove that if we restrict the class of graphs to be on(~ of the following:

• graphs of bounded degree, or
• planar graphs, or
• graphs of treewidth at most k, for a fixed k.

then the expressive power of MSO over tlw two different rqm~sent.ations of graphs
is the same.

Exercise 7.6. Prove that ::JMSO can express queri(~S that are not Gaifrnan-local
and violate the BNDP.

Exercise 7.7. Prove that for each fixed k, directed reachahility is expres:o;ihlP in
::JMSO over graphs whose in-degrees and out-clegn~es do not excped k.

Exercise 7.8. Prove Theorem 7.16.
Conclude that undirected reachability is m Vl\ISO r-1 :=Jl\JSO. while din'ct<'d

reachability is in Vl\ISO - :31\lSO.

Exercise 7.9. Prove Proposition 7.20.

Exercise 7.10. Use Ajtai-Fagin games to prove that there is no :31\ISO sentPnce if>
such that, if a graph G is a disjoint union of two cycles, thPn C f= if> iff the cycles
are of the same size.

Exercise 7.11. Prove that graph connectivity is not definable in :31\ISO+ <.

Exercise 7.12. Prove that non-3-colorability of graphs cannot be Pxpresswl m
::JMSO.

Exercise 7.13. Prove that the number of second-order quantifif'rs in 31\JSO giws
rise to a strict hierarchy.

Exercise 7.14. Prove that the alternation depth of second-order quantifiers in !\ISO
gives rise to a strict hierarchy.

7.9 Exercises 139

Exercise 7.15. Prove the composition result used in the proof of Theorem 7.21.
That is, if s1, s2, t1, t2 E E* are such that A1., 1 =~1so Mt 1 and !v1s 2 =~180 !vlt2 , then
Ms 1 -s2 =~iSO Mtt·t2·

Exercise 7.16. Prove that over strings, every MSO sentence is equivalent to an
::JMSO sentence with a single second-order quantifier.

Exercise 7.17. Complete the proof of Theorem 7.30, and prove Theorem 7.34.

Exercise 7.18. Consider a restriction of MSO on binary trees, in which we only
allow second-order quantifications over antichains: sets of nodes X such that for
s, 8 1 EX, 8 -=J 8 1 , neither 8-< 8 1 nor 8 1 -< s holds. Such a logic is called the antichain
logic.

Prove that every regular tree language is definable in the antichain logic.

Exercise 7.19. Next, consider a restriction of MSO on binary trees, in which we
only allow second-order quantifications over chains: sets of nodes X such that for
8, s' E X, s -=J s', either s -< s' or s' -< s holds.

Prove that there are regular tree languages that are not definable in this restric
tion of MSO.

Exercise 7.20. Let s 1 , ... , sn. E E*. We construct a string [51 over the alphabet
(E U { #})", whose length is the maximum of the lengths of s;'s, and whose ith
symbol is a tuple (c1, ... , en), where each ck is the ith symbol of 8k, if the length
of Sk is at lea.'it i, or# otherwise. We say that a setS C::: (E*t is regular if the set
{[.5] I s E S} c::: (E u { #} r is regular.

Consider the infinite first-order structure 9.n whose universe is E*, and the pred
icates include -< (the prefix relation), a unary predicate La for each a in E, such
that La(x) holds iff the last symbol of xis a, and a binary predicate el such that
d (s, s') holds iff the length of s equals the length of 8 1 •

We call a subset S of (E*)" definable in 9.n if there is an FO formula 'P (x 1 , ... , Xn)
in the vocabulary of 9.n such that S = { s I 9.n f= 'P(.5)}.

Prove the following:

(a) A subset of (E*t is definable in 9.n iff it is regular.
(b) A subset of E* is definable in 9.n by a formula that does not mention the equal

length predicate iff it is star-free.
(c) Generalize (a) to binary trees.

Exercise 7.21. Prove that the combined complexity of MSO is PSPACE-complete.

Exercise 7.22. Prove that if the model-checking problem for MSO on strings can
be solved in time /(II <P II)· p(l s 1), for a polynomial p and an elementary function/,
then PTIME = NP.

Exercise 7 .23. Define complexity class NL!N as the class of problems accepted by
nondeterministic RAMs in linear time. Consider a different encoding of strings as
finite structures. A string s = St ... sn E {0, 1} * is encoded as follows. Partition 8

into m pieces of length i ·log n, where m = 11,;;" 1. Let 9s (i) be the number encoded
by the ith piece of the partitioned string. We define a structure Ms whose universe
is {I, ... , m}, and the vocabulary consists of two unary functions, one interpreted
as 9s, and the other one as successor.

Prove the following:

140 7 Monadic Second-Order Logic and Automata

• A set of strings 8 is in NLL'\ iff there exists a sentence<!> of the form

where Fi 's are unary function symbols, and cp is quantifier-free, such that :-,· =
{s I M8 f= <!>}.

• Every set of strings in !\"LIN is definable by an 31\ISO sentt'nce in the pwsencc
of a built-in addition relation.

Exercise 7.24. Using thf' fact that the MSO theory of finite trees is decidable
(Rabin [202)), prove that the MSO theory of finite forests is decidable.

Exercise 7.25. Define Th~180 (2l) as the sPt of all l\ISO[k] sPntmces tnw in 2l.
Notice that Th~1s0 (2l) is a finite object.

\Ve call an m-ary operation F on structures of the same vocabulary l\JSO-smooth
if Th~180 (F(2l1, ... , 2trn)) is uniquely determined by, and can he computed from,
Th~tso (2l1), ... , Th~1s0 (2lm), for every k. Prove that the disjoint union of structnrf'S.
root joining of trees, and concatenation of words an~ MSO-smooth.

Exercise 7.26. A class C of structures is MSO-indurtive if it is the smallest class of
structures that can be construct<~d from a fixf~d finite set of structures using a fixed
finite set of MSO-smooth operations. Such a construction naturally yields, for each
structure 2l E C, its parse tree T21.

Prove that the following are MSO-induc:tive classes of structnres:

• words;
• forests;
• graphs of treewidth at most I, for a fixed I.

Also prove that for a fixed MSO sentence <!>, checking whetllf'r 2l f= 1> can b<'
solved in time linear in the size of T~1 , if 2l E C.

Exercise 7.27. Consider representation of graphs from Exercise 7.4. Prove that if
C is a class of finite graphs, and its l\ISO theory in that representation is decidable,
then C is of bounded treewidth.

Hint: you will have to use decidability of the MSO theory of graphs of hounded
treewidth, undecidability of the MSO theory of grids (Cartesian products of suc
cessor relations), and the fact, due to Robertson and Seymour [204], that a class of
graphs of unbounded treewidth has arbitrarily large grids as its minors.

Exercise 7.28: Is every query in (MSO+ <)im definable in the expansion of
MSO with unary generalized quantifiers (see t lw definition in the~ next chaptPr)
Q,:c cp(:r.;ij) such that 2l f= Q.,:c cp(:r,u) holds iff lcp(2l.u)l mod m =()'I

8

Logics with Counting

We continue dealing with extensions of first-order logic. We have seen that the
expressive power of FO on finite structures is limited in a number of ways: it
cannot express counting properties, nor is it capable of expressing properties
that require iterative algorithms, as those typically violate locality.

In this chapter we address FO's inability to count. As we saw earlier,
nontrivial properties of cardinalities are not expressible in FO: for example,
a sentence of quantifier rank n cannot distinguish any two linear orders of
cardinality over 2n. Comparisons of cardinalities, such as testing if I A I> I B I,
are inexpressible too.

We first introduce two possible ways of extending FO that add counting
power to it: one is to use counting quantifiers and two-sorted structures, the
other is to use generalized unary quantifiers. We shall mostly concentrate on
counting quantifiers, as unary quantifiers can be simulated with them. We
shall see a very powerful counting logic, expressing arbitrary properties of
cardinalities, and yet we show that this logic is local. We also address the
problem of complexity of some of the counting extensions of FO.

8.1 Counting and Unary Quantifiers

Suppose we want to find an extension of FO capable of expressing the PARITY

query: if U is a unary predicate in the vocabulary a, and mE STRUCT[a], is
I U2J.I even? How can one do it?

One approach is to add enough expressiveness to the logic to find cardinal
ities of some sets: for example, sets definable by other formulae. Thus, if we
have a formula cp(x), we want to find the cardinality of cp(m) = {a I m f= cp(a)}.
The problem is that I cp(m) I is a number, and hence the logic must be ade
quately equipped to deal with numbers. To be able to use I cp(m) I, we introduce
counting quantifiers:

3ix cp(x)

142 8 Logics with Counting

is a formula with a new free variable i, which states that there are at least i
elements a of A such that 'P(a) holds.

The variable i must range over some numerical domain (which, as we shall
see, is different for different counting logics). On that numerical domain, we
should have some arithmetic operations available (e.g., addition and multipli
cation), as well as quantification over it, so that sentences in the logic could
be formed.

Without yet giving a formal definition of the logic that extends FO with
counting quantifiers, we show, as an example, how parity is definable in it:

:::Ji:::Jj ((i = j + j) 1\ 3ixip(x) 1\ (Vk (k > i)--+ --dk:r 't)(;r))) .

This sentence says that we can find an even number i (since it is of the form
2j) such that exactly i elements satisfy 'P(x): that is, at least i elements satisfy
ip, and for every k > i, we cannot find k elements that satisfy <p.

Note that we really have two different kinds of variables: variables that
range over the domain of l<t, and variables that range over some numerical
domain. Such a logic is called two-sorted. Formally, a structure for such a
logic has two universes: one is the non-numerical universe (we shall normally
refer to it as first-sort universe) and the numerical, second-.mrt universe. We
now give the formal definition of the logic FO(Cnt).

Definition 8.1 (FO with counting). Given a vocabular·y CJ, a CJ-stnu:ture
for FO with counting, FO(Cnt), is a structure of the fo1'1n

({ ao, ... , an-d, {0, ... , n- 1 }, (Ri)'21 , +. X, min, max)

where ({ a0 , ... , an-I}, (Ri)'li) is a structure from STRUCT[CJ] {Ri mnges over
the symbols in CJ), + and x are ternary relations { (i, j, k) I i + j = k} and
{ (i, j, k) I i-j = k} on {0, ... , n-1}, min denotes 0 and max denotes n-1. We
shall assume that the universes { ao, ... , a,_ 1 } and { 0 , n - 1} are disjoint.

Formulae ofFO(Cnt) can have free variables of two sods, mnging over· the
two universes. We normally use i, j, k, f, j for second-sort variables. FO(Cnt)
extends the definition of FO by the following rules:

• min, max are terms of the second sort. Also, every second-sort variable i
is a term of the second sort.

• Ift1,t2,t3 are terms of the second sort, then +(tJ,t2,t;l) and x(ft,f2J:l)
are formulae {which we shall nor·mally write as t1 +t2 = f:l and t1 ·f2 = t:l)·

• If 'P(x, Z) is a formula, then 3i 'P(x, Z) is a formula. The quantifier 3i binds
the second-sort variable i.

• If 'P(Y, x, Z) is a formula, then lj;(x, i, Z) = 3iy't)(y, :l, f) is a formula. The
quantifier 3iy binds the first-sort var·iable y but not the second-sort variable
z 0

8.1 Counting and Unary Quantifiers 143

For the semantics of this logic, only the last item needs explanation. Sup

pose we have a structure Ql, and we fix an interpretation a for x (from

{ ao, ... , an-d), iQ for i, and io for i (from {0, ... , n ~ 1}). Then Ql f=
1/J(a,io,zo) iff

l{bE{aa, ... ,an-d I Qtf=<p(b,a,fcJ)}I 2: io.

If we have a cr-structure Ql, there is a two-sorted structure Qt' naturally
associated with Qt. Assuming A = { a 0 , ... , an-l}, we let the numerical domain
of Qt' be {0, ... , n ~ 1 }, with min and max interpreted as 0 and n ~ 1, and

+ and x getting their usual interpretations. Hence, for Ql E STRUCT[cr], we
shall write Ql f= <p whenever <p is an FO(Cnt) formula, instead of the more

formal Qt' f= <p.

Let us see a few examples of definability in FO(Cnt). First, the usual linear

ordering on numbers is definable: i:::; j iff :=lk (i + k = j). Note that this does
not imply definability of ordering on the first-sort universe; in fact we shall
see that with such an ordering, FO(Cnt) is more powerful than FO(Cnt) on
unordered first-sort structures (similarly to the case of FO, shown in Theorem
5.3, and MSO, shown in Corollary 7.13).

We can define a formula :=l!ix<p(x, · · ·) saying that there are exactly i ele
ments satisfying <p:

:=l!ix<p(:r, · · ·) = :=lix<p(x, · · ·) 1\ Vk ((k > i)-+ --,:=Jkx<p(x, · · ·)).

We can also compare cardinalities of two sets. Suppose we have two formulae
<p(x) and 1/J(x); to test if I <p(Ql) 1>11/;(Ql) I, one could write

:=li (:=~ix<p(:r) 1\ --,:=Jix'lj!(x)).

One can also write a formula for the majority predicate MA.J (<p, 1j;) testing if
the set <p(Ql) contains at least half of the set 1/!(Ql):

Note that the definition of FO (Cnt) allows us to use formulae of the form
t 1 (Z) {=, >, 2:} t 2 (Z), where t 1 and t 2 are terms. For example, (i + i 2: j) is
~k (k = i + i 1\ k 2: j).

We now present another way of adding counting power to FO that does

not involve two-sorted structures. Suppose we want to state that I <p(Ql) I is
even. We define a new quantifier, QEvEN, that binds one variable, and write
QEvENx <p(x). In fact, more generally, for a formula with several free variables

<p(x, f]), we can construct a new formula QEVENx <p(x, f]), with free variables fl.
Its semantics is defin!~d as follows. If a is the interpretation for f], then

Ql F QEVENX <p(:r, a) -¢=} I {b I Ql F <p(b, a)} I mod 2 = 0.

144 8 Logics with Counting

Using the same approach, we can do cardinality comparisons. For example,
let Qu be a quantifif~r that binds two variables; then for two formulae y] (:r, m
and 'P2(z, Y), we have a new formula 7j;(.ij) := Qlf.r. ? (i?t (:r, //). 1?2 (z. yj)) such
that

The quantifier QH is known as the Hartig, or equicardinality, quantifier. An
other example is the Rescher quantifier Qn. The formation ruin is tlw same
as for the Hartig quantifier, and

2ll= Qnx.z (~?J(:r,a),cp2(z,a))
{c}l{bl2li=~?J(b,r1)}1 > l{bl2ll=~?2(b.r1)}1.

What is common to these definitions? In all the cases, we construct. sets of the
form ~?(2l,a) ={hE A 12ll= ~?(b,a)} ~A, and then make some cardinality
statements about those sets. This idea admits a nice gerwralization.

Definition 8.2 (Unary quantifiers). Let CJ/: be a vocabnla.ry of k unar;t; H'

lation symbols U1 , ... , U~;, and let K. ~ STRUCT[CJ/n be a class of str"u.ctun:s
closed under· isomorphisms. Then QK: is a unary quantifier and FO (Q") e:J:
tends the set of for-rn.ulae of FO with the following additional nde:

if 1/Jt (:r1, Yt), ... , !)!i.(:r~;, :lh) are fommlae,
then QK:Xt ... xk('lh (:rt. J}t), ... , lj!~;-(1'k: Jik)) is a fonnula.

(8.1)

Here QK: binds x; in the ith for·mula, fm· each i = l , k. A fr-ee occnr-rcnce
of a variable y in l/J;(.r:1 • JJ;) r-emains free in this new for-mula 1mless y = .r,.
The semantics of QK: is defined as follows:

2l I= CJK:.r 1 ... :ri.(1b 1 (.r 1 , at) , tJ'k(.r~;. ilk))
<=? (A. (2l. aJ), ... , '~i'd2l, ak)) E K..

(8.2)

In this definition, 0:1 is a tuple of parameter-s that g·ives the interpr·etation for·
those fn;e variables of '1/J; (:r:.;, :i]i) which an: not equal to .r;.

If Q i8 a set of unary quantifiers, then FO(Q) is the e:J:tcnsion of FO with
the for·mation r-ule above for each QIC E Q.

The quantifier- rank of fommlae with unar·y quant·ifiers is defined by the
additional r-ule:

qr(Q,c.rl, ... , .rk(1h (:rt, :iJJ), 1h, (:r,. :th)))
= max{ qr(«'i (.T,, :t7i)) I i ::; A:} + 1.

(8.3)

The three examples sePn earlier are all unary quantifiers: for QE\ EN, tlw
class K. consists of structures (A, U) such that I U I is <:ven; for QH, it consists
of structures (A, U1 , U2) with I U1 1=1 V2 1, and for Qn, it consists of stru<"1 ures
(A. Ut. U2) with I U1 l>lll2 I· Note that t.hP usual quantifiers ::3 and V ar<'

8.2 An Infinitary Counting Logic 145

examples of unary quantifiers too: the classes of structures corwsponding to
them consist of (A, U) with U f 0 and U = A, respectively.

We shall see that the two ways of adding counting power to a logic - by
means of counting quantifiers, or unary quantifiers - are essentially equivalent
in their expressiveness. Formulae with counting quantifiers tend to be easier
to understand, but the logic becomes two-sorted. Unary quantifiers, on the

other hand, let us keep the logic one-sorted, but then a new quantifier has to
be introduced for each counting property we wish to express.

8.2 An Infinitary Counting Logic

The goal of this section is to introduce a very powerful counting logic: so
powerful, in fact, that it can express arbitrary properties of cardinalities, even
nonrecursive ones. Yet we shall see that this logic cannot address another
limitation of FO, namely, expressing iterative computations. We shall later
see another logic that expresses very powerful forms of iteration, and yet is
unable to count. Both of these logics are based on the idea of expanding FO
with infinitary connectives.

Definition 8.3 (Infinitary connectives and .Coow)· The logic .C=w i8 de

fined as an extension of FO with infinitary connectives V and 1\: if IPi 's ar·e

formulae, fori E I, where I i8 not necessarily finite, and the free variables of
all the i.p; '8 are among x, then

vi.p; and
iEJ

are formulae. Their free variables are tho8e variables in x that occur freely in
one of the i.p '8.

The semantics is defined as follows: 2l f= V !.pi (ii) if for some i E I, 'it is
iEf

the case that 2l f= i.p; (ii), and 2l f= 1\ rp(ii) if 2l f= IPi (ii) for all i E I.
iEl

This logic per se is too powerful to be of interest in finite model theory, in
view of the following.

Proposition 8.4. Let C be a class of finite structures closed under isomor

phism. Then there is an Loow sentence <f>c such that 2l E C iff 2l f= <f>c.

Pmof. Recall that by Lemma 3.4, for every finite 23, there is a sentence Pp,

such that 2l f= Pp, iff 2l ~ 23. Hence we take <f>c to be

v Pp,.
'BEC

Clearly, 2l f= <f>c iff 2l E C. 0

146 8 Logics with Counting

However, we can make logics with infinitary connectives useful by putting
some restrictions on them. Our goal now is to define a two-sorted counting
logic .C~w (Cnt). We do it in two stages: first, we extend Lx:w with some
counting features, and second, we impose restrictions that make the logic
suitable in the finite model theory context.

The structures for this logic are two-sorted, but the second sort is no longer
interpreted as an initial segment of the natural numbers: now it is the whole
set N. Furthermore, there is a constant symbol for each k E N (which we also
denote by k). Hence, a structure is of the form

({al, ... ,an},N,(R~), {k}w~J), (8.4)

where again ({a1 , ... ,a11 },(R?)) is a finite a-structure, and R;'s range over
symbols in a.

We now define .Coow (Cnt), an extremely powerful two-sorted logic, that
extends infinitary logic .Coow· Its structures are two-sorted structures (8.4),
and the logic extends .Cocw by the following rules:

• Each variable or constant of the second sort is a term of the second sort.

• If cp is a formula and x is a tuple of free first-sort variables in cp, then
#x.cp is a term of the second sort, and its free variables are those in cp
except x.

The interpretation of this term is the number of tuples a over the
finite first-sort universe that satisfy cp. That is, given a structure ~ with
the first-sort universe A, a formula cp(x, y, i) and the interpretations band
iQ for y and f, respectively, the value of the term #].cp(:r, b.1{1) is

• Counting quantifiers 3ixcp, with the same semantics as before, except that
i could be an arbitrary natural number.

The logic .Coow (Cnt) is enormously powerful: it can defin<~ not only every
property of finite models (since it contains .CX;w), but also ever·y predicate or
function on N. That is, P <;;; Nk is definable by

v (8.5)

Note that the definition is also redundant: for example, ::li::r cp can be
replaced by #:z:.cp ;::::: z. However, we need counting quantifiers separately, as
will become dear soon.

Next, we restrict the logic by defining the rank of a formula, rk(cp). Its
definition is similar to that of quantifier rank, but there is one important
difference. In a two-sorted logic, we may have quantification over two different
universes. In the definition of the rank, we disregard quantification over N.
Thus, rk(cp) and rk(t), where tis a term, are defined inductively as follows:

8.2 An lnfinitary Counting Logic 147

• rk(t) = 0 if t is a variable, or a term k for k E N.

• rk(<p) = 0 if <p is an atomic formula of vocabulary a (i.e., an atomic first-
sort formula).

• rk(t1 = t2) = max{rk(h), rk(t2)}, where t1 and t2 are terms.

• rk(....,<p) = rk(<p) .

• rk(#x.<p) = rk(<p)+ lxl.

• rk(V <pj) = rk(;\ <p.i) = sup.i rk(<pj).

• rk(\ix <p) = rk(:Jx <p) = rk(:Jix <p) = rk(<p) + 1.

• rk(\ii <p) = rk(:Ji <p) = rk(<p).

Note that if <pis an FO formula, then rk(<p) = qr(<p).

Definition 8.5 . .C~w(Cnt) is defined as the restriction of .Coow(Cnt) to for
mulae and terms that have finite rank. D

This logic is clearly closed under the Boolean connectives and both first
and second-sort quantification. It is not closed under infinitary connectives:
for example, if Pi, i > 0, are .C~w(Cnt) sentences such that rk(Pi) = i, then
Vi Pi is not an .C~w(Cnt) sentence.

Note also that (8.5) implies that every subset of Nk, k > 0, is definable
by an .C~w(Cnt) formula of rank 0. Thus, we assume that +, ·, -, ::;, and in
fact every predicate on natural numbers is available. To give an example, we
can express properties like: there is a node in the graph whose in-degree i and
out-degree j satisfy PT > P.i where Pi stands for the ith prime. This is done by
:Jx:Ji:Jj (i = #y.E(y, x)) 1\ (j = #y.E(x, y)) 1\P(i, j), where Pis the predicate
on N for the property PT > P.i.

Known expansions of FO with counting properties are contained in
.C~w(Cnt).

Proposition 8.6. For every FO, FO(Cnt), or FO(Q) formula, where Q is a
collection of unary quantifiers, there exists an equivalent .C~w(Cnt) formula
of the same rank.

Proof The proof is trivial for FO and FO(Cnt). For FO(Q), assume we have
a formula

where K is a class of a;:-structures Ql = (A, U1 , ... , Uk) closed under isomor
phism. Let II be the set of all 2k mapping 1r : { 1, ... , k} --" { 0, 1}, and for a
structure Ql E K, let

hr(i)=l j:7r(j)=0

148 8 Logics with Counting

With each structure SJ, we then associate a tuple II(SJ) = (n(SJ))rrEn, with
n's ordered lexicographically. Since K is a class of unary structures closed
under isomorphism, 2t E K and II(SJ) = II('B) imply '13 E K.

This provides a translation of (8.6) into .C~w (Cnt) as follows. Let
PK(no, ... , n 2k _ 1) be the predicate on N that holds iff (n0 , ... , n 2 , _I) is of
the form II(SJ) for some 2t E K. Then (8.6) translates into

where no, ... , 1r2k _ 1 is the enumeration of II in the lexicographic ordering,
and

i:rr(i)=l j:rr(j)=O

Thus, if b1 , ... , bk interpret ih, ... , fA, respectively, in a structure '13, then the
value of #x-'1/Jrr(x, b1 , ... , bk) in '13 is precisely

Therefore, (8.7) holds for b1 , ... , bk in '13 iff the O"i;-structure

(B,'l/JI('B,bl), ... ,'l/Jk('B,bk)) is in K. This proves the equivalence of
(8.6) and (8.7). Finally, since Px:_ is a numerical predicate, it has rank 0, and
hence the rank of (8.7) is max{rk(¢1), ... , rk(?fk)} + 1 = rk('lj;), which proves
the proposition. D

In general, .C~w (Cnt) can be viewed as an extremely powerful counting
logic: we can define arbitrary cardinalities of sets of tuples over a structure, and
on those, we can use arbitrary numerical predicates. Compared to .C~w (Cnt),
a logic such as FO(Cnt) restricts us in what sort of cardinalities we can
define (only those of sets given by formulae in one free variable), and what
operations we can use on those cardinalities (those definable with addition
and multiplication).

We now introduce what seems to be a drastic simplification of .C~w (Cnt).

Definition 8.7. The logic .C~w(Cnt) is defined as .C~w(Cnt) where counting
terms #x.t.p and quantification over N are not allowed. D

On the surface, .C~w (Cnt) is a lot simpler than .C:'x:w (Cnt), mainly be
cause counting terms for vectors, #x.t.p, are very convenient for defining com
plex counting properties. But it turns out that the power of .C~w (Cnt) and
.C~w (Cnt) is identical.

Proposition 8.8. There is a translation t.p ----+ t.p 0 of .C~w (Cnt) formulae into
.C~w(Cnt) formulae such that t.p and t.p 0 are equivalent and rk(t.p) = rk(ip 0).

8.2 An lnfinitary Counting Logic 149

Proof. It is easy to eliminate quantifiers over N without increasing the rank:
3i cp(i, · · ·) and Vi cp(i, · · ·) are equivalent to

V cp(k, .. ·) and 1\ cp(k, ...),
kEN kEN

respectively. Thus, in the formulae below, we shall be using such quantifiers,
assuming that they are eliminated in the last step of the translation from
.C:'x,w(Cnt) to .C~w(Cnt).

To eliminate counting terms, assume without loss of generality that every
occurrence of #x.cp is of the form #x.cp = #fl.'¢ or #x.cp = i, where i is
a variable or a constant (if #x.cp occurs inside an arithmetic predicate P,
we replace P by its explicit definition, using infinitary connectives). Since
#x.cp = #fl.'¢ is equivalent to 3i (#x.cp = i) 1\ (#fl.'¢ = i), whose rank is
the same as the rank of #x.cp = #fl.'¢, and #x.cp = k, for a constant k, is
equivalent to 3i (#x.cp = i 1\ i = k), we may assume that all occurrences of
#-terms are of the form #x.cp = i, where i is a second-sort variable.

The proof is now by induction on the formula. The only nontrivial case is
'1/J(fl, lJ = (#x.cp(x, fl, lJ = i). Throughout this proof, we assume that i is in j.

By the hypothesis, there exists an .C~w(Cnt) formula cp0 which is equiva
lent to cp and has the same rank. We must now produce an .C~w(Cnt) formula
'¢ 0 equivalent to 'ljJ such that rk('¢ 0) = rk(cp)+ I xI· The existence of such a
formula will follow from the lemma below.

Lemma 8.9. Let cp(x,fl,lJ be an .C~w(Cnt) formula. Then there exists an
.C~w (Cnt) formula "Y(fl, lJ of rank rk(cp) + lxl such that "Y is equivalent to
#x.cp = i.

Proof of the lemma is by induction on I x 1. If x has a single component x,
"Y(if, lJ is defined as

3l ((l = i) 1\ (3!lx cp(x, fl,lJ)) ,

which has rank rk(cp) + 1. The quantifier 3l denotes an infinite disjunction, as
explained earlier.

We next assume that x = zx0 . By the hypothesis, there is an .C~w(Cnt)
formula a(x0 ,iJ,j,l) equivalent to (l = #z.cp(z,x0 ,fl,lJ) such that rk(a) =
rk(cp)+ I zl. We define

(3(fl,j,k,l) = 3!kxo a(xo,iJ,j,l).

Then rk(f3) = rk(a) + 1 = rk(cp)+ I xl. The formula f3(fl,j, k, l) holds iff there
exist exactly k elements x0 such that the number of vectors x with x0 in the
last position that satisfy cp(x, · · ·) is precisely l. Note that if f3(fl, j, k, l) and
f3(fl, j, k', l) hold, then k' must equal k.

Thus, to check if #x.cp = i, one must check if

150 8 Logics with Counting

2: (k .z) = 1.
!1(·· · .k./) holdH

This is done as follows. Let "(p(fJ,,]) be defined as:

p

A f)(i], J, i8,)s)
s=l

p

1\ \li,j (-J(i],j,i,j)-+ v (i = i,l\j = j,)
s=l

1\ A ('(i8 = is') V -,(js =)s'))
8op8'

1\ il .)1 + ... + ip.)p = i

That is, 'Yp says that there are precisely p pairs (is,)s) that satisfy !i(iJ, j, k. I).
and I:~=l is · Js = i. When p = 0, we define "fv(iJ, .7J as (i = 0) 1\
Vi',j' (-,;J(i],.f,i',j')). We can see that rk('Yp) = rk((j). We finally define

'Y(iJ,j) = v "(p(iJ,,]).
pEN

It follows that 'Y is an L:~w(Cnt) formula of rank that is equal to rk(;i), and
hence to rk(r.p)+ I x I, and that 'Y is equivalent to #x.r.p = i. This completes
the proof of the lemma and the proposition. 0

We next consider L::':cw(Cnt)+ <;that is, L::':cw(Cnt) over ordered struc
tures. We shall see in the next section that, as for FO, there is a separation

As the first step, we show that L::':cw(Cnt)+ <defines every property of finite
structures. Intuitively, with <, one can say that a given element of A is t.hP
first, second, etc., element of A. Then the unlimited counting power allows us
to code finite structures with numbers.

Proposition 8.10. Every property of finite ordered structnr·es is definable in
C:';.,w(Cnt).

Proof We show this for sentences in the language of graphs. Let C be a class
of ordered graphs. We assume without loss of generality that the sf't of nodes
of each such graph is a set of the form {0, ... , n }. Then the membership in C
is tested by the following C"xw (Cnt) sentence of rank :i:

((J.:=#::.(:::<:r))) V V.r\/y E(x, y) +--+ V 1\ I=#::.(:::< y) '
GEC (k.I)E Ec

where EG stands for the set of edges of G. 0

8.3 Games for .C~w(Cnt) 151

We finish this section by presenting a one-sorted version of ..C~w(Cnt)
that has the same expressiveness. This logic is obtained by adding infinitary
connectives and unary quantifiers to FO.

Let QA11 be the collection of all unary quantifiers; that is, all quantifiers
QK where K ranges over all collections of unary structures closed under iso
morphism. We define a logic ..Coow (QAu) by extending ..Coow with the formation
rules (8.1) for each QK E QAIJ, with the semantics given by (8.2), and quan
tifier rank defined as in (8.3). We then define ..C~w(QAII) as the restriction of
..Coow (QAII) to formulae of finite quantifier rank. This logic turns out to express
the same sentences as ..C~w(Cnt). The proof of the proposition below is left
as an exercise for the reader.

Proposition 8.11. For every ..C~w(Cnt) formula ¥J(x) without free second
sort variables, there is an equivalent ..C~w(QAII) formula 'lj;(x) such that
rk(¥J) = qr('¢), and conversely, for every ..C~w(QAu) formula 'lj;(x), there is
an equivalent ..C~w(Cnt) formula ¥J(x) with rk(¥J) = qr('¢). 0

8.3 Games for .C~w(Cnt)

We know that the expressive power of FO can be characterized via
Ehrenfeucht-Fralsse games. Is there a similar game characterization for
..C~w(Cnt)? We give a positive answer to this question, by showing that bijec
tive games, introduced in Sect. 4.5, capture the expressiveness of ..C~w(Cnt).
We first review the definition of the game.

Definition 8.12 (Bijective games). A bijective Ehrenfeucht-Fralsse game
is played by two players, the spoiler and the duplicator, on two structures
Ql, 23 E STRUCT[a']. If I A l#l B I, the spoiler wins the game. If I A 1=1 B I,
in each round i = 1, ... , n, the duplicator selects a bijection fi : A ----+ B, and
the spoiler selects a point a; E A. The duplicator responds by b; = f (a;) E B.
The duplicator wins the n-round game if the relation { (a;, b;) I 1 ~ i ~ n}
is a partial isomorphism between Ql and 23. If the duplicator has a winning
strategy in then-round bijective game on Ql and 23, we write Ql =~ij 23.

Note that it is harder for the duplicator to win the bijective game. First, if
I A Iii B I, the duplicator immediately loses the game. Even if I A 1=1 B I, in each
round the duplicator must figure out what his response to each possible move
by the spoiler is, before the move is made, and there must be a one-to-one
correspondence between the spoiler's moves and the duplicator's responses.
In particular, any strategy where the same element bE B could be used as a
response to several moves by the spoiler is disallowed.

Theorem 8.13. Given two structures Ql, 23 E STRUCT[a], and k 2 0, the
following are equivalent:

152 8 Logics with Counting

2. 21 and 23 agree on all £~,) Cnt) sentences of mnk k.

Pr·oof. Both implications 1 -> 2 and 2 -> 1 are prow~d by induction on k. We

start with the easier implication 1 --+ 2. By Proposition 8.8, assume that thc~n·

is no quantification over the numerical domain, and that all quantifiers arc of
the form ::Ji.r. For the base case k = 0, the proof is the same' as in the casP of

Ehrenfeucht-Frai"ssc games.
We now assume that tlw implication holds for k, and Wf' prm·e it for k + l.

Suppose 21 =~~ 1 23. First consider a sentence of the form <P = =:Jn:np(:r) for
a constant n E N. Suppose 21 f= <J>, and let c 1 , ••• , c11 lw distinct elements

of 21 such that 21 F i;J(C;)' i = 1 ' n. Since 21 = z~ l 231 there is a bijection

.f : A -> B such that (21, a) =Z.'1 (23, .f(o)) for all o E A; in particular.

(21, ci) =~ij (23, f(c;)) for all i :::; n. By thE~ hypothesis, (21.c;) and (23 . .f(c;))
agree on sentences of rank k; henCE' 21 f= i;J(C1) implies 23 f= zp(f(c.;)). Since .f
is a bijection, all .f(c;)'s are distinct, and thus 23 f= =:Jn:tip(.r). The ccmverse,

that 23 f= <J> implies 21 f= <I>, is proved in exactly the same way, using the

bijection f- 1•

Since every sentence of rank k + 1 can be obtained from sentences of the

form =:Jn:r:ip(x) by using the Boolean and infinitary COil!H'ctives. we see that

21 f= <P {=} 23 f= <J> for any rank k + 1 sentence <P.

For the other direction, we use a proof similar to the proof of the

Ehrenfeucht-Frai"ssc theorem given in Exercise 3.11. vVe want to define Pxplic

itly formulae specifying rank-k types in L:~w (Cnt). ThP number of types can
be infinite, but this is not a problem since we can use infinitary connectives,

and rank-k types will be given by formulae of rank k.
\Ve let ip~·"' (x) b£~ an enumeration of all the formulae that define distinct

atomic types of :r with I :f I= m; that is, all consistent conjunctions of thC' form

01 (:f) 1\ ... 1\ (I!\! (:Z).

where n; (:f) enumerate all (finitely many) atomic and negatf•d atomic formulaE'

in :r.
Next, inductively, let { ip;•+ 1 ·"'(::f) I i E N} be an ermnH:'ration of all the

formulae of the form

)I

(::JI[·. A.m+l(.~)/\ 1\::JI[.. !..mtl(.~))/\(If v ~k.mtl(·-:. l) ·1YIP; 1 .r:,y ··· ·pYIP;, .r,y 71 cr;, .r.y . (8.8)
.r~J

as p ranges over N and (1 1 , ... , lp) ranges over p-tnples of positive integers.

Intuitively, each zp~:.m+J (:l, y) defines the rank-k m + !-type of a tuple (.1, y).
1

Hence rank-k + 1 types of the form (8.8) say that a given .:f c:an lw C'xtended

top different rank-k types in such a way that for each i.J, there are precisely 11

elerm~nts y such that ip:;m+J (:i, y) defines the i1th rank-k of the tuple (.?. y).

l\ote that if the formula (8.8) is tnw in (21. i1), then I A I= /1 + ... + 11,.

8.4 Counting and Locality 153

It follows immediately from the definition of formulae cp~,rn that for every
~'a E Am, and every k;:::: 0, there is exactly one cp~,m such that~ f= cp~'m(a).

Next, we prove the following lemma by induction on k.

Lemma 8.14. For every m, every two structures~'~' and every a E Am, bE
Brn, suppose there is a formula cp~'m(x) such that~ f= cp~'m(a) and~ f=
cp~'m(b). Then (~,a) =~iJ (~,b).

Proof of the lemma. The case k = 0 is the same as in the proof of the
Ehrenfeucht-Fra'isse theorem. For the induction step, assume that the state
ment holds for k, and let cp~+l,m(x) be given by (8.8). If~ f= cp~+l,rn(a)
and ~ f= cp~+l,rn(b), then both A and B have exactly h + ... + lp elements.
Furthermore, for each j :::; p, let A1 = {a E A I ~ f= cp~,m+1(aa)} and

J

Bj = {b E B I ~ f= cp~,m+1(bb)}. Then I Aj 1=1 Bj I= lj, and hence there
J

exists a bijection f : A -+ B that maps each A1 to B1. For any a E A, if j
is such that~ f= cp~,m+1(aa), then~ f= cp~,m+l(bf(a)), and hence by the in-

J J

duction hypothesis, (~, aa) =~iJ (~, bf(a)). Thus, the bijection f proves that
~ _bij ~

(~,a) =k+I (~,b).

The implication 2 -+ 1 of Theorem 8.13 is now a special case of Lemma
8.14, since rk(cp~'m) = k. 0

8.4 Counting and Locality

Theorem 8.13 and Corollary 4.21 stating that (~,a) !::::>(3k_ 1);2 (~,b) implies

(~,a) =~ij (~,b), immediately give us the following result.

Theorem 8.15. Every .C~w(Cnt) formula cp(x) without free second-sort vari
ables is Hanf-local (and hence Gaifman-local, and has the BNDP). 0

Thus, despite its enormous counting power, .C~w(Cnt) remains local, and
cannot express properties such as graph connectivity. Combining Theorem
8.15 and Proposition 8.6, we obtain the following.

Corollary 8.16. If cp(x) is an FO(Cnt) formula without free second-sort
variables, or an FO(Q) formula, where Q is an arbitrary collection of unary
quantifiers, then cp(x) is Hanf-local (and hence Gaifman-local, and has the
BNDP).

Furthermore, we obtain the separation

(8.9)

since (.C~w(Cnt)+ <)expresses every property of ordered structures (includ
ing nonlocal ones, such as graph connectivity), by Proposition 8.10.

154 8 Logics with Counting

Theorem 8.15 says nothing about formulae that may have fn~!~ nuuwrical

variables. Next, we show how to extend the notions of Hanf- and Gaifman

locality to such formulae.

Definition 8.17. An £~w(Cnt) formula cp(.r, 1) is Hanf-local if ther·e e:r:ists

d ~ 0 such that for· alll(1 E Nlll, any two structures 2l. !B, and !IE Al''l.
bE Blxl,

(2l,a)'=;d(!B,b) implie.s (2t F= c;(a,l(i) S> lB F= c;rJ.7ii)).

Furthermore, cp(:r, i) is Gaifman-local if the·re ·is d ~ 0, sw:h that frn all

Z!1 E Nlll, ever·y structure 2l, and a 1, a2 E A I rl,

a1 :::.:::;~ a2 ·implies 2t F= c;(a1. t:i1) f-c, c;(a2.1i1l·

The locality mnk lr(-) and the Hanf-locality mnk hlr(-) an~ defined a.'i be

fore: these are the smalle.'it d that witnesses Gaifrnan-localitu (Hanf-localdu.

respectivelu) of a formula.

In other words, the formula must be Hanf-local or Gaifman-local for any

instantiation of its free second-sort variables. \vith the locality rank being

uniformly bounc!f~d for all such instantiations.

A simple extension of Theorem 4.11 shows:

Proposition 8.18. If an £~w (Cnt) formula c;(:l.1) is Hanf-local, then it is

Gaifrnan-local. []

Furthermore, we can show Hanf-locality of all £~w· (Cnt) formulaE' (not
just those without free numerical variablf~s) by using !'Ssentially t ll<' samf'

argument as in Theorem 4.12.

Theorem 8.19. Every £~w(Cnt) fonn:u.la cp(:f.1) is Hanf-local, and hence

Gaifman-local. Fur·thermoTe, hlr(cp) :::; (~~' ~ I)/2, and lr(c;) :; (3'+- 1 ~ I)/2.

wheTe k = rk(c;).

Proof. We give the proof for Hanf-locality; it is by induction on the stmctun•

of the formulae. For atomic formulae and Boolean connectives, it is t Jw samP

as the proof of Theormn 4.12. For infinitary cormectives, the argmrwnt is tlw
same as for 1\ and V. By Proposition 8.8, the only remaining cas<' is that

of counting quantifiers: c;(:f, 1) = ~jy ~;(y, .7:.1). WP assume j is in T. Let

rk(~) = k:, so that rk(cp) = k: + 1. Let d = hlr(l/'). It suffices to show that
hlr(ip):::; 3d+ 1.

Fix an interpretation 2(1 for f(and j 0 for j). Assume (2l, 17)'::::;:lrl+l (!B. b). By

Corollary 4.10, there is a bijection f :A---+ B such that (2l. ac) ::::;d (!B. bf(c))
for every c E A. Assume 2l f= cp(a, 1); then we ran find c 1 , •.•• 1"10 such

that 2l F lj;(c,, a, 1), 1 = 1, ... ,jo. Since hlr(tb) = d, by the hypotlw

sis, (2l,aq) '=;d (!B,bf(ct)) implies lB f= 1/'(f(o).b.f), 1 = l. jo. Tlms.

2) f= c;(b, 1), since f is a bijection. The convers!~, that lB f= ip(b.l) implies

2l f= cp(a.l), is identical. This proves hlr(cp) :::; :~d +I. D

8.5 Complexity of Counting Quantifiers 155

8.5 Complexity of Counting Quantifiers

In this section we revisit the logic FO(Cnt), and give a circuit model that
corresponds to it. This circuit model defines a complexity class that extends
AC0 ; the class is called TC0 , where TC stands for threshold circuits. There
are different ways of defining the class TC0 ; the one chosen here uses majority
circuits, which have special gates for the majority function.

Definition 8.20. Majority circuits are defined as the usual Boolean circuits
except that they have additional majority gates. Such a gate has 2k inputs,
XJ, ... , Xn,]11, ... , Yn, fork> 0. The output of the gate is 1 if

n

LXi > LYi,
i=l i=l

and 0 otherwise.
A circuit family C has one cir·cuit C, for each n, where n is the number

of inputs. The size, the depth, and the language accepted by C, are defined in
exactly the same way as for Boolean circuits. The class nonuniform TC0 is
defined as the class of languages (subsets of {0, 1}*) accepted by polynomial
size constant-depth families of majority circuits.

We now extend FO(Cnt) to a logic FO(Cnt)AII· This logic, in addition to
FO(Cut), has the linear ordering < on the non-numerical universe, and, fur
thermore, the restriction of every predicate P <;:; Nk to the numerical universe
{0, ... ,n -1}; that is, Pn {0, ... ,n -1}k.

Theorem 8.21. The class of structur·es definable by an FO(Cnt)AII sentence
is in nonuniform TC0 . Consequently, the data complexity of FO(Cnt)All is
nonuniform TC0 .

Proof. As in the proof of Theorem 6.4, we code formulae by circuits. We first
note that if a linear order is available on the non-numerical universe A, there
is no need for the numerical universe {0, ... , n- 1 }, where n =I A I, since
we can interpret min, max,<, and the arithmetic operations directly on A,
associating the ith element of A in the ordering < with i E N. Thus, counting
quantifiers will be assumed to be of the form 3yxcp(x, · · ·), stating that there
exist at least i elements x satisfying cp, where y is the ith element of A in the
ordering <.

Recall that for each structure 2l with I A I = n, its encoding enc(2l)
starts with on 1 that represents the size of the universe. For each formula
cp(x1, ... ,xm), and each tuple b = (61 , ... ,bm) in A"', we construct a circuit
C~(b) with the input enc(2l) which outputs 1 iff 2l f= cp(b).

If cp(b) is an atomic formula of the form S(b), where S E r7, then we simply
output the corresponding bit from enc(2l). If cp is a numerical formula, we

156 8 Logics with Counting

output 1 or 0 depending on whether cp(b) is true. For Boolean connectives, we
simply use V, A or -, gates. Thus, it remains to show how to handle the case
of counting quantifiers.

Let cp(x1 , ... ,xm) = :Jx1 y '1/J(y,x). That is, there exist .r1 elements y
satisfying cp (since structures are ordered, we associate an element x 1 with its
ranking in the linear order).

Let bE Am be given, and let a0 , ... , an~J enumerate all the elements of A.
Let Ci be the circuit C~;(a,,Gr We then collect the n outputs of such circuits,

and for each of the first n inputs (which are the first n zeros of enc(2l)), we
produce 1 for the first a1 zeros, and 0 for the remaining n -~ a 1 zeros. This
can easily be done with small constant-depth circuits. We then feed all tlw 2n
inputs to a majority gate as shown in Fig. 8.1.

Co

MAJ

1 1 1 0

Cn~l
al

Fig. 8.1. Circuit for the proof of Theorem 8.21

0

It is clear from the construction that the family of circuits defined this
way has a fixed constant depth (in fact, linear in the size of the formula), and
polynomial size in terms of 112lll· This completes the proof. D

As with nonuniform AC0 , the nonuniform version of TC0 can define even
noncomputable problems, since every predicate on N is available. The uni
form version of TC0 is defined as FO(Cnt)+ <: that is, FO(Cnt) with or
dering available on the non-numerical universe. Thus, we restrict ourselves
to addition and multiplication on natural numbers, and other functions and
predicates definable with them (e.g., the BIT predicate).

Uniform TC0 is a proper extension of uniform AC0 : for example, parity
is in TC0 but not in AC0 . It appears to be a rather modest extension: all we
add is a simple form of counting. In particular, TC0 is contained in PTIME,
and in fact even in DLoc. Nevertheless, we still do not know if TC0 ~ NP.

We know, however, that FO(Cnt) is subsumed by .C~w(Cnt), and that
.C~w (Cnt) is local -- and hence it cannot express many PTIME problems such
as graph connectivity, acyclicity, etc. Would not this give us the desired separa
tion? Unfortunately, it would not, since we can only prove locality ofFO(Cnt)
but not FO(Cnt)+ <. We have seen that for FO, its extension with order,

8.5 Complexity of Counting Quantifiers 157

that is, (FO+ <)inv, is local too. The same result, however, is not true for
FO(Cnt). We now show a counterexample to locality of (FO(Cnt)+<)inv·

Proposition 8.22. Ther·e exist q·uer·ies expressible in (FO(Cnt)+ <)inv which
are not Gaifrnan-local.

Proof. The vocabulary a contains a binary relationE and a unary relation P.
We call a a-structure good if three conditions are satisfied:

1. E has exactly one node of in-degree 0 and out-degree 1, exactly one node
of out-degree 0 and in-degree 1, and all other nodes have both in-degree
1 and out-degree 1.

That is, the relation E is a disjoint union of a chain
{(ao, at), (at, a2), ... , (a~.:~l· ak)} and zero or more cycles.

2. P contains a0 , does not contain a~.;, and with each a E P, except a0 , it
contains its predecessor in E (the unique node b such that (b, a) E E).
Thus, P contains an initial segment of the successor part of E, and may
contain some of the cycles in E.

3. fPI <::; log n, where n is the size of the universe of the structure.

We claim that there is an FO(Cnt) sentence Pgood that tests if a structure
Qi E STRUCT[a] is good. Clearly, conditions 1 and 2 can be verified by FO
sentences. For condition 3, it suffices to check that the predicate j <::; log k is
definable. Since j <::; log k iff 2J <::; k, and the predicate i = 21 is definable even
in FO in the presence of addition and multiplication (see Sect. 6.4), we see
that all three conditions can be defined in FO(Cnt).

We now consider the following binary query Q:

If Qi is good, return the transitive closure of E restricted to P.

The result will follow from two claims. First, Q is definable in FO(Cnt)+ <.
Second, Q is not Gaifman-local. The latter is simple: assume, to the contrary,
that Q is Gaifrnan-local and let d = lr(Q). Let k = 4d + 5, and n = 2'. Take
E to be a successor (chain) of length n, with P interpreted as its initial k
elements. Notice that this is a good structure. Then in P, we can find two
elements a, b with isomorphic and disjoint d-neighborhoods. Hence, (a, b) ~d
(b. a), but the transitive closure query would distinguish (a, b) from (b, a).

It remains to show that Q is expressible in FO(Cut)+<. First, we assume,
without loss of generality, that in a given structure 1.7i, elements of P precede
elements of A- P in the ordering <. Indeed, if this is not true of <, we can
always define, inFO, a new ordering < 1 which coincides with < on P and on
A- P, and, furthermore, a< 1 b for all a E P and b rJ_ P.

Let S c;;;; P, with S = {s1, ... , sm}· Let each SJ be the i;th element in
the ordering<; that is, ==J!irr (x <::; sJ) holds. Define a8 as the pth element
of A in the ordering<, where BIT(p, i 1), BIT(p, im) are all true, and for

158 8 Logics with Counting

every i rt {it, ... , irn}, the vahw of BIT(p. i) is false. Since IPI ~ log 11. such
an clement as exists for every S c:;; P. l'vioreover. since BIT is definable, tlwre
is a definable (in FO(Cnt)) predicate Code(u .. I') which is tnw iff t' is of the
form as for a set S, and 11. E S.

The query Q will now be definable by a formula ::lz U'(.r. y, .z), where 1.'

says that z codes the path from :t to y. That is, it says the following:

• Code(x. z) and Codf~(y .. ?) hold.

• If xu is the predecessor of :r and y0 is the successor of y, then Code(.r11 .. ~)

and Code(y0 • z) do not hold.

• For every other element u I :r. y such that Cocle(u, .:,) holds, it is the case
that Code("u 1• 2) and Code(u2 • 2) hold, \vhere u 1 and v 2 are the predeces
sor and the successor of u.

• Code(a0 • z) holds iff o0 = :r. and Code(a,. z) does not hold. Here a 11 and
ak are the dements of in-degree and out-degree 0, n:sjwctively.

Clearly, all these conditions can be cxpn~ssed in FO(Cnt).
Given the special form of E, one can easily verify that this dl~fines the

transitive closure restricted to P. 0

As a corollary of Proposition 8.22, we get a separation

FO(Cnt) ~ (FO(Cnt)+ <)im··

since all FO(Cnt)-expressible qw~ries are Gaifman-local. by Corollary 8.1G.

8.6 Aggregate Operators

Aggregate operators occur in most practical database query languages. They
allow one to apply functions for entire columns of relations. For example. if we
havf' a ternary relation R whosl~ tuples are (d. e. s), whew dis the department
name, e is the employee name, and s is his/her salary. a typical aggregate
query would ask for the total salary for each department. Such a query would
construct, for each department d, the set of all t u pies { (e 1 • s 1) , •••• (c 11 • s 11)}

such that (d, ei. s;) E R for i = 1, n, and thm output (d. I:;'o·l s,). \Ve
view this as applying the aggregate function SUM to the rrrulti8et { s 1 •...• s"}
(it is a multiset since some of the 8; 's can lw tlw same, but we have to sum
them all).

Logics with counting seen so far are not well suited for proving results
about languages with aggregations, as they cannot talk about Pntire columns
of relations. Nevertheless, we shall show here that aggregate operators can lw
simulated in £~""' (Cnt), thereby giving us f~xpressibility bounds for practical
database query languages.

\Ve first define the notion of an aggregate operator.

8.6 Aggregate Operators 159

Definition 8.23. An aggregate operator is a collection :F
{fo, h, h, ... , fw} of functions, wher·e each fn, 0 < n < w, takes an
n-element multiset {bag) of natural number·s, and returns a number in N.
Further·more, fo and f w are constants; f w is the fixed value associated to all
infinite multisets.

For example, the aggregate SUM will be represented as :FsuM

{fo, h, h , fw}, where fo = fw = 0, and

fn ({a 1 , ... , an}) = a 1 + ... + an.

Definition 8.24 (Aggregate logic). The aggregate logic Laggr is defined
as the following extension of L.~w (Cnt).

For· every possible aggregate operator· :F, a numerical term t(x, if) and a

formula cp(x, if), we have a new numerical term

t'(x) Aggr:Ff/ (t(:r, if), cp(x, if)).

Variables if become bound in Aggr :FY (t(x, if), cp(x, if)).
The value t' (a) is calculated as follows. If there are infinitely many b such

that cp(a,b) holds, then t'(a) = fw· If there is no b such that cp(a, b) holds,

then t' (a) = fo. Otherwise, let b1 , •.. , bm enumerate all the b such that cp(a, b)
holds. Then

t'(a) = frn({t(a,bi), ... ,t(a,bm)}).

Note that the argument of fm is in general a multiset, since some of t(a, bi)
may be the same. The rank oft' is defined as max(rk(t), rk(cp))+ I fll.

For example, the query that computes the total salary for each department
is given by the following .C,.ggr formula cp(d, v):

(::Jds R(d,e,s)) !\ (v = Aggr:Fsu•(e,s)(s,R(d,e,s))).

The above query assumes that some of the columns in a relation could
be numerical. The results below are proved without this assumption, but it
is easy to extend the proofs to relations with columns of different types (see
Exercise 8.16).

It turns out that this seemingly powerful extension does not actually pro
vide any additional power.

Theorem 8.25. The expressive power of Laggr and L.~w(Cnt) is the same.

Pr·oof. It suffices to show that for every formula cp(x) of .C,.ggr, there exists an
equivalent formula cp0 (x) of L.:'xcw(Cnt) such that rk(cp0) ::; rk(cp). We prove
this theorem by induction on the formulae and terms. We also produce, for
each second-sort term t(x) of Laggr, a formula ljJ1(x, z) of L.:'xcw(Cnt), with z
of the second sort, such that Ql F 1/Jt (a, n) iff the value oft(a) on Ql is n. Below
we show how to produce such formulae lj;1•

160 8 Logics with Counting

For a second-sort term t which is a variable i, \Ye define ~'t (i, ;;) to lw
(z = i). If tis a constant c, then if't(;;) = (z =c).

For a term
t' (:i) = Aggr F1J (t(:c, !7). :p(:?, :z7)).

1/'t' (:i. z) is defined as

where :P':x (.C) tests if the number of :il satisfying :p(.C. m is infinite, and i/,1

produces the value of the term in the case when the nurnbn of such .t7 is
finite.

The formula :p~ (:?) can be dr~fined as

v V f\:pf(Y.c)
'J:y 1 of 2nd sort Cc;;N. C' infinitP r·E('

where :p~(i,y;) = ==J:y1, ... ·Yi-J,ifi+l· ... ·Ym i.p 0 (.f.i]).
The formula l/" (:r. z) is defined as the disjunction of ·3.t7\::0 (.f . . iJ) 1\ c~ = Ill)

and

v
c.(l't-711) (c,,n,)

Z=C

(\ ==J!f!l,IJ (:p0 (:f, m (\~~~(:f. jj. cJ))
(\ ...

1\ 3!nlfJ (:p 0 (5'. fJ) 1\ i/Jt (.T, .iJ. q))
I

1\ V;i} (\ (i.p 0 (:?. m 1\ (!.·I (.1 .. iJ. (J) ---7 v (() = C;))
nE~l /::-::-!

where tlw disjunction is takrm over all tuples (c 1• n!) (c1• 111), I > 0. 11; > 0,
and values c E N such that

nt tiruc~ fl/ t irrH:'S

IndPed, this formula asserts either that :p(.r. ·) does not hold and t lwn
;; == fo, or that c1, CJ are Pxactly the vahH~s of thP tern1 I(.? . .t7) \vhen
ip(:r, fj) holds, and that r!j 's are the multiplicities of the C; \.

A straightforward analysis of the produced formula<~ shows that rk(1/'t') -:=;
max(rk(:p0). rk(i,i·1)) plus the number of first -sort Yaria hies in :z7: that is.
rk(l/'t') -:=; rk(t'). This compl<~tE~s thr• proof of the theon:m. D

Corollary 8.26. Ever'y quer-y c.Tpr-c.ssiblc in L,1w is Hrznf-localand Ga:ifrrum
loml.

Thus, practical databasE~ query languages \vith aggregate functions still
cannot express queries such as graph connectivity or transitive closure.

8.8 Exercises 161

8.7 Bibliographic Notes

Extension of FO with counting quantifiers was proposed by Immerman and
Lander [135]; the presentation here follows closely Etessami [68]. Generalized
quantifiers are used extensively in logic, see Vaananen [237, 238].

The infinitary counting logic .C~w (Cnt) is from Lib kin [166], although a
closely related logic with unary quantifiers was studied in Hella [121]. Propo
sition 8.8 is a standard technique for eliminating counting terms over tuples,
see, e.g., Kolaitis and Vaananen [149], and [166].

Bijective games were introduced by Hella [121], and the connection be
tween bijective games and .C~w (Cnt) is essentially from that paper (it used
a slightly different logic though). Locality of .C~w(Cnt) is from [166].

Connection between FO(Cnt) and TC0 is from Barrington, Immerman,
and Straubing [16]. The name TC0 refers to threshold circuits that use thresh
old gates: such a gate has a threshold i, and it outputs 1 if at least i of its inputs
aw set to 1. The equivalence of threshold and majority gates is well known,
see, e.g., Vollmer [247]. Proposition 8.22 is from Hella, Libkin, and Nurmonen
[123]. Our treatment of aggregate operators follows Gradel and Gurevich [98];
the definition of the aggregate logic and Theorem 8.25 are from Hella et al.

[124].

Sources for exercises:
Exercise 8.6: Libkin [166]
Exercises 8.7 and 8.8: Libkin [167]
Exercises 8.9 and 8.10: Libkin and Wong [170]
Exercise 8.11: Immerman and Lander [135]
Exercises 8.12 and 8.13: Barrington, Immerman, and Straubing [16]
Exercises 8.14 and 8.15: Nurmonen [189]
Exercise 8.16: Hella et al. [124]

8.8 Exercises

Exercise 8.1. Show that none of the following is expressible in .C~w (Cnt): transi

tive closure of a graph, testing for planarity, acyclicity, 3-colorability.

Exercise 8.2. Prove Proposition 8.10 for arbitrary vocabularies.

Exercise 8.3. Prove Proposition 8.11.

Exercise 8.4. Prove Proposition 8.18.

Exercise 8.5. Prove Theorem 8.19 for Gaifman-locality.

Exercise 8.6. Extend Exercise 4.11 to counting logics. That is, define functions
HanLrank£, Gaifman..rank£ : N ----. N, for a logic .C, as follows:

Hanf..rankL:(n) = max{hlr(cp) I cp E .C, rk(cp) = n},

162 8 Logics with Counting

GaifmaruankL: (n) max{ lr(<P) I <P E £, rk(cp) = n J.
Assume that we deal with purely relational vocabularies. Prove that for every 11 > l,

HanLrankL: (n) = 2" - l - 1 and Gaifman_rankL: (n) = 2" - l, when .C is one of the

following: FO(Cnt), FO(Q) for any Q, £:C"'(Cnt).

Exercise 8. 7. Extend £::C'"' (Cnt) by additional atomic formulae 1 d(.l'. ,i}) (whPn'

lxl=lyl), such that~ F '·d(a,b) iff u ~~~b. Let £*;;'~(Cnt) lJP the resulting logic
where every occurrence of ld satisfies d::; I'. Prove that C~L(Cnt) is Hanf-local.

Exercise 8.8. Extend £:.U"'(Cnt) by adding local second-order quantification: that
is, second-order quantification restricted to Nd (a), wlwre a is thP intf~rprPtation of
free first-order variables. Such an extension, like the one of Exercisf' 8. 7, must haw
the radii of neighborhoods, over which local second-orc!Pr quantification is clone.

uniformly bounded in infinitary formulae.
Complete the dPfinition of this logic, and prove that it captures precisely all the

Hanf~local queries.

Exercise 8.9. Let ~ k be the class of preordcrs in which (~wry equivalen(·p class

has size at most k. The f'quivalence associated with a pn•order ;:2; is

.c ~ y ~ (:r ;:$.IJ) A (if ;:$.r) .

ProvE~ that graph connectivity is not in (£:C'"'(Cnt)+ ~ k);,,.

Exercise 8.10. The goal of this exercise is to provf' a stat.f~rrwnt much stronger than

that. of Exercise 8.9. Given a preorder ;:$, Jet [:r:] be tl1P equivalf'nce class of J' with
respect to ~. Let g : N ---> N be a nondecn~asing function which is not bound<•d bv
a constant. Let ~ 9 be the class of preorders ;:$ such that on an n-dement set, for
at most g(n) elements we have l[x]l = 2, and for the remaining at !Past n- y(n)

elements, l[x]l = 1; furthermore, if I[J:]I = 2 and l[u]l = l, then .l'--< y. In othn words,
such preorders are lirwar orders everywhere, except at most g(n) initial elem<'nts.

Prove the f(Jliowing:

1. There are functions g for which (£.:C'"'(Cnt)+ ~ 9);"' contains nonlocal queries.

2. For every g, every quE~ry in (C,'""'(Cnt)+ ~ 9)im has thf' BNDP.

Exercise 8.11. Define Ehrenfeucht-Fralssi- garrH·s for FO(Cnt), and provP their
correctness.

Exercise 8.12. Consider the logic FO(MA.J) defined as follows. A universe of rr

structun~ is orden~d, and is thus associated with {0, ... , n - J }. Fl!rthermon•, for
each k > 0, and a formula <P(:f, z), with I k, we have a n<'w formula

u{z) MA.J .f cp(.r. z).

binding x, such that~ F v(i:') iff I cp(~J) I 2 ±· I A 1'- RPcall that cp(~- i') stands for

{bl ~ F= cp(b.i')}.

Prove the following:

• Over ordered structures, the logics FO(MA.J) and FO(Cnt) express all thP sanw

qJH~ries.

8.8 Exercises 163

• In the definition of FO(MAJ), it suffices to consider k :S 2: that is, the majority
quantifier MAJ (x1, x2) (j)(x1, x2, z).

• Over ordered structures with the BIT predicate, the fragment of FO(MAJ) in
which k = 1 (i.e., only new formulae of the form MAJ x (j)(x, Z) are allowed) is
as expressive as FO(Cnt).

Exercise 8.13. Prove the converse of Theorem 8.21: that is, any class of structures
in nonuniform TC0 is definable in FO(Cnt)AII·

Exercise 8.14. Consider the generalized quantifier Dn defined as follows. If (j)(x, Z)
is a formula, then 'lj;(Z) = Dnx (/)(X, Z) is a formula, such that !2l F (/)(a) iff I (j)(!Zl, a) I
mod n = 0.

Next, consider strings over the alphabet {0, 1} as finite structure (see Chap. 7),
and prove that none of the following properties of strings so ... Sm- 1 is expressible
in FO(Dn):

M · · "'m-1 > m • aJonty: L...i=O s; _ 2 ;
• m mod p = 0, for every prime p that does not divide n;
• (L:;:-;;1 s;) mod p = 0, again for every prime p that does not divide n.

Exercise 8.15. Consider the generalized quantifier Dn from Exercise 8.14. Consider
ordered structures (in which we can associate elements with numbers), and define
an additional predicate y = nx over them. Prove that even in the presence of such
an additional predicate, FO(Dn) cannot express the predicate y = (n + 1)x.

Exercise 8.16. Aggregate operators in database query languages normally oper
ate on rational numbers; for example, one of the standard aggregates is AVG =
{fa, /1, h ... ,Jw}, where fa= fw = 0, and fn({a1, ... ,an})= (a1 + ... + an)/n.

Define .C~ggr as an extension of Laggr where the numerical domain is Q, each
q E Q is a numerical term, and all aggregate operators :F on Q are available.

Prove the following:

1. For every .C~ggr formula (j)(x) without free numerical variables, there exists an
equivalent .C~w(Cnt) formula of the same rank.

2. Conclude that .C~ggr is Hanf-local and Gaifman-local.

Next, extend all the results to the case when different columns of O"-relations
could be of different types: some of the universe of the first sort, and some numerical.

Exercise 8.17: Prove that transitive closure is not expressible in FO(Cnt)+<.

9

Turing Machines and Finite Models

In this chapter we introduce the technique of coding Turing machines in vari
ous logics. It is precisely this technique that gave rise to numerous applications
of finite model theory in computational complexity. We start by proving the
earliest such result, Trakhtenbrot's theorem, stating that finite satisfiability
is not decidable. For the proof of Trakhtenbrot's theorem, we code Turing
machines with no inputs. By a refinement of this technique, we code nonde
terministic polynomial time Turing machines in existential second-order logic
(==JSO), proving Fagin's theorem stating that ==JSO-definable properties of finite
structures are precisely those whose complexity is NP.

9.1 Trakhtenbrot's Theorem and Failure of Completeness

Recall the completeness theorem for FO: a sentence (_[) is valid (is true in all
models) iff it is provable in some formal system. In particular, this implies
that the set of all valid FO sentences is r.e. (recursively enumerable), since
one can enumerate all the formal proofs of valid FO sentences. We now show
that completeness fails over finite models.

What does it mean that P is valid? It means that all structures Ql, finite
or infinite, are models of P: that is, Ql f= P. Since we are interested in finite
models only, we want to refine the notions of satisfiability and validity in the
finite context.

Definition 9.1. Given a vocabulary cr, a sentence P in that vocabulary is
called finitely satisfiable if there is a finite structur·e Ql E STRUCT[cr] such
that Ql f= P.

The sentence P is called finitely valid ifQl f= P holds for all finite structures
Ql E STRUCT[cr].

Theorem 9.2 (Trakhtenbrot). For ever·y r-elational vocabulary cr wdh at
least one binary relation symbol, it is ·undecidable whether a sentence P of
vocabulary CJ is finitely satisfiable.

166 9 Turing JVIachines and Finite l\fodels

In the proofthat we give, the vocabulary o- contains several binary relation
symbols and a constant symbol. But it is easy to modify it to prov<~ the result
with just one binary relation symbol (this is done by roding spyeral relations
into one; see Exercise 9.1).

Before we prov<~ Trakhtenbrot's theorem, w<~ point out two corollaries.
First, as we nwntioned earlier, completeness fails in the finite.

Corollary 9.3. For· any vocabular-y containing at least one binar·y r-elation
symbol, the set of finitely valid sentences is not n~r;m·sivel:IJ c'fliUirnernblc.

Pmof. Notice that the set of finitdy satisfiable sentences is recursively <'Illi
merable: one simply <~numerates all pairs (2l. <P). where 2l is finite, and outputs
<P whenever 2l I= <P. Assume that the set of finitely valici sentences is r.e. Since
,<];> is finitely valid iff <P is not finitely satisfiable, we conclude that the set
of sentences which are not finitely satisfiable is r.e., too. However, if both a
set X and its complement X are r.e., then X is recursive: hence, we conclude
that the set of finitely satisfiable sentences is recursive. which contradicts
Trakhtenbrot's theorem. D

Another corollary statf~s that one cannot have an analog of the Li:iwenlwim
Skolern theorem for finite models.

Corollary 9.4. Ther-e is no recur-sive function f such that if <P has a finite
model, then it has a model of size at most f (1>).

Indeed, with such a recursiw~ function <mP would IH~ able to d<~cid<' flnit<'
satisfiability.

'"e nmv prove Trakhtenbrot"s theorem. The idea of tlw proof is to ("()OP
Turing machirws in FO: for every Turing machine J\1, we construct a sPntence
<PJ\I of vocabulary o- such that cJ>AI is finitely satisfiable iff M halts 011 the
empty input. The latter is well known to be undecidablE~ (this is an easy
exercise in computability tlwory).

Let J\1 = (Q. E, L1, 6, qo, Q,, CJr) be a clet crministic Turing machiiH' \vith
a one-way infinite tap<~. Hen• Q is the set of states, ~· is the input alphab!'t,
L1 is the tape alphabet, q0 is the initial state, Q" (Q r) is tlw set of accepting
(rejecting) states, from which there are no transitions, and 6 is the transition
function. Since we are c:ociing the problem of halting 011 the empty input. we
can assume without loss of generality that L1 = { 0. l}, with 0 playing the role
of the blank symbol.

vVe define O" so that its structures wpresent computations of !1/. 1\Iorc
precisely,

where

9.1 Trakhtenbrot's Theorem and Failure of Completeness 167

• < is a linear order and min is a constant symbol for the minimal dement
with respect to <; hence the finite universe will be associated with an
initial segment of natural numbers.

• To and T1 are tape predicates; Ti(P, t) indicates that position pat time t
contains i, for i = 0. 1.

• lfq's are head predicates; Hq(p, t) indicates that at timet, the machine is
in state q, and its head is in position p.

The sentence PM states that<, min, T;'s, and Hq's are interpreted as incli
cated above, and that the machine eventually halts. Note that if the machine
halts, then Hq(p, t) holds for some p, t, and q E Qa U Q,., and after that the
configuration of the machine does not change. That is, all the configurations
of the halting computation can be represented by a finite O"-structure.

We define <1> 1\I to be the conjunction of the following sentences:

• A sentence stating that < is a linear order and min is its minimal element.

• A sentence defining the initial configuration of J\;J (it is in state q0 , the
head is in the first position, and the tape contains only zeros):

• A sentence stating that in every configuration of A1, each cell of the tape
contains exactly one element of L1:

'ip'it (To(p, t) +-+ --,T1 (p, t)).

• A sentence imposing the basic: consistency conditions on the predicates
H,/s (at any time the machine is in exactly one state):

Vt3!p (V Hq (p, t)) 1\ --,==Jp3t (v Hq(p, t) 1\ Hq'(p, t)).
qECJ q.q' ECJ. rr1'q'

• A set of sentences stating that T; 's and Hq's respect the transitions of
l\1 (with one sentence per transition). For example, assume that b(q, 0) =
(q', 1, €); that is, if l'vf is in state q reading 0, then it writes 1, moves the
head one position to the left and changes the state to q'. This transition
is represented by the conjunction of

and

168 9 Turing Machines and Finite Models

p =min 1\ f[9 ,(p. t + 1)
(

T1 (p, t + 1))

\:lp\:lt 1\ To (p, t) ----+ 1\ Vp' (p -=f p' ____, C II,,(p,t)) (,~0, T,(riJ 1 1) H T,(p'.l)))

\Ve use abbreviations p - 1 and t + I for the predecessor of p and the
successor oft in the ordering <; these are, of course. FO-definab]('. The
first sentence above ensun~s that the tape content in position p changes
from 0 to 1, the state changes from q to q', the rest of tlw tap(' remains
the same, and the head moves to position p -- 1, assuming p is not the first
position on the tape. The second sentence is very similar, and handles th('
case when p is the initial position: then the lwad does not move and staF;
in p.

• Finally, a sentence stating that at som(~ point, M is in a halting stat(':

3p3t v
If <].> M has a finite modeL then such a model reprC'sents a computation

of .AI that starts with the tape containing all zeros, and ends in a halting
state. If, on the other hand, 1U halts on the empty input, tlwn the set of all
configurations of tlw halting computations of !\I cockd as rPlations <. T, 's,
and Hq's, is a model of <PM (necessarily finite). Thus. l\I halts on the empty
input iff <PM has a finite model. Since testing if M halts on the' empty modd
is undecidable, then so is finite satisfiability for <PM. D

9.2 Fagin's Theorem and NP

Fagin's theorem provides a purely logical characterization of the complexity
class NP, by nH"ans of coding computations of nondNenninistic polynomial
timP Turing machines in a fragment of second-order logic. BeforP stating th<'
result, we give the following general definition. Recall that by propert i(•s. WC'

mean Boolean queries, name]~,-, collections of structures closed under isomor
phism.

Definition 9.5. Ld K be a romple:rity class, .C a lo_qir:, and C a dass of .finitrc
.stnJ,ctm·r;s. We say that .C captun~s K on C if the follo'llrinq hold:

1. Thrc data complexit:q of .C on C is K; that is, for evcr·y £-sentence <P. t,cshnq
if 21 I= </> is in K. pmvided 21 E C.

2. For- ever·y pr-oper-ty P of stnu:tv,r'es frmn C that mn be tested with r'om
ple:r;ity K, there is a sentenr:e </>p of .C such that ~Zl I= <l>p i.ff 21 has the
proper·ty P, for· every 21 E C.

9.2 Fagin's Theorem and NP 169

If C is the class of all finite structnr·es, we say that L captures K.

Theorem 9.6 (Fagin). 3SO captures NP.

Before proving this theorem, we make several comments and point out
some corollaries. Fagin's theorem is a very significant result as it was the
first machine-independent characterization of a complexity class. Normally, we
define complexity classes in terms ofresources (time, space) that computations
can use; here we use a purely logical formalism. Following Fagin's theorem,
logical characterizations have been proven for many complexity classes (we
already saw them for uniform AC0 and TC0 , and later we shall see how to
characterize NLoG, PTIME, and PSPACE over ordered structures).

The hardest open problems in complexity theory concern separation of
complexity classes, with the "PTIME vs. NP" question being undoubtedly the
most famous such problem. Logical characterizations of complexity classes
show that such separation results can be formulated as inexpressibility results
in logic. Suppose that we have two complexity classes K1 and K2 , captured
by logics £ 1 and £ 2 . To prove that K1 i= K2 , it would then suffice to separate
the logics £ 1 and £ 2 ; that is, to show that some problem definable in £ 2 is
inexpressible in £1, or vice versa.

Since the class coNP consists of the problems whose complements are in
NP, and the negation of an 3SO sentence is an 'v'SO sentence, we obtain:

Corollary 9. 7. 'v'SO captures coNP. D

Hence, to show that NP i= coNP, it would suffice to exhibit a property
definable in 'v'SO but not definable in 3SO. While we still do not know if
such a property exists, recall that we have a property definable in 'v'MSO
but not definable in 3MSO: graph connectivity. In fact, for reasons obvious
from Fagin's theorem and Corollary 9. 7, 3MSO is sometimes referred to as
"monadic NP", and 'v'MSO as "monadic: coNP". Hence, Proposition 7.14 tells
us that

monadic NP i= monadic coNP.

Note that separating 'v'SO from 3SO would also resolve the "PTIME vs. NP"
question:

'v'SO i= 3SO =? NP i= coNP =? PTIME i= NP

(if PTIME and NP were the same, NP would be closed under the complement,
and hence NP and coNP would be the same).

As another remark, we point out that the above remark concerning the
separation of 3SO and 'v'SO is specific to the finite case. Indeed, by Fagin's
theorem, 3SO i= 'v'SO over finite structures iff NP i= coNP, but over some
infinite structures (e.g., (N,+,·)), the logics 3SO and 'v'SO are known to be
different.

170 9 Turing Machines and Finite Models

We now prove Fagin's theorem. First, we show that every ::ISO sentence P
can be evaluated in NP. Suppose Pis ::IS\ ... 35, i.p, where 'P is FO. Given
2!, the nondeterministic machine first guesses 5 1 , ... , Sn, and then checks if
i.p(Sl, ... , Sn) holds. The latter can be done in polynomial time in 1/2! II plus
the size of sl' ... 'Sn, and thus in polynomial time in 112! II (see Proposition
6.6). Hence, <P can be evaluated in NP.

Next, we show that every NP property of finite structures can be expressed
in ::ISO. The proof of this direction is very close to the proof of Trakhtenbrot's
theorem, but there are two additional elements we have to take care of: time
bounds, and the input.

Suppose we are given a property P of a-structures that can be tested,
on encodings of a-structures, by a nondeterministic polynomial time Turing
machine M = (Q, E, Ll, o, qo, Qa, Q,.) with a one-way infinite tape. Here Q =
{ q0 , ... , Qrn-l} is the set of states, and we assume without loss of generality
that E = {0, 1} and L1 extends E with the blank symbol "-". We assume that
1\1 runs in time nk. Notice that n is the size of the encoding, so we always
assume n > 1. We can also assume without loss of generality that JI.I always
visits the entire input; that is, that nk always exceeds the size of the encodings
of n-element structures (this is possible because the size of enc(2t), defined in
Chap. 6, is polynomial in 112! II).

The sentence describing acceptance by JI.I on encodings of structures from
STRUCT[a] will be of the form

(!U)

where tJt is a sentence of vocabulary a U { L, T0 , T1 , T2} U { Hq I q E Q}. Here
Lis binary, and other symbols are of arity 2k. The intench~d interpretation of
these relational symbols is as follows:

• L is a linear order on the universe.

With L, one can define, in FO, the lexicographic linear order '5,~,; on k
tuples. Since fvf runs in time nk and visits at most nk cells, we can model
both positions on the tape (j}) and time (i) by k-tuples of the elements of the
universe.

With this, the predicates Ti 's and Hq 's are defined similarly to the proof
of Trakhtenbrot's theorem:

• To, T1 , and T2 are tape predicates; T; (if, i) indicates that position il at
time [contains i, for i = 0, 1, and T2 (jf, i) says that if at time t contains
the blank symbol.

• Hq 's are head predicates; Hq(p, i) indicates that at time F, the machim' is
in state q, and its head is in position 11.

9.2 Fagin's Theorem and NP 171

The sentence !J.r must now assert that when M starts on the encoding of 21,
the predicates T/s and Hq's correspond to its computation, and eventually llf
reaches an accepting state. Note that the encoding of 2l depends on a linear
ordering of the universe of A. We may assume, without loss of generality,
that this ordering is L. Indeed, since queries are closed under isomorphism,
rhoosing one particular ordering to be used in the representation of enc(2l)
does not affect the result.

We now define !J.r as the conjunction of the following sentences:

• The sentence stating that L defines a linear ordering.

• The sentence stating that

in every configuration of M, each cell of the tape contains exactly one
element of .d;

at any time the machine is in exactly one state;

- eventually, Af enters a state from Qa.

All these are expressed in exactly the same way as in the proof of Trakht
enbrot's theorem.

• Sentences stating that Ti 's and Hq 's respect the transitions of A f. These
are written almost as in the proof of Trakhtenbrot's theorem, but one has
to take into account nondeterminism. For every a E L1 and q E Q, we have
a sentence

V CX(q.a,q 1 ,b,movc)'

(q',b.movc)E8(q,a)

where rnove E {£,r} and a(q,a,q',b,rnove) is the sentence describing the
transition in which, upon reading a in state q, the machine writes b, makes
the move rnove, and enters state q'. Surh a sentence is written in exactly
the same way as in the proof of Trakhtenbrot's theorem.

• The sEmtenr,e defining the initial configuration of Af. Suppose we have
formulae 1.(j1) and ~ (j}) of vocabulary O" U { L} such that 2l f= L(j}) iff the pth
position of enc(2l) is 1 (in the standard encoding of structures presented
in Chap. 6), and 2l f= ~(j}) iff p exceeds the length of enc(2l). Note that
we need L in these formulae since the encoding refers to a linear order on
the universe. With sur,h formulae, we define the initial configuration by

In other words, at time 0, the tape contains the encoding of the structure
followed by blanks .

.Just as in the proof of Trakhtenbrot's theorem, we conclude that (9.1)
holds in 2l iff M accepts enc(2l). It thus remains to show how to define the
formulae 1.(j1) and ~ (j}).

172 9 Turing Machines and Finite l\Ioclds

'Ve illustrate this for the case of a = { E}, with E binary (to keep the no
tation simple; extension to arbitrary vocabularies is straightforward). Assume
that the universe ofthe graph is { 0, n - 1}, where (i. j) E L iff i < j. Tlw
graph is then encoded by the string 0"1· s, where sis a string of length n 2 ,

such that it has 1 in position u · n + ·u, for 0 <::: u,v <::: n- 1, iff (u,t•) E E.
That is, the actual encoding of E starts in position (n + 1). Already from
here, one can see that in the pres<~nce of addition and multiplication (given
as ternary relations), t. is definable. Indeed, f)= (p 1 •... • pk) represents the
position PI · nk-J +]J2 · nk-'2 + ... + Pk-1 · n + JJA. HencP, 1 (j}J is equivalent to
the disjunction of I;~= 1 p; · nk-- i = n and

k

:3u<:::(n-l):3v<:::(n-1) ((n+l)+H·n+v=8p;·nJ.' 1\ E(u.l')).

With addition and multiplication, this is a definable property. and addition
and multiplication themselves can be introduced by means of additional Pxis
tential second-order quantifiers (since one can state inFO that a given relation
properly represents addition or multiplication with resJwd to the ordPring I~).

"''hile this is certainly enough to conclude that 1 is ddinable, \VP now
sketch a proof of ddinability of L without any additional aritlmwtic. Instead,
we shall only refer to the linear ordering L, and we shall use the associat<~d
successor relation (i.e., we shall rder to :r + 1 or :r- 1). Assume k = :). That
is, a tuple f) represents the position p 1n 2 + Ji21l + p;; on tlw tape. The first
position where the encoding of E starts is n + l (positions 0 to n reprPSPnt
the si7,e of the universe) and the last one is n2 + n. Hence, if p 1 > l, then
t. is fal8e. Assume p 1 = 0. Then we are talking about the position P:2n + Jl:;.

Positions 0 ton -·1 have ;~eros, so if]J2 = 0, thPn again 1 is false. If Ji;J # 0, then
(p2 -1)n + (P:1 - 1) + (n + l) = Ji211 + p;;, and hence the position cotT<'sponds to
E (p2 - 1, p;1 - 1). If p;1 = 0, then this position corresponds to E (p2 -- 2. 11 -- l).
Hence, the formula 1.(p1 .p2 .]J:J) is of the form

[((Pt = 0)) 1\ ((P:l # 0) 1\ E(p2- Lp; -· I)) l
/\(p2 > 1) V (P:l = 0) 1\ E(p"2- 2. n- 1)

V [(p1 = 0) 1\ (p2 '= 1) 1\ (p;; = 0)] V [(p 1 = I) 1\ ...] .

where for the case of p 1 = l a similar case analysis is done. Clearly, with the
linear order L, both 0 and n- 1, and tlw predecessor function arP ddinahle.
and hence L is FO. (The details of writing clown L for arbitrary 1.: are l<'ft as
an exercise to the reader, see Exercise 9.4.) Tlw formula ~(ii) simply says that
f), considered as a number, excef~ds n 2 + 11 + l. This completes th<~ proof of
Fagin's theorem. 0

VVe now show several more corollaries of Fagin's thPorem. The first onP is
Cook's th<~orem stating that SAT, propositional satisfiability, is NP-mmpletP.

9.2 Fagin's Theorem and NP 173

Corollary 9.8 (Cook). SAT i8 NP-complete.

Proof. Let P be a problem (a class of O"-structures) in NP. By Fagin's theorem,
there is an 3SO sentence <P = 351 ... 3Sn I{J such that 2t is in P iff 2t f= <P.
Let X= {Si(a) I i = 1, ... 'n, a E Aarity(S,l}. We construct a propositional
formula n~ with variables from X such that 2t f= <P iff n~ is satisfiable.

The formula ct~ is obtained from I{J by the following three transformations:

• replacing each 3x 1j;(x, ·)by VaEA 1j;(a, ·);

• replacing each \h: 1j;(x, ·)by 1\o.EA 1j1(a, ·);and

• replacing each R(a), for REO", by its truth value in 2t.

In the resulting formula, the variables are of the form Si (a); that is, they come
from the set X. Clearly, 2t f= <P iff n~ is satisfiable, and n~ can be constructed
by a deterministic logarithmic space machine. This proves NP-completeness
of SAT. D

The logics 3SO and \ISO characterize NP and coNP, the first level of the
polynomial hierarchy PH. Recall that the levels of PH are defined inductively:
LT = NP, and L'f+ 1 = NPE~. The level !If is defined as the set of comple
ments of problems from L'f. Also recall that L'~ is the class of SO sentences
of the form

(3 ... 3)(\i ... \1)(3 ... 3) ... ip,

with k quantifier blocks, and II l is defined likewise but the first block of
quantifiers is universaL

We now sketch an inductive argument showing that L'~ captures L'f, for
every k. The base case is Fagin's theorem. Now consider a problem in L'f+1 .

By Fagin's theorem, there is an 380 sentence <P (corresponding to the NP ma
chine) with additional predicates expressing L'f properties. We know, by the
hypothesis, that those properties are definable by L'i formulae. Then pushing
the second-order quantifier outwards, we convert <Pinto a L'i+l sentence. The
extra quantifier alternation arises when these predicates for L'f properties are
negated: suppose we have a formula 3 ... 3ip(P), where P is expressed by a
formula 3 ... 31[1, with 1j1 being FO, and P may occur negatively. Then putting
the resulting formula in the prenex form, we have a second-order quantifier
prefix of the form (3 ... 3)(\i ... \f). For example, 3 ... 3 --,(3 ... 31/;) is equiva
lent to 3 ... 3\i ... \i -,1j;. Filling all the details of this inductive proof is left to
the reader as an exercise (Exercise 9.5).

Thus, we have the the following result.

Corollary 9.9. For each k 2 1,

• L'l. capture.s L'[', and

• IIJ. capturr-.s !If.
In particular·, SO capture.s the polynomial hierarchy.

17 4 9 Turing Machines and Finite Models

9.3 Bibliographic Notes

Trakhtenbrot's theorem, one of the earliest results in finite model theory, was
published in 1950 [234].

Fagin's theorem was published in 1974 [70, 71]. His motivation came from
the complementation problem for spectra. The spectrum of a sentence <P is the
set { n E N I <P has a finite model of size n}. The complementation problem
(Asser [14]) asks whether spectra are dosed under complement; that is, where
the complement of the spectrum of <P is the spectrum of some sentence l[t.

If CJ = { R 1, ... , Rn} is the vocabulary of <P, then the spectrum of <P can
be alternatively viewed as finite models (of the empty vocabulary) of the
:JSO sentence :JR1 ... :JR" <P (by associating a universe of si~e n with n).
Fagin defined generalized spectra as finite models of :JSO sentences (i.e., the
vocabulary no longer needs to be empty). The complementation problem for
generalized spectra is then the problem whether NP equals coNP.

The result that :JSO and \t'SO are different on (N. +, ·) is due to Kleene
[146]. In fact, over (N, +,·),the intersection of :JSO and \1'80 collapses to FO,
while over finite structures it properly contains FO.

Cook's theorem is from [39] (and is presented in many texts of complexity
and computability, e.g. [126, 195]).

The polynomial hierarchy and its connection with SO are from Stockmeyer
[223].

Sources for exercises:
Exercises 9.6 and 9. 7: Gradel [97]
Exercise 9.8: Jones and Selman [140]
Exercise 9.9: Lautemann, Schwentick, and Therien [162]
Exercise 9.10: Eiter, Gottlob, and Gurevich [63]
Exercise 9.11: Gottlob, Kolaitis, and Schwentick [95]
Exercise 9.12: Makowsky and Pnueli [178]
Exercise 9.13: (a) from Fagin [72]

(b) from Ajtai [10]
(see also Fagin [7 4])

9.4 Exercises

Exercise 9.1. Prove Trakhtenbrot's theorem for an arbitrary vocabulary with at
least one binary relation symbol.

Hint: use the binary relation symbol to code several binary relations, used in our
proof of Trakhtenbrot's theorem.

Exercise 9.2. Prove that Trakhtenbrot's theorem fails for unary vocabularies: that
is, if all the symbols in a are unary, then finite satisfiability is decidable.

Exercise 9.3. Use Trakhtenbrot's theorem to prove that order invariance for FO
queries is undecidable.

9.4 Exercises 175

Exercise 9.4. Give a general definition of the formula i from the proof of Fagin's
theorem (i.e., for arbitrary IJ and k).

Exercise 9.5. Complete the proof of Corollary 9.9.

Exercise 9.6. Show that there is an encoding schema for finite IJ-structures such
that the formulae i from the proof of Fagin's theorem can be assumed to be
quantifier-free, if the successor relation and the minimal and maximal element with
respect to it can be used in formulae.

Exercise 9.7. Use the encoding scheme of Exercise 9.6 to prove that every NP
can be defined by an ==JSO sentence whose first-order part is universal (i.e., of the
form V ... V V', where 1/J is quantifier-free), under the assumption that we consider
structures with explicitly given order and successor relations, as well as constants
for the minimal and the maximal elements.

Prove that without these assumptions, universal first-order quantification in ==JSO
formulae is not sufficient to capture all of NP. What kind of quantifier prefixes does
one need in the general case?

Exercise 9.8. Prov<~ that a set X c;; N is a spectrum iff it is in NEXPTIME.
Explain why this does not contradict Fagin's theorem.

Exercise 9.9. Consider the vocabulary IJE = (<. (Pa)aEE) used in Chap. 7 for
coding strings as finite structures. Recall that a sentence <!> over such vocabulary
defines a language (a subset of E*) given by { s E E* I Ms f= <!>}.

Consider a restriction ==JSOmatch of ==JSO in which existential second-order vari
ables range over matchings: that is, binary relations of the form {(xi, y;) I i S k}
where all Xi's and y;'s are distinct.

Prove that a language is definable in ==JSOmatch iff it is context-free.

Exercise 9.10. LetS be a set of quantifier prefixes, and let ==JSO(S) be the fragment
of ==JSO which consists of sentences of the form ==JR 1 ... '3Rn '!J, where 'P is a prenex
formula whose quantifier prefix iR inS. We call ==JSO(S) regular if over strings it only
defines regular languages.

Prove the following:

• ==JSO(V*==JV*) is regular;
• ==JSO(==J*W) is regular;
• if ==JSO(S) is regular, then it is contained in the union of ==JSO(V*==JV*) and

==JSO(==J*W);
• if ==JSO(S) is not regular, then it defines some NP-complete language.

Exercise 9.11. We now consider ==JSO(S) and ==JMSO(S) over directed graphs. Prove
the following:

• ==JSO(==J*V) only defines polynomial time properties of graphs;
• ==JSO(W) and ==JMSO(==J*W) in which at most one second-order quantifier is used

only define polynomial time properties of graphs;
• each of the following defines some NP-complete problems on graphs:

·· ==JSO(==JW), where only one second-order quantifier over binary relations is
used:

176 9 Turing Machines and Finite Models

- =JMSO(V=J) and =JMSO(VVV), where only one sPccmd-order quantifier is used;

- =Jl\ISO(W), where only two second-order quantific~rs <UP used.

Exercise 9.12. Define SO(k, m) as the union of El and IJf where all quantification
is over relations of arity at most rn. That is, SO(k, m) is the restriction of SO to at
most k - 1 alternations of quantifiers, and quantification is over relations of arity
m. This is usually referred to as the alternation-arity hierarchy.

Prove that the alternation-arity hierarchy is strict: that is, there is a constant r·
such that

SO(k. m) ~ SO(k +c. m +c)

for all k. m.

Exercise 9.13. Define =JSO(m) as the restriction of class of =JSO to second-order
quantification over relations of arity at most m. Prove the following:

(a) If =JSO(m) = =JSO(m + 1), then =JSO(k) = =JSO(m) for every k:;:, m.
(b) If a contains an m-ary relation symbol P, then the class of structures in which

P has an even number of tuples is not =JSO(m- I)-definable.
(c) Conclude from (a) and (b) that, if a contains an m-ary rdation symbol P, then

=JSO(i) ~ =JSO(j) over a-structures, for l~very 1 S i < j S m.

Exercise 9.14: Now consirkr just the arity hierarchy for SO: that is, SO(111) IS

defined as ukEN SO(k. m). Is the arity hierarchy strict?

Exercise 9.15: \Ve call a sentence categorical if it has at most one model of
each finite cardinality. Is it true that every spectrum is a spc~ctrum of a categorical
sentence?

10

Fixed Point Logics and Complexity Classes

Most logics we have seen so far are not well suited for expressing many
tractable graph properties, such as graph connectivity, reachability, and so
on. The limited expressiveness of FO and counting logics is due to the fact
that they lack mechanisms for expressing fixed point computations. Other
logics we have seen, such as MSO, 3SO, and \ISO, can express intractable
graph properties.

Consider, for example, the transitive closure query. Given a binary relation
R, we can express relations R0 , R 1 , R 2 , R~', ... , where Ri contains pairs (a, b)
such that there is a path from a to b of length at most i. To compute the
transitive closure of R, we need the union of all those relations: that is,

oc

How could one compute such a union? Since relation R is finite, starting with
some n, the sequence Ri, i 2': 0, stabilizes: Rn = R"+ 1 = Rn+2 = Indeed,
in this case n can be taken to be the number of elements of relation R. Hence,
Rcxo = R 11 ; that is, Rn is the limit of the sequence Ri, i > 0. But we can also
view R" as a fixed point of an operator that sends each Ri to Ri+ 1 .

In this chapter we study logics extended with operators for computing
fixed points of various operators. We start by presenting the basics of fixed
point theory (in a rather simplified way, adapted for finite structures). We
then define various extensions of FO with fixed point operators, study their
expressiveness, and show that on ordered structures these extensions capture
complexity classes PTIME and PSPACE. Finally, we show how to extend FO

with an operator for computing just the transitive closure, and prove that this
extension captures NLoG on ordered structures.

178 10 Fixed Point Logics and Complexity Classes

10.1 Fixed Points of Operators on Sets

Typically the theory of fixed point operators is presented for complete lattices:
that is, partially ordered sets (U, --<) where every - finite or infinite subset
of U has a greatest lower bound and a least upper bound in the ordering --<.
However, here we deal only with finite sets, which somewhat simplifies the
presentation.

Given a set U, let p(U) be its powerset. An operator on U is a mapping
F : p(U) --7 p(U). We say that an operator F is monotone if

X<;;;; Y implies F(X) <;;;; F(Y),

and inflationary if
X c F(X)

for all X E p(U).

Definition 10.1. Given an operator· F : p(U) --7 p(U), a set X <;;;; U is a
fixed point ofF if F(X) =X. A set X <;;;; A ·is a least fixed point ofF if it
is a fixed point, and for every other fixed point Y of F we have X <;;;; Y. The
least fixed point ofF will be denoted by lfp(F).

Let us now consider the following sequence:

(10.1)

We call F inductive if the sequence (10.1) is increasing: Xi <;;;; xi+t for all i.
Every monotone operator F is inductive, which is shown by a simple induction.
Of course X 0 <;;;; X 1 since X 0 = 0. If X; <;;;; x+t, then, by monotonidty,
F(Xi) <;;;; F(Xi+l); that is, Xi+ 1 <;;;; Xi+2 . This shows that)C <;;;;xi+ I for ail
i EN.

If F is inductive, we define

:X

x= uxi. (10.2)
i=O

Since U is assumed to be finite, the sequence (10.1) actually stabilizes after
some finite number of steps, so there is a number n such that xx =X".

To give an example, let R be a binary relation on a finite set A, and
let F : p(A2) --? p(A2) be the operator defined by F(X) = R U (R oX).
Here o is the relational composition: R oX = {(a, b) I (a, c) E R, (c. b) E

X, for some c E A}. Notice that this operator is monotone: if X <;;;; Y, then
R oX <;;;;RoY. Let us now define the sequence Xi, i :2: 0, as in (10.1). First,
X 0 = 0. Since Ro0 = 0, we have X 1 = R. Then X 2 = RU (Ro R) = RUR2 ;

that is, the set of pairs (a, b) such that there is a path of length at most 2 from
a to b. Continuing, we see that Xi = R U ... U R;, the set of pairs connected

10.1 Fixed Points of Operators on Sets 179

by paths of length at most i. This sequence reaches a fixed point xx, which
is the transitive closure of R.

We now prove that every monotone operator has a least fixed point, which
is the set x= (10.2), defined as the union of the increasing sequence (10.1).

Theorem 10.2 (Tarski-Knaster). Every monotone opemtor F: k.J(U) --+

~J(U) ha.s a least fi:ced point lfp(F) which can be defined a.s

lfp(F) n{Y 1 y = F(Y)}.

Furthermore, lfp(F) = x= = ui Xi, for the .sequence xi defined by {10.1).

Pmof. Let W = {Y I F(Y) ~ Y}. Clearly, W # 0, since U E W. We first
show that S = n W is a fixed point of F. Indeed, for every Y E W, we hav<~
S ~ Y and hence F(S) ~ F(Y) ~ Y; therefore, F(S) ~ n W = S. On the
other hand, since F(S) ~ S, we have F(F(S)) ~ F(S), and thus F(S) E W.
Hence, S = n W ~ F(S), which proves S = F(S).

Let W' = {Y I F(Y) = Y} and S' = n W'. Then S E W' and hence
S' ~ S; on the other hand, W' ~ W, so S = n W ~ n W' = S'. Hence,
s = S'. Thus, s = n{Y I y = F(Y)} is a fixed point of F. Since it is the
intersection of all the fixed points ofF, it is the least fixed point of F. This
shows that

lfp(F) = n{Y 1 y = F(Y)} = n{Y 1 F(Y) ~ Y}.

To prove that lfp(F) = x=, note that the sequence Xi increases, and
hence for some n EN, xn = xn+l = ... = x=. Thus, F(X=) = x= and
xoc is a fixed point. To show that it is the least fixed point, it suffices to prove
that Xi ~ Y for every i and every Y E W. We prove this by induction on i.
Clearly X 0 ~ Y for all Y E W. Suppose we need to prove the statement for
xi+t. Let YEW. We have xi+t = F(X'). By the hypothesis, Xi~ Y, and
by monotonicity, F(Xi) ~ F(Y) ~ Y. Hence, Xi+ 1 ~ Y. This shows that all
the X"s are contained in all the sets of W, and completes the proof of the
theorem. D

Not all the op<~rat.ors of interest are monotone. We now present two differ
ent. constructions by means of which the fixed point of non-monotone operators
can be chofined.

Suppose F is inflationary: that is, Y ~ F(Y) for all Y. Then F is induc
tive; that is, the sequence (10.1) is increasing, and hence it reaches a fixed
point X ex;. Now suppose G is an arbitrary operator. With G, we associate an
inflationary operator Ginfl defined by Gintl(Y) = YUG(Y). Then X 00 for Ginfl
is called the infiationar·y fixed point of G and is denoted by ifp(G). In other
words, ifp(G) is the union of all sets Xi where X 0 = 0 and xi+l = XiUG(X;).

Finally, we consider an arbitrary operator F : ~J(U) __., p(U) and the
sequence (10.1). This sequence need not be inductive, so there are two possi
bilities. The first is that this seqmmce reaches a fixed point; that is, for some

180 10 Fixed Point Logics and Complexity Classes

n E N we have X" = xn+l' and thus for all m > 71, xm = X 11 • If there is

such an n, it must be the case that n 'So 21V1, since tlwre are only 211 '1 subsets

of U. The second possibility is that no such n exists.
We now define the par-tial fi:red point ofF as

{
X"

pfp(F) = 0
if X"= xn+l

if X 11 oF xn+ I for all I! 'So 2jl Tj.

The definition is unambiguous: since xn = X II+ I implies that thP sequence
(10.1) stabilizes, then X"= xn+t and xm = X'"+ 1 imply that X"= X'".

\Ve leave the following as an easy exerc:ise to the reader.

Proposition 10.3. IfF is monotone, then lfp(F) = ifp(F) = pfp(F). []

10.2 Fixed Point Logics

We now show how to add fixed point operators to FO. Suppose we have a

relational vocabulary O", and an additional relation symbol R ti a of arity k.
Let VJ(R, ;r1 , ... , :rk) be a formula of vocabulary O" U { R}. We put the symbol

R explicitly as a pararnctm, since this formula will give rise to an opPrator on
a-structures.

For each 2l E STRUCT[D"], the formula VJ(R . .f) giv1~s rise to an op<~rator
F''P : \:7(A k) ---+ p(A k) defined as follows:

{a 1 2t F= VJ(X/IUi)}. (10.3)

Here the notation cp(X jR, a) means that R is interpn~t<'d as X in cp; mon'
precisely, if 2l' is a (aU { R})-structure expanding 2l. in which R is intcrprd.<'d

as X, then 2l' f= cp(a).
The idea of fixed point logics is that we add formulae for computing fixed

points of operators F'P. This already gives us formal ddinitions of logics lFP
and PFP.

Definition 10.4. The logics IFP and PFP anc defined as extensions of FO
with the following fonnation r·ules:

• (For· IFP): if cp(R, :r) is a formula, wher-e H is k-rwy, and tis a tnple of

ter·m.s, when; I X I= I n = k' then

[ifp R. rVJ(R. :f)] (i)

is a fonnula, whose fr-ee variables an; those of f.
• (For· PFP): if cp(R, .f) is a form·ula, wher·e R is k-ary, and tis a htple of

ter-rn.s, where I X I= I n = k' then

[pfp H. r'P (R. :1)] (i)

is a fonnula, whose fr·ee var·iables are those of f.

10.2 Fixed Point Logic:s 181

The semantics is defined as follows:

• (FodFP): 2l F [ifPn.xct?(R, x)](a) iff a E ifp(F'P) .

• (For· PFP): 2l F [PfPn.:rct?(R,x)](a) iff a E pfp(F'P).

Why could we not define an extension with the least fixed point in exactly
the same way? The reason is that least fixed points are guaranteed to exist
only for monotone operators. However, monotonicity is not an easy property
to deal with.

Lemma 10.5. Testing if F'P is monotone is undecidable for FO formulae cp.

Proof. Let <P be an arbitrary sentence, and cp(S, x) = (S(x) --+ <P). Suppose <Pis
valid. Then cp(S, x) is always true and hence F'P is monotone in every structure.
Suppose now that 2l f= ,<f> for some nonempty structure 2l. Then, over 2l,
cp(S. :r) is equivalent to -,S(.r,), and hence F'P is not monotone. Therefore, }~
is monotone iff <P is true in every nonempty structure, which is undecidable,
by Trakhtenbrot's theorem. D

Thus, to ensure that least fixed points are only taken for monotone op
erators, we impose some syntactic restrictions. Given a formula cp that may
contain a relation symbol R, we say that an occurrence of R is negative if
it is under the scope of an odd number of negations, and is positive, if it is
under the scope of an even number of negations. For example, in the formula
3x,R(x)V,Vy\lz-,(R(y)/\,R(z)), the first occurrence of R (i.e., R(x)) is neg
ative, the second (R(y)) is positive (as it is under the scope of two negations),
and the last one (R(z)) is negative again. We say that a formula is positive
in R if there are no negative occurrences of R in it; in other words, either all
occurrences of R are positive, or there arc none at all.

Definition 10.6. The logic LFP extends FO with the following fonnation
rule:

• if cp(R, x) is a formula positive in R, wher·e R is k-ary and£ is a tuple of
terms, wher·e 1 xl=l tl= k, then

is a formula, whose fr·ee variables are those of£.

The semantics is defined as follows:

2l F [lfPu.rct?(R, x)](ii') iff a E lfp(F'P).

Of course, there is something to be proven here:

182 10 Fixed Point Logics and Complexity Classes

Lemma 10. 7. If tp(R, x) is positive in R, then F"' is monotone. 0

The proof is by an easy induction on the structure of the formula (which
includes the cases of Boolean connectives, quantifiers, and lfp operators) and
is left as an exercise to the reader.

We now give a few examples of queries definable in fixed point logics.

Transitive Closure and Acyclicity

Let E be a binary relation, and let tp(R, :r, y) lw

E(x,y)V3z (E(x,z)I\R(z,y)).

Clearly, this is positive in R. Let 4;(u,v) be [lfPR .. r.y'P(R,.r.y)](u. u). What
does this formula define?

To answer this, we must consider the operator F;,. For a set X, we have
F'P(X) = EU (Eo X). We have seen this operator in the previous section, and
know that its least fixed point is the transitive closure of E. Hence, ~'(u, P)
defines the transitive closure of E. This also implies that graph connectivity
is LFP-definable by the sentence 'hNv 4{u, v).

As the next example, we again consider graphs whose edge relation is E',
and the formula a(S,.r) given by

'Vy (E(y,.r)---.. S(y)).

This formula is again positive in S. The operator F~, associated with this
formula takes a set X and returns the set of all nodes a such that all thP
nodes b from which there is an edge to a are in X. Let us now iterate this
operator. Clearly, Fa(0) is the set of nodes of in-degree 0. Then F:,(F;,(0)) is
the set of nodes a such that all nodes b with edges (b, a) E E have in-degrPe
0. Reformulating this, we can state that F~,(Fn(0)) is the set of nodes a such
that all paths ending in a have length at most 1. Following this, at the ith
stage of the iteration we get the set of nodes a such that all the paths Pnding
in a have length at most i. ·when we reach the fixed point, we have nodes
such that all the paths ending in them are finite. Hence, the formula

tests if a graph is acyclic.

Arithmetic on Successor Structur-es

As a third example, consider structures of vocabulary (min, suec:), where sueT
is interpreted as a successor relation on the universe, and min is the mini
mal element with respect to succ. That is, the structures will bP of tlw form
({0, ... ,n- 1}, 0, {(i.i + 1) I i + 1 s; n -1}). We show how to define

+ = {(i,j. k) I i + .i =A:} and x = {(i,j. k) I i · j = h:}

10.2 Fixed Point Logics 183

on such structures. For +, we use the recursive definition:

x+O=x
X+ (y + 1) = (:1: + y) + 1.

Let R be ternary and f'h(R,x,y,z) be

(y=min/\z=x) V 3n3v (R(x,n,v) !\ succ(n,y) !\ succ(v,z)).

Intuitively, it states the conditions for (x, y, z) to be in the graph of addition:
either y = 0 and .T = z, or, if we already know that x + ·u = v, and y =
n + 1, z = v + 1, then we can infer x + y = z. This formula is positive in R,
and the least fixed point computes the graph of addition:

IP+(:r, y, z) = [lfpRx.y,z/h(R, x, y, z)](x, y, z).

Using addition, we can define multiplication:

X·O=O
X· (y + 1) =X· :tJ +X.

Similarly to the case of addition, we define f3x (8, x, y, z) as

(y=min/\z=min) V 3n3v (8(x,11,v) !\ succ(u,y) !\ IP+(x,v,z)).

This formula is positive in 8. Then

IPx(x,y,z) = [lfPs.x.y.J3x(8,x,y,z)](x,y,z)

defines the graph of multiplication. Since it uses IP+ as a subformula, this
gives us an example of nested least fixed point operators.

Combining this example with Theorem 6.12, we conclude that BIT is LFP
definable over successor structures.

A Game on Graphs

Consider the following game played on a graph G = (V, E) with a distin
guished start node a. There are two players: player I and player II. At each
round i, first player I selects a node b; and then player II selects a node ci,
such that (a,bl), as well as (b;,c;) and (c;,bi+ 1), are edges in E, for all i. The
player who cannot make a legal move loses the game.

Let 8 be unary, and define o:(8, x) as

\fy (E(x,y)--+3z (E(y,z)!\8(z))).

What is f~,(0)? It is the set of nodes b of out-degree 0; that is, nodes in which
player II wins, since player I does not have a single move. In general, F"(X)
is the set of nodes b such that no matter where player I moves from b, player

184 10 Fixed Point Logics and Complexity ClassPs

II will have a response from X. Thus, iterating F~,, we s<'P that the ith stage

consists of nodes from which player II has a winning strategy in at most i -- l

rounds. Hence,
[lfp8 ".n(S', :r)] (a)

holds iff player II has a winning strategy from node a.

We conclude this section by a remark concerning free variables in fixed
point formulae. So far, in the definition and all the exampl<~s we dealt with

iterating formulae cp(R. :f) where :r matched the arity of R. However, in

gfmeral one can imagine that cp has additional free variable's. For exam

ple, if we have a formula cp(R, :f. 17) positive in H, we can, for each tuple

b, define an operator F~(X) ={a I Q! f= cp(XjR.a.l;)}, and a formula

1/{{77) = [lfpn.zcp(R.:r,17)](i), with tlw semantics Q! f= i;) iff c'E lfp(F~:).
It turns out, however, that fn~e variabks in fixed point formulae can always

be avoided, at the expense of relations of higher arity. Indeed, the formula

?j;({17) above is equivalent to [lfp11'.i'.,7cp'(R'.:f,17)]({.tJ), where H' is of arity

I :Z I + I :tll, and cp' is obtained from cp by changing every occurTencC' of a

subformula R(,'!) to R'(z,:t}). This is left as an exercise to the reader. Thus,

we shall normally assume that no extra parameters an~ present in fixed point
formulae.

10.3 Properties of LFP and IFP

In this section we study logics LFP and IFP. \VC' start by int roclucing a very

convenient tool of simultaneous fixed points, which allows one to itPrate sev

eral formulae at once. \Ve then analyze fixed point computations, and show

how to define and compan~ their stages (that is, s<:ts X' as in (10.1)). From this

analysis we shall derive two important conclusions. One is that LFP = TFP on

finite structures. The other is a normal form for LFP, shmving that nC'sted oc

currences of fixed point operators (which wP saw in the multiplication example

in the previous section) can be eliminated.
Let CJ lw a relational vocabulary, and R 1 , ... , R11 additional rdation sym

bols, with R; being of arity k;. Let :f; be a tuple of variahks of length /;,.
Consider a sequence <1> of formulae

(10.4)

cp, (HI , ... ' F? 11 ' ;[II)

of vocabulary CJ U {R1 , ... , Rn }. Assume that all cp,'s are positive in all Hi's.

Then, for a CJ-structure Q!, each cp; cl<~fincs an operator

F; : v(A'l) x ... x p(A'") ___,\;(A'')

given by

10.3 Properties of LFP and IFP 185

We can combine these operators Fi 's into one operator

F: p(AA 1) X ... X p(A'") ---> p(A'') X ... X p(A'")

given by

F(X], ... ,Xn) = (P!(XI,···,Xn), ... ,Fn(XI,···,Xn)).

A sequence of sets (X], ... ,Xn) is a fixed point ofF if F(X1 , ... ,X11)

(X 1 , ... , Xn). Furthermore, if for every fixed point (Y1 , ... , Y,,) we have X 1 <;;;;

Y1 , •.. , Xn <;;;; Yn, then we speak of the least fixed point of F.
The product p(AA,) x ... x fp(Ak,) is partially ordered component-wise by

<;;;;, and the operator F is component-wise monotone. Hence, it can be iterated
in the same way as usual monotone operators on p(U); that is,

X0 = (0, ... '0)
x'+~ = F(X')

~ CXJ

x= = UX' =
i=l

ex:> ·X
(10.5)

(U xt, ... , U x;,).
i=l i=l

.Just as for the case of the usual operators on sets, one can prove that xoo =
lfp(F). We then enrich the syntax of LFP with the rule that if <Pis a family
of formulae (10.4), and tis a tuple of terms of length k;, then

is a formula with the semantics Q{ F [lfp R, ,<P](a) iff a belongs to the ith
component of x=. The resulting logic will be denoted by LFPsimult.

As an example of a property expressible in LFPsimult, consider the follow
ing query Q on undirected graphs G = (V, E): it returns the set of nodes (a, b)
such that there is a simple path of even length from a to b.

Let T be a ternary relation symbol, and R, S binary relation symbols. We
consider the following system <P of formulae:

'·· _ (E(:r,y)/\-.(x=z)/\•(y=z))
cp 1(T,R,S,x,y,z)=v::J (E(·)1\T()/\ (-~)) ::JU .T, U U, y, Z • X-"'

(TRS···)- E(x,y)
'P2 ' ' ,.r,y = V ::lu (S(x,u) 1\ E('u,y) 1\ T(x,u,y))

'P:>(T,R,S,:r,y) = ::lu (R(:r,u)/\R(1t,y)/\T(J:,u,y)).

Notice that these formulae are positive in R, S, T. We leave it to the reader to
verify that the simultaneous least fixed point of this system <P computes the
following relations:

186 10 Fixed Point Logics and Complexity Classes

• T 00 (a, b, c) holds iff there is a simple path from a to b that does not pass
through c;

• R00 (a, b) holds iff there is a simple path from a to b of odd length; and

• s=(a, b) holds iff there is a simple path from a to b of even length.

Thus, [lfPs . .PJ(x, y) expresses the query Q. (See Exercise 10.2.)

Simultaneous fixed points are often convenient for expressing complex
properties, when several sets need to be defined at once. The question is then
whether such fixed points enrich the expressiveness of thP logic. The answer.
as we are about to show, is negative.

Theorem 10.8. LFPsirnnlt = LFP.

Proof. We give the proof for the case of a system <P consisting of two for
mulae, 'PI (R, S, x) and 1P2 (R, S, if). Extension to an arbitrary system is rather
straightforward, and left as an exercise for the reader (Exercise 10.3). The idea
is that we combine a simultaneous fixed point into two fixed point formulae,
in which the lfp operators are nested.

We need an auxiliary result first. Assume we have two monotone opmators

F 1 : p(U) x p(V)----+ p(U) and F2 : p(U) x p(V)----+ g.J(V).

Following (10.5), we define the stages of the operator (F1 • f2) as .,yo =
(Xp,xg) = (0,0), Xi+l = (x~+ 1 ,x~+ 1) = (Ft(Xi).F2(Xi)), with tlw fixed
point (X!, X2).

Fix a set Y ~ U, and define two operators:

F:{ : p(V) ----+ p(V). F:{ (Z) = F2(Y. Z):

G1 : p(U)----+ p(U), G1 (Y) = F 1 (Y.lfp(FrJ).

Clearly, F{ is monotone, and hence lfp(F{) is well-defined. Tlw operator G 1

is monotone as well (since for y ~ y I' it is the case that lfp(F r) ~ lfp (F]"))'
and hence it has a least fixed point.

To prove the theorem, we need the following lemma, which is sometirnPs
referred to as the Bekic principle.

Lemma 10.9. Xf"' = lfp(GJ).

Before we prove the lemma, we show that the theorem follows from it.
Since Xf"' = lfp(Gl), we have to express G1 inlfp, which canlw done, as G 1

is defined as the least fixed point of a certain operator. In fact. it follows from
the definition of G 1 that [lfPR.<P](i) is equivalent to

10.3 Properties of LFP and IFP 187

The roles of F 1 and F2 can be reversed; that is, we can define F{ (Z) =
F1 (Z, Y): ~J(U)--+ p(U) and C2: p(V) --+ p(V) by G2(Y) = F2(lfp(F{), Y),
and prove, as in Lemma 10.9, that X2 = lfp(C2). Therefore,

[trPs.y IP2([1fpR.:r~Pl(R,S,x)] I R, s, m]m
is equivalent to [lfp5 .p](t).

It remains to prove Lemma 10.9. First, notice that lfp(F{;=) <;;;; X2,

because F.;"(' (Xf) = Fz(Xf,X2) = X:;t. That is, Xf is a fixed point
ofF{~, and thus it must contain its least fixed point. Hence, C 1 (X1) =
F 1(X[,lfp(l<':zx;=)) <;;;; F1 (Xf",X2) = Xf. Since lfp(Cl) is the intersection
of all the setS such that C 1 (S) <;;;; S, we conclude that lfp(Cl) <;;;; Xf.

Next, we prove the reverse inclusion Xf <;;;; lfp(Cl). We use Z to denote
lfp(CJ). We show inductively that for each i, X[<;;;; Z and X2 <;;;; lfp(Ff).

This is dear for i = 0. To go from i to i + 1, calculate

and

Thus,

X[= u XI<;;;; lfp(CJ).
i=O

This completes the proof of Lemma 10.9 and Theorem 10.8. 0

One can similarly define logics IFPsimult and PFPsimult, by allowing simul
taneous inflationary and partial fixed points. It turns out that for IFP and
PFP, simultaneous fixed points do not increase expressiveness either. The
proof presented for LFP would not work, as it relies on the monotonicity
of operators defined by formulae, which cannot be guaranteed for arbitrary
formulae used in the definition of the logics IFP and PFP. Nevertheless, a
different techniqm~ works for these logics. We explain it now by means of an
example; details are left as an exercise for the reader.

Assume that the vocabulary a has two constant symbols c1 and c2 inter
preted as two distinct elements of a-structure. This assumption is easy to get
rid of, by existentially quantifying over two variables, u and w, and stating
that u o/c w; however, formulae with constants will be easier to deal with.
Furthermore, we can assume without loss of generality that structures have
at least two elements, since the case of one-element structures can be dealt
with explicitly by specifying the value of a fixed point operator on them.

Suppose we have two formulae, rp 1 (R1 , R2 , x) and rp2 (R1 , R2 , x), where the
arities of R 1 and R2 are n, and the length of xis n. Let S be a relation symbol
of arity n + 1, and let 1/-'(S, u, x) be the formula

188 10 Fixed Point Logics and Complexity ClassPs

v

((u = c1)

((1L = C2)

11 'Pl(S(c,,z)IR,(z). S'(c2.z)IH2(:::) . . r))
11 1P2 (s(c1. z)l RJ(:::). s(c2. :::)1 1?2(.:) . .1)).

where s (c,' z) I R;. U?) indicates that every OCC\UTE'ncc of R, (:::) is n~plan~d by
S'(c.i, z). Then the fixed point inflationary or partial of this formula C'

computes the simultaneous fixed point of the system { ip 1 , ip2 }: the fixed poillt
corresponding to R; is the set of all n-tuples of the fixed point of l/' \vlwre the
first coordinate is c,.

This argument is generaliz(~cl to arbitrar~· systems of forrrmlae. tlwn~h~·

giving us the following result.

Theorem 10.10. TFP"inmlt = JFP and PFP"illlu 11 = PFP.

\Ve now come back to single fixed point definitions and analyze them in
detail. Suppose we have a formula ~,J(R, .r). Assume for nmv that ip is positive
in H. To construct the least fixed point of cp on a strncture 2t. we inductiwly
calculate X 0 = 0. X 7+ 1 = f~(X'), and then the fixf~d point is xx = U; X'.
\Ve shall refer to X"s as stages of the fixed point computation, with X' being
the ith stage.

First, we note that each stage is definable by an LFP formula. if cp is
positive in R. Indeed, for each stage ·i, we haw a formula (.F,), such that
ip1 (2t) is exactly Xi. These are d(~firwd inductively as follows:

/l(:r0) = •(:r = .r) :r is a variable in .F11
1(£,+,) = ~,J(;p;.IR.Y,+t). (10.6)

Here the notation IP('Pi I R, :r;+J) means that every occmT<~uc<· R(.il) iu -;:
is replaced by r.p; (:ij) and, furthermore, all tbe bound \'ariabl<'s in ip bav(~

been replaced by fresh ones. For example, consider tlH' formula ip(H .. r . .1J)

E(.r. y) V .:Jz (E(:r, z) II R(z. y)). Following (10.6), we obtain the formulae

ip0(.ro, Yo) = •(:I:o = .ro)
~,J 1 (:rl, Y1) = E(:r1, yl) V :1::1 (E(.r1, .:,) /1 r.p0 (::: 1 , !Jt))

<--> E(:r1, y,)
;p1 (:c2, f/2) = E(:r2 . .IJ2) V .:lz2 (E(:r2 . . ::2) /\ c;;1 (:::2 . .112))

+--> E(.r2. Y2l V ..:!:::2 (E'(:r2. z2) 1\ E(:::2. !/2))

computing the stages of the transitive closure OJWrator.

For an arbitrary ip, we can give formulae for computing stag<'s of the
inflationary fixed point computation. Tlwse are given by

r.p0 (:Zo) = •(::r = .r)
ipi+ 1 (:ri+tl = ~Pi(:r.,,t) v ~P(c;;'IH . .r;+,).

(10.7)

10.3 Properties of LFP and IFP 189

Thus, t~ach stage of the inflationary fixed point computation is definable
by an IFP formula.

What is more interesting is that we can write formulae that compare stages
at which various tuples get into the sets X' of fixed point computations.
Suppose we are given a formula ~P(R, x) that gives rise to an inductive operator
F'_p, where R is k-ary and x has k variables. For example, if we are interested
in inflationary fixed point computation, we can always pass from ~P(R, :f) to
R(:r) V ~P(R, :r), whose induced operator is inductive.

Given a structure Ql, we define I~P\'2(as the least n such that xn = x=.
Furthermore, for a tuple a E Ak, we define \a\~ as the least number i such

that a E xi in the fixed point computation, and I~P\'2(+ 1 if no such i exists.
Notice that if !p is positive in R, then the stages of the least and inflationary
fixed point computation are the same.

We next define two relations -<'P and -:5_'-P on A k as follows:

The theorem below shows that these can be defined with least fixed points
of positive formulae.

Theorem 10.11 (Stage comparison). If !p is in LFP, then the binar·y
r·elations -<'P and -:5_'-P ar-e LFP -definable.

Pmof. The idea of the proof is as follows. We want to define both -<'P and
-:5_'-P as a simultaneous fixed point. This has to be done somehow from y?, but
in !p we may have both positive and negative occurrences of R. So to find
some relations to substitute for the negative occurrences of R, we explicitly
introduce the complements of -<'P and -:5_'-P:

a f<'P r; = 1a1~ :::: \b\~,

a fY b = 1a1~ > \b\~ or 1a1~ = \~P\'2! + 1.

We shall be using formulae of the form

~P(-<(fi)/R,:r) and ~P(-:5.Uf)/R,:r).

This means that, for IP(-< Uf)/ R, :f), every positive occurrence R(z) of R is
replaced by z -<'P :if, and every negative occurrence of R(z) of R is replaced by
z -f,'P :if, and likewise for -:5_'-P. Note that all the occurrences of the four relations
-<'P, -:5_'P, -f,'P, fc'P become positive. Also, we shall write

~P(--, -<UJ) I R. :'i),

meaning that every positiv(' occurrence R(z) of R is replaced by •(z -<'P :if),
and every negative occurrence of R(z) of R is replaced by •(z -f,'P fj). These

190 10 Fixed Point Logics and Complexity Classes

will be used in subformulae ''P(---, --< (if) I R, x), again ensuring that all tlw
occurrences of --<'P, :j'P, f<'P, t-_<r are positive.

These four relations will be defined by a simultaneous fixed point. For
technical reasons, we shall add one more relation:

and show how to define (--<. ::S, <l. f<, t-_) by a simultaneous fixed point. For
readability only, we may omit the superscript 'P· We defirw the system tf/ of
five formulae '1/Ji(--<, ::S, <l, f<, t-_, :r. y), i = L 5, as follows:

'l/J1 = ::Jz (x ::S z A z <1 if) ,
'l/J2 = 'P(--< (if) 1 R, x),
'1/J:l = 'P(--<(x)l R, x) A ''P(f<(x)l R. if) (10.8)

1\ ('P(::S(x)IR, iJ) V'Vz (''P(' t-_(.i)IR. i) Vip(--<(.J!)IR. i))).

'l/J4 = ::Jz (x z,_ z A z <1 if) v 'P(01 R, if) v vz,'P(01 R. z).
'1/Js = ''P(' f<(iJ)IR. x)

where 'P(0 I R, ·) means that all occurrences of R are eliminated and n~placed
by false.

Note that all the occurrences of --<, ::S, <J, f<, t-_ in if/ are positive. We next
claim that the simultaneous least fixed point of I]) indeed defines --< c;, :j'P,

<J'P, f<'P' t-_'P.
To prove the result, we have to show that (--<c;. ::S"". <J'~". f<<F. t-_<r) satisfy

(10.8), and that for each* E {--<'P,:j'P,<J'P, f<<r. t-_'~'}, if ii* bholds, then (a. b)
is in the corresponding fixed point of tJi (10.8). This will be proved by induction

~Q(

on lbi'P·
Below, we prove a few cases for both directions. The remaining cases are

very similar, and are left as an exercise for the reader.
First, we prove that <J'P satisfies (10.8). Consider a tuple (a. b) in this

relation. The result is immediate if lal~ = I'PI'2l + l. If Ia!~ < I<PI'2l, tl!Pn

the third conjunct in zj;3 (a, b) is equivalent to 'P(::S'~'(a)l R, b) and, therefore,

'l/J3(a, b) holds iff lbl~ = lal~ + 1 iff a <J'P b. Finally, if ial~ = I'PI~1 ' then tlw
third conjunct in 7J'3 is equivalent to the formula v z (''P(, z,_ .p (a) 1 R. z) v
'P(--< 'P (a) I R, Z)) and, thus, V':l (a, b) holds iff b is not in the fixed point of lh
iff lbl~ = I'PIQ(+ 1 = tal~ + 1.

Second, we prove by induction on lbl~ that, for every a, if ii <J"" bora f<"" b,
then (ii, b) is in the corresponding fixed point of if/.

Induction Basis: lbl~ = 1.

• The case for <J'P. This is the simplest c:ase, sim~e I hi~
a <J'P b holds for no ii.

1 impliPs that

10.3 Properties of LFP and IFP 191

• The case for· f<'P. Since lbl~ = 1, we conclude that I(J(0/ R, b) holds. We
have a f<'P b for all a, and since I(J(0 I R, b) is true, (a, b) is in the fixed
point of 7/!4 for every a.

Induction Step: Assume that lbl~ = k: + 1 and that the property holds for
all c such that IC1~ ::.; k:.

• The case for <J'P. Suppose that a <J'P b. Then liil~::.; k:. We show that the

three conjuncts in 7/!:1 hold for (Ci, b) and, thus, we conclude that (Ci, b) is
in the fixed point of 7/J:J.

Since Iii I~ < lbl~, we have Iii I~ ::.; I1PI2l and, therefore, ifJ(-<,'P (Ci) / R, Ci)
holds. By the induction hypothesis, -<'P(Ci) =-<(a), so IP(-<(a)/ R, a) holds.

Since lal~ < lbl~' 'IP(' f<'P (a) I R, b) holds. By the induction hypoth
esis, f<'P(a) =-/<(ii) and, hence, 'IP(' f<(Ci)/R, b) holds.

To prove that the third conjunct in 'ljJ3 holds, we consider two cases. If
lbl~::.; I1PI 21 , then ifJ(-!,'P(Ci)/R, b) holds. By the hypothesis, -!,'P(Ci) =-!,(r1)
and, therefore, ip(-!,(ii)/ R, b) holds. Otherwise lbl~ = I1PI2l + 1 and liil~ =
I1PI2l· In this case all the elements generated at stage liil~ + 1 are already
in stage I iii~ and, therefore, the formula l;j z (<ip(' 1- 'P (a) I R, Z) v IP(-<
'P (a) I R, z)) holds. As in the previous cases, by the induction hypothesis
we conclude that l;j z ('IP(' 1- (a) I R, z) v IP(-< (a) I R, z)) holds.

• The case for f<'P. Suppose that a f<'P b, and that the second and third
disjuncts in 'lj;4 do not hold. Then we show that the first disjunct in ~~4
holds and conclude that (Ci, b) is in the fixed point of ljJ4 .

Since ifJ(0/ R, b) and l;fz,I(J(0/ R, z) do not hold, we have lbl~ > 1 and
the fixed point of 7/!4 contains at least one element. Thus, there exists c
such that c <J'P b.

Given that a f<'P b, we have a f','P c and IC1~ ::.; k:. Therefore, we have a
tuple cwith IC1~ ::.; k such that both a f','P c and c<J'P b hold. Now using the
equivalence from the previous case for c <J'P b, and applying the induction
hypothesis to a f','P c, we conclude that (a, b) satisfies =:Jz (a 1- z !\ z <l b)'
which finishes the proof. D

Corollary 10.12 (Gurevich-Shelah). IFP = LFP.

Proof. The inclusion LFP c::; IFP is immediate. For the converse, proceed by
induction on the formulae. The only case to consider is ifPR.:riP(R, x). We can
assume, without loss of generality, that ifJ defines an inductive operator (if
not, consider R(x) V ifJ). Then [ifPR..riP(R,x)](t) is equivalent to

IP(-<'P(t)/ R, t),

which, by the stage comparison theorem, is an LFP formula. D

192 10 Fixed Point Logics and Complexity Classes

As another corollary of stage comparison, we establish a normal form for
LFP formulae. Define a logic LFP 0 which extends FO with the following. If
<P is a system of FO formulae cp; (R1 , ... , R 11 , .i) positive in all the l?;"s, thm
[lfp R, .P l (x) is an LFP () formula. Note the difference lwtWH'n this and gerwral
LFP: we only allow fixf~d points to be applicable to FO formulae, and we do
not close those fixed points under the Boolean connectives and quantification.
In other words, eVf~ry formula of LFPo is either FO, or of tlw form [lfp 11 , "'] (.?).
where <P consists of FO formulae.

Corollary 10.13. LFP = LFP0 .

Proof. \Ve first show that LFP0 is closed under V, 1\, and -.. For V and 1\

this is easy: just introduce an extra relation to hold the union or intersection
of two fixed points. For example, given 'Pl (R 1 . . 1) and cp2(H2 .. ?). we define
a system <P that consists of formulae cp 1(R 1.R2 . .'3,.r), cp2(R 1.R2.S .. f), and
cp:3 (R 1• R 2 • S', .f) = (R1 (.i) V R2 (.f)). Then lfp8 ,1, is the union of fixed points

of cp 1 and ctJ2.

The closure under negation follows from the stage comparison:
-.[lfpR.r'PJ(t) is equivalent tot f,'P f.

The closure of LFP0 under fixed point OJWrat.ors is immediate (one simply
adds an extra formula to the system). Thus, LFP0 = LFP. []

10.4 LFP, PFP, and Polynomial Time and Space

The goal of this section is to show that thP fixed point logics we introduced
capture familiar complexity classes over ordered structures. A structure is
ordered if one of the symbols of its vocabulary rr is <. interpreted as a linear
order on the universe. Recall that we used a linear order for defining an
encoding of a structure: indeed, a string on the tape of a Turing machine is
naturally on!f~red from ldt to right. For capturing NP and the polynomial
hierarchy, we did not need the assumption that the structures are ordered,
since we could guess an order by second-order quantifiers. HowPV<'L fixed point
logics are not sufficiently expressive for guessing a linear order (in fact. this
will be proved formally).

Theorem 10.14 (Immerman-Vardi). Both LFP and lFP r:aptnr·e PTih!F

over· the class of or-der·ed structur·es. That is.

LFP+ < = IFP+ < = PTihiE.

Pmof. By the Gurcvich-Shelah theorem (Corollary 1 0.12), we can use IFP
and LFP inten:hangl~ably. First., we shmv that LFP formulae can he Pvaluated
in polynomial time. The proof is by induction oil the formulae. TlH' casl'S of
the Boolean connectives and quantifiers are handled in exactly the same wa:v

10.4 LFP, PFP, and Polynomial Time and Space 193

as for FO (see, e.g., Proposition 6.6). For formulae of the form lfPn,:r<iJ, it
suffices to observe the following: ifF : p(U) -+ p(U) is a PTIME-computable
monotone operator, then lfp(F) can be computed in polynomial time in I U I·
Indeed, we know that the fixed point computation stops after at most I U I
iterations, and each iteration is PTIME-computable. Hence, every LFP formula
can be evaluated in polynomial time.

For the converse, we use the same technique as in the proofs of Trakhten
brot's and Fagin's theorems. Suppose we are given a property P of u-structures
which can be tested, on encodings of u-structures, by a deterministic polyno
mial time Turing machine M = (Q, E, .1, 8, Qo, Qa, Qr) with a one-way infinite
tape. We assume, without loss of generality, that there is only one accepting
state, Qa, that E = { 0, 1}, and that .::1 extends E with the blank symbol.
Let M run in time nk. As before, we assume that nk exceeds the size of the
encodings of n-element structures.

With the linear order <, we can again define the lexicographic linear order
~k on k-tuples, and use the ordered k-tuples to model both positions of M and
time. We shall define, by means of fixed point formulae, the 2k-ary predicates
T(J, T1, Tz, (Hq)qEQ, where Ti(if, i) indicates that position if at time [contains
i, for i = 0, 1, and blank, for i = 2, and Hq(if, t) indicates that at time ~
the machine is in state q, and its head is in position if. We shall provide a
system l]t of formulae whose simultaneous inflationary fixed point is exactly
(To, T1, T2, (Hq)qEQ). Once we have such a system, the sentence testing P will
be given by

(10.9)

Since IFP"imult = IFP and IFP = LFP, the formula (10.9) can be expressed
in LFP.

The system l]t contains formulae 'l/Ji(if,~To,TI,T2,(Hq)qEQ),i = 0,1,2,
defining T/s, and '1/Jq(if, ~ T0 , T1, T2 , (Hq)qEQ), q E Q, defining Hq's. It has the
property that the jth iteration for each of the relations it defines, Ri, contains
{(if, t) I R(if, t) and r < j}, where r < j means that tis among the first j - 1
k-tuples in the lexicographic ordering <k· That is, we build the relations T/s
and Hq's in stages, where the jth stage represents the configuration at times
up to j -1.

The formulae '1/Ji are straightforward to write, and we only sketch a few of
them. The formula '1/Jo is of the form

Here L and ~ are formula from the proof of Fagin's theorem (L holds iff the
pth position of the encoding of the input is 1, and ~ holds iff if is past the last
position of the encoding of the input on the tape). Thus the first disjunet says
that at time 0, the tape of M contains the encoding of the input structure.
The formula o:o(t-1,if,T0 ,T1 ,(Hq)qEQ) lists conditions under which at the
following time instant, ~ the position if will contain zero. It is similar to the

194 10 Fixed Point Logics and Complexity Classes

formulae we used for modeling III's transitions in the proof of Fagin's theorem.
The formula 7jJ1 is similar to 7jJ0 .

The formula 7/Jq0 is of the form

and other 7/Jq's are of the form (t> 0) 1\ oq(t- l,p. T0 , T1 • (Hq)qEQ). where
o'l again lists conditions under which at the next time instant, III will enter
state q while having the head pointing at jJ. The first disjunct iu ~·,10 states
that at time 0, M is in state q0 with its head in position 0.

We leave it as a routine exercise to the reader to write the a;'s and o" 's,
based on Af's transitions, and verify that that jth stage of the fixed point com
putation for the system tJt indeed computes the configuration of M for times
not exceeding j- 1. Hence, the fixed point formula (10.9) checks membership
in P, which completes the proof. 0

Note that using inflationary fixed points instead of least fixed points in
the proof of Theorem 10.14 gives us extra freedom in writing down formulae
of the system tJt: we do not have to ensure that these are positive in T; 's and
Hq 's. However, one can write those formulae carefully so that they would be
positive in all those relation symbols. In that case, one can replace ifp with
lfp in (10.9). Hence, the proof of Theorem 10.14 then shows that every LFP
definable property over ordered structures can be defined by a formula of the
form

::J:f [lfp R; .1/f] (:£),

where tJt is a system of FO formulae positive in relation symbols R 1 • .•• , R 11 •

This, of course, would follow from Corollary 10.13, stating that LFP = LFP0 ,

but notice that for ordered structures, we obtained the normal form result
without using the stage comparison theorem.

We have seen that for several logics, adding an order increases their ex
pressiveness; that is, .C ~ (.C+ <)inv for .C being FO, or one of its counting
extensions, or MSO. The same is true for LFP,IFP, and PFP; the proof of
this will be given in the next chapter when we describe additional tools such
as finite variable logics and pebble games. At this point we only say that
the query that separates these logics on ordered and unordered structures is
EVEN: it is not expressible in any of the fixed point logics without a linear
order, but is obviously already in LFP+ <, since it is PTIME-computable.

We conclude this section by considering the partial fixed point logic, PFP.
Over ordered structures, it corresponds to another well-known complexity
class.

Theorem 10.15. Over ordered structures, PFP captures PsPACE.

10.5 DATALoc; and LFP 195

ThP proof, of course, follows the proofs of Trakhtenbrot's, Fagin's, and
Immerman-Vardi's theorems. We only explain why PFP formulae can be eval
uated in PSPACE. Consider pfpR.:i'cp(R,x), where R is k-ary, and l<~t Xi's lw
the stages of the partial fixed point computation on Qt with I A I= n. There are
two possibilities. Either xrn+t = xrn for some m, in which case a fixed point

k .

is reached. Otherwise, for some 0 ::=; i, j ::=; 2" , i + 1 < j, we have X' = X 1 ,

and in this case the formula [pfp R xct?(R, x)] (i) would evaluate to false, since
the partial fixed point is the empty set. Hence, one has to check which of
these cases is true. For that, it suffices to enumerate all the subsets of Ak,
one by one (which can be done in PSPACE), and proceed with computing the

. k
sequence X', checking whether a fixed point is reached. Since only 2" steps
need to be made, the entire computation is in PSPACE.

To show that PsPACE c;; PFP+ <, one modifies the proof of the
Immerman-Vardi theorem, to simulate the accepting condition of a Turing
machine by means of a partial fixed point formula. We leave the details to the
reader (Exercise 10.9).

10.5 DATALOG and LFP

In this section we review a database query language DATALOG, and relate it
to fixed point logics.

Recall that FO is used as the basic relational query language (it is known
under the name relational calculus in the database literature). Conjunctive
queries, seen in Sect. 6. 7, constitute an important subclass of FO queries.
They can be defined in the fragment of FO that only includes conjunction 1\

and existential quantification 3. There is another convenient form for writing
conjunctive queries that in fact is used most often in the literature. Instead of
?j;(x) = ==Jfl /\; a;(x, fl), one omits the existential quantifiers and replaces the
1\ 's with commas:

(10.10)

Here Rv, is a new relation symbol; the meaning of (10.10) is that, for a given
structure Qt, this new relation contains the set of all tuples a such that Qt f=
?/!(a).

Expressions of the form (10.10) are called rules; the part of the rule that
appears on the left of the : · (in this case, Rv1 (x)) is called its head, and the
part of the rule on the right of the :- is called its body. A rule is converted into
a conjunctive query by replacing commas with conjunctions, and existentially
quantifying all the variables that appear in the body but not in the head.

For example, the rule

q(x:, y) E(x, z), E(z, v), E(v, y)

is translated into ==Jdu (E(x, z) 1\ E(z, v) 1\ E(v, y)).

196 10 Fixed Point Logics and Complexity ClassPs

DATALOC programs contain several rules some of \cvhich may])(' r·er:ursive:
that is, the same predicate symbol may appear in both the head and the body
of a rule. A typical DATALOCi program would be of the following form:

trcl(:r. y)
trd(J:, y)

E(:r,y)
E(.r;, z),t.rd(z. y)

(](l.l1)

This program computes the transitive closure of E: it says that (:r. y) is in
the transitive closure if there is an edge (.r. y), or there is an C'dgc (.r, .:) such
that (z, y) is in the transitive' closure'. As with tlH' fixed point definition of the
transitive closure, to evaluate this program we itC'rate this definition. starting
with the empty set, until a fixed point is reached.

Definition 10.16. A DATALOC pmgmrn over· vocabular·y a is a pair· (II. Q),
wher·e II is a set of rules of the form

P(:Y!) n1 (:r, fl) , n:,, (.f. m. (10.12)

Here the relation symbol P in the head of rule {10.12) does not occur· in (J,

and each et; is an atomic for·mula of the fum~ R(:l!, y), for REa, or· P'(:Y:. :{j),
for P' that occurs as a head of one of the rules of IT. Pu.dherrnon~, Q is the
head of one of the ntles of II.

By DATALOG~ we mean the erten.~ion of DATALoc; when~ negated atorniie
formulae of the fonn ·R(-), for R E a, can appear in the bodies of ndes
{10.12).

For example, the transitive closure program consists of the rules (10.11),
and trcl is the output predicate Q.

In the standard DATALOG terminology, relation symbols from o arP called
extensional predicates, and symbols not in a that appear as heads of rules
are called intensional predicates. These an~ the preclicatc~s compllled by the
program, and CJ is its output.

To define the semantics of a DATA LOG (or DATALOG ~) program (II. (J),
we introduce the irnmediatr conseq'uence operator Fn. Let P1 •••• , 1\. list all
the intensional predicates (with Q being one of them). Lf't n; beth<' arity of
P; , i = l. k. Let

r;(x) J(~~) .1 (··~~) fl .r:,yl ·····fill] .1'./JJ
(10.13)

P;(.i) I (·~ ~) I (~ .~) !1 .r, .1/1 · · · · • ~fm 1 :r, .1/1

enumerate all the rules in II with P; as the h<~ad.
Given a structure Ql and a tuple of sds }7 = (Y1 , ...• Yk), Y; C A"'.

i = L ... ,k, we define F 11 (Y) = (Z1 , ...• Zk), where

I

Z; = {aEA"' I (2LY], Yk) F=~ ?Jf!i (~r{(a,:t/i)/\ ... 1\

10.5 DATALOG and LFP 197

where formulae ~fi are the formulae from the rules (10.13) for the intensional
predicate P;. In other words, a E Z.; can be derived by applying one of the
rules of II whose head is P;, using Y as the interpretation for the intensional
predicates.

Since the formula above is positive in all the intensional predicates (even
for a DATALOG~ program), the operator Fn is monotone. Hence, starting with
(0, ... , 0) and iterating this operator, we reach the least fixed point lfp(Fn) =
(P{'c, ... ; P;:c). The output of (II, Q) on~ is defined as Q= (recall that Q is
one of the P;'s).

Returning to the transitive closure example, the stages of the fixed point
computation of the immediate consequence operator are exactly the same as
the stages of computing the least fixed point of E(x, y) V::lz (E(x, z) 1\R(z, y)),
and hence, on an arbitrary finite graph, the program (10.11) computes its
transitive closure.

Analy11ing the semantics of a DATA LOG program (II, Q), we can see that
it is simply a simultaneous least fixed point of a system tJr of formulae

n!.(~J) P)- V'. (j(~ ~) j (~ ~-)) y!, x, 1,. · ·, k = . ~YJ '"h a, YJ 1\ · · · 1\ lm1 a, Y.J · (10.14)

That is, the answer to (II, Q) on~ is

{a 1 ~ P= [lfPQ,w](a) }.

Hence, each DATALOG or DATALOG~ program can be expressed in LFPsimnlt,
and thus in LFP.

What fragment of LFP does DATALOG~ correspond to? The special form
of formulae 1/J; (10.14) indicates that there are some syntactic restrictions
on LFP formulae into which DATALOG~ is translated. We can capture tlwse
syntactic restrictions by a notion of existential least fixed point logic.

Definition 10.17. The existential least fixed point logic, ::JLFP, over- vocab
ular·y (J, is defined as a r-estr-iction of LFP over- a, wher-e:

• negation can only be applied to atomic for-mulae of vocabular·y a {i.e.,
for-mulae R(-), wher·e R E a), and

• univer-sal quantification is not allowed.

Theorem 10.18. ::JLFP = DATALOG~.

Pmof. \Ve have seen one direction already, since every DATALOC~ query can
be translated into one simultaneous fixed point of a system of FO formulae t/';

(10.14), in which no universal quantifiers arc used, and negation only applies
to atomic a-formulae. Elimination of the simultaneous fixed point introduces
no negation and no universal quantification, and hence DATA LOU~ <;:;; ::JLFP.

198 10 Fixed Point Logics and Complexity Class<'s

For the convers<~, w<~ translate each ::JLFP formula cp(.r 1 •...• • q.) into an
equivalent DATALOG~ program (II'P. Q'P), which, on any structure 21, com
putes Q':;' = cp(21). Moreow~r, the translation ensures that no relation symbol
that appears positively in cp is negated in I1 'P. The translation proc<'eds by
induction on the structure of the formulae as follows:

• If cp(:r) is an atomic or negated atomic formula (i.e .. R(.f) or ,J?(.f)). then
II 'P contains OIH' rule Q 'P (;r!) : - cp (.f).

• If cp = o 1\ (i, then

• If cp = o V d, thell

• If cp(:r) = ::lyn(y .. f), then

• Let tp(:f) = [lfpn. 17n(R, :1/)](.f). By the induction hypotlwsis, we haw
a program (IIn., C2n) for o; notice that R appears positively in n, and
thus does not appear n<,gated in II". Hence, we can ddiw' tll<' following
program, in which R is an intellsional predicate:

H(.r)}.

and which computes the least fixed point of n.

Thus, DATALOG and DATALOG~ correspond to syntactic r<'strictions of
LFP. But could they still be sufficient for capturing PT! rvm?

Let. us first. look at a DATA LO<; program (II. Q), and suppose WP hav<' two
rr-structun~s, 2t1 and 2t2 , on the same universe A, such that for <'Vf'ry symbol
R E rr, we have R'1!. 1 c;; R 212 • Then a straightforward induction on the stages
of the immediate consequence opm·at.or shows that (II. Q) [21 t] c;; (I7. Q) [212],
where by (II, Q)[2t] we denot<' the result of (II, Q) on 21. Hence, DATALOC
only express<~S monotone properties, and thus cannot capture PT!l\!F (exercise:
<'xhibit a non-monotone PTtM~; propm-ty).

Queries expressihl<~ in DATALOG~ satisfy a slightly different monotonicit.v
property. Suppose 2t is a substructure of 23; that is, A c;; IJ, and for each H E rr,
R'l!. is the restriction of R 93 to A. Then (II, Q) [21] c;; (II. Q) [23]. wlH~r<' (1 1, Q)
is a DATALOG-, program. Inde<~d, when you look at. the formulae (10.14), it is
dear that if a witness a is found in 2t, it will be a witness for the existential
quantifiers in 23. Since it is again not hard to find a PTlMt·; property that
fails this notion of monotonicit.y, DATA LOG , fails to capture PTIME. Fmthn
morc, ev<m adding order preserves monotonic:ity, and hence DATALOC~ fails
to capture PTrM E even over ordered structures.

10.6 Transitive Closure Logic 199

But now assume that on all the structures, we have a succes
sor relation succ available, as well as constants min, max for the min
imal and maximal element with respect to the successor relation. It
is impossible for (A, succm, min m, max 'X, ...) to be a substructure of
(B, succ'B, min'B, max'B, ...), and hence the previous monotonicity argument
does not work. In fact, the following theorem can be shown.

Theorem 10.19. Over structures with successor relation and constants for
the minimal and maximal elements, DATALOG~ captures PTIME. D

The proof mimics the proofs of Fagin's and Immerman-Vardi's theo
rems, by directly coding deterministic polynomial time Turing machines in
DATALOG~, and is left to the reader as an exercise.

10.6 Thansitive Closure Logic

One of the standard examples of queries expressible in LFP is the transi
tive closure. In this section, we study a logic based on the transitive closure
operator, rather than the least or inflationary fixed point, and prove that it
corresponds to a well-known complexity class.

Definition 10.20. The transitive closure logic TRCL is defined as an exten
sion of FO with the following formation rule: if <p(x, if, Z) is a formula, where
I xl=l ill= k, and t;_, £; are tuples of terms of length k, then

[trclx,iJ'P(x, if, Z)](f;_, £;)

is a formula whose free variables are z plus the free variables off;_,£;.
The semantics is defined as follows. Given a structure ~' values a for· z

and iii for£;, i = 1, 2, construct the graph G on Ak with the set of edges

Then
~ F= [trcl:r,iJVJ(x, if, ii)](ii1, ii2)

iff (ii1, ii2) is in the transitive closure of G.

For example, connectivity of directed graphs can be expressed by the TRCL
formula Vu'<lv [trclx,y(E(x,y) V E(y,x))](u,v).

We now state the main result of this section.

Theorem 10.21. Over ordered structures, TRCL captures NLoG.

200 10 Fixed Point Logics and Complexity Classes

Having seen a number of results of this type, one might be tempted to
think that the proof is by a simple modification of the proofs of Trakhten
brot's, Fagin's, and Immerman-Vardi's theorems. However, in this case we are
running into problems, and the problems arise in the "easy" part of the proof:
TRCL ~ NLoG.

It is well known that the transitive closure of a graph can be computed
by a nondeterministic logspace machine. Hence, trying to show the inclusion
TRCL ~ NLOG by induction on the structure of the formulae, we haw~ no
problems with the transitive closure operator. The problematic operation is
negation. Since NLoG is a nondeterministic class, acceptance means that some
computation ends in an accepting state. The negation of this statement is that
all computations end in rejecting states, and it is not clear whether this can be
reformulated as an existential statement. Our strategy for proving Tlworcm
10.21 is to split it into two statements. First, we define a logic POSTRCL in
which all occurrences of the transitive closure operator are positive (i.e., occur
under the scope of an even number of negations). In fact, one can always
convert such a formula into an equivalent formula in which no trcl operator
would be contained in the scope of any negation symbol. We then prove two
results.

Proposition 10.22. Over ordered structures, POSTRCL captures NLo<;.

Proposition 10.23. Over ordered structures, POSTRCL = TRCL.

Clearly, Theorem 10.21 will follow from these. Furthermore, they yield the
following corollary.

Corollary 10.24 (Immerman-Szelepcsenyi).
complementation.

NLoc: is closed under
0

This is in sharp contrast to other nondeterministic classes such as NP or
the levels Ef' of the polynomial hierarchy, where closure under complemen
tation remains a major unsolved problem. In particular, for NP this is the
problem of whether NP = coNP.

We start by showing how to prove Proposition 10.22. With negation gone,
this proof becomes very similar to the other capture proofs seen in this and
the previous chapters. Indeed, the inclusion POSTRCL ~ NLoc; is proved
by straightforward induction (since negation is only applied to FO formulae).
For the converse, suppose we have a nondeterministic: logspace machine Jl./. In
such a machine, we have one read-only tape that stores the input, enc(Ql), and
one work tape, whose si:~~e is bounded by clog n for some constant c (whPre
n =I A 1). Let Q be the set of states. To model a configuration of Jl./, we need
to model both tapes. The input tape can be described by a tuple of variables
p, where pindicates a position on the tape, just as in the proof of Fagin's and
Immerman-Vardi's theorems.

10.6 Transitive Closure Logic 201

For the work tape, we need to describe its content, and the position of
the head, together with the state. The latter (position and the state) can be
described with I Q I variables (assuming clog n is shorter than the encoding
of structures with ann-element universe). If the alphabet of the work tape is
{0, 1}, there are 2clogn = nc possible configurations, which can be described
with c variables. Hence, the entire configuration can be described by tuples .if
of length at most c(a)+ IQI + c, where c(a) is a constant depending on a that
gives an upper bound on the size of tuples p describing positions in the input.

Then the class of structures accepted by M is definable by the formula

(10.15)

Here 'Pinit(s0) says that so is the initial configuration, with the input tape
head pointing at the first position in the initial state, and the work tape
containing all zeros; 'Pfinal (81) says that 81 is an accepting configuration (it is
in an accepting state), and 'Pncxt(X, iJ) says that the configuration if is obtained
from the configuration x in one move. It is a straightforward (but somewhat
tedious) task to write these three formulae in FO, and it is done similarly to
the proofs of other capture theorems. This proves Proposition 10.22.

Before we prove Proposition 10.23, we re-examine (10.15). Let min and
max, as before, stand for the constants for the minimal and the maximal
element with respect to the ordering, and let min and max stand for the
tuples of these constants, of the same length as the configuration description.
Suppose instead of 'Pnext(X, iJ) we use the formula 'P~ext=

'Pnext (x, if) V (x = min !\ 'Pi nit (if)) v ('Pfinat (x) !\ if = max),

allowing jumps from min to the initial configuration, and from any final
configuration to max. Then (10.15) is equivalent to

(10.16)

Thus, every POSTRCL formula over ordered structures defines an NLoG prop
erty, which can be expressed by (10.15), and hence by (10.16). We therefore
obtained the following.

Corollary 10.25. Over ordered structures, every POSTRCL formula is equiv
alent to a formula of the form [trclx,iJ'P](min, max), where cp is FO.

We now prove Proposition 10.23. The proof is by induction on the struc
ture of TRCL formulae, and the only nontrivial case is that of negation. By
Corollary 10.25, we may assume that negation is applied to a formula of the
form (10.16); that is, we have to show that

• [trclx,iJ'P(x, if)](min, max), (10.17)

202 10 Fixed Point Logics and Complexity Classes

where <pis FO, is equivalent to a POSTRCL formula.

Assume .r = k. For an arbitrary formula o(:f. m v.-ith I .ill= k. and a

structure 2L IPt d~(?l, h) be the shortest distance between r7 and h in o(Ql)

(viewed as a graph on A"'). If no path bet\v<'en a and b exisb. we assume

d~ (?i, b) = 0e. We define

Reach~(a)

Thus. (10.17) holds in Ql iff

(10.18)

Notice that the maximal finite value of d~ (a, b) is I A I". Sine<' structmes are

ordered, we can count up to I A I k using (k + 1)-tuples of variables: associating

the universe A with { 0 n-]}, we let a (k+ l)-tuple (c1 • ••. , q + 1) rcpresmt

k k-- I
I' I · II + !:2 · n -/ ... + q · II + r'h+ l . (10.19)

As it will not cause any confusion, we shall use the uotation f for bot b tlw
tuple and the number (10.19) it reprl'seuts. l\ote also that constants 0 =min
and 1, as well as successor and predecessor t + J and f I, ar<' FO-definablf'
in the presene<~ of order, so WI' shall usc them in formulae. Also uoticP that
the maximum value of d;~ (a. b), I A I". is reprl'sentecl by Ul = (1. 0 0).

One usdul property of POSTRCL is that over ordered structurPs it can

count: for a formula !3(.£) of POSTRCL, one can construct another POSTRCL

formula count;> (Y) such that 2l f= count3 (() if there are at least c t.uples il

in f3(2l). Indeed, we can enumerate all the tuples a, and go ovPr <til of tlwrn,
checking if j-J(a) holds. Since ;-3 can bP checb~d in NLoc;, thP who!<' algorithm
has NLOG compl<~xity, and thus is definable in POSTHCL. Ow~ can also express

this counting din~ctly: if li{r t i71 , .rAi'2) is ((.r2 = .11 + J) 11 (il:z = il1)) v ((.f2 =

:11 + 1) II j3(:r2) II (i72 = 1!1 + 1)), then

expresses co unto (Y) (exercise: explain why).

Our next goal is to provP the following lemma.

Lemma 10.26. For· every FO fonnuln n(:T, .17), theTe c:r:ists a POSTHCL for·
rnula Pn(x, Z) such that for every 2l,

iff I RPach~(a) I= C.

Before proving this, notice that Lemma 10.26 immediately impli<~s Propo

sition 10.23, since by (10.18), (10.17) is equivalent to

10.6 Transitive Closure Logic 203

:lz (p'P(min,Z) 1\ P'P(x,y)lb(jJ=max)(min,z)),

which is a POSTRCL formula.

Let r ~ (i"i, r) denote the cardinality of { b d~ (?1, b) <:::: C}, so that the
cardinality of the set Reach~ (it) is r-~(ii, 10}

Assume that there is a formula In (x, 'if, Zl' Z2) such that Qt. F In (a, e, Cl' ?'2)
means that if T~ (a, e) = Cl' then T~ (a, e + 1) = C2. With such a formula Ia'

Pn (x, z) is definable by

since the above formula says that Ta(x, 10) = z. Thus, it remains to show how

to define In.
In preparation for writing down the formula In, notice that there is a

POSTRCL formula d,(x, fl, z) such that Qt. F dn(a, b, r) iff d~(a, b)<::::?'. Indeed,
it is given by

Coming back to leo notice that r~(a, i" + 1) = C2 iff

Hence, if we could write a POSTRCL formula expressing this condition, we

would be able to express Ia in POSTRCL.
Suppose we can express d~ (a, b) > e + 1 in POSTRCL. Then Ia is straight

forward to write, since we already saw how to count: we start with c2 and

increment the count every time b with d~(a, b) > e + 1 is found; then trcl
is applied to see if 10 is reached (we leave the details of this formula to the
reader).

Thus, our last task is to express the condition d;~ (a, b) > e+ 1 in POSTRCL.
Even though we have a formula da(x, ;t], z) in POSTRCL (meaning da(x, fl) <::::
Z), what we need now is the negation of such a formula, which is not in

POSTRCL. However, it is possible to express d~(a, b) > e + 1 in POSTRCL
under the condition r~ (a, e) = c1 (which is all that we need anyway, by the

definition of l<>l·

If e = min, then d~(a, b) > 1 is equivalent to -.a(a, b). Otherwise,

d~(a, b) > e + 1 iff one can find c tuples l different from b such that

d~(a, iJ <:::: e and --.a(i, b) for all such l Now the distance formula (which

itself is a POSTRCL formula) occurs positively, and to express d~(a, b) > i"+ 1,

we simply count the number of f satisfying the conditions above, and com
pare that numlwr with c7. As we have seen earlier, such counting of .f's can

b(~ done by a POSTRCL formula. Thus, Ia is expressible in POSTRCL, which
completes the proof of Lemma 10.26 and Theorem 10.21. D

204 10 Fixed Point Logics and Complexity Classes

10.7 A Logic for PTIME?

We have seen that LFP and IFP capture PTIME on the class of ordered struc
tures. On the other hand, for classes such as NP and coNP we have logics
that capture them over all structures. The question that immediately arises is
whether there is a logic that captures PTIME, without the additional restric
tion to ordered structures. If there were such a logic, answering the "PTII'viE
vs. NP" question would become a purely logical problem: one would have to
separate two logics over the class of all finite structures.

However, all attempts to produce a logic that captures PTIME have failed
so far. In fact, it is even conjectured that no such logic exists:

Conjecture (Gurevich) There is no logic that captur·es PTIME over· the
class of all finite structures.

This is a very strong conjecture: since there is a logic for NP, by Fagin's
theorem, it would imply that PTIME =/= NP! The conjecture described precisely
what a logic is. We shall not go into technical details, but the main idea is
to rule out the possibility of taking an arbitrary collection of properties and
stating that they constitute a logic. For example, is the collection of all PTJME
properties a logic? If we want the conjecture to hold, clearly the answer ought
to be no.

In this short section, we shall present a few attempts to refute Gurevich's
conjecture and find a logic for PTIME - and show how they all failed. The
results here will be presented without proofs, and the interested reader should
consult the bibliographic notes section for the references.

What are examples of properties not expressible in LFP or IFP over un
ordered structures? Although we have not proved this yet, we mentioned mw
example: the query EVEN. We shall see later, in Chap. 11, that in general
IFP cannot express nontrivial counting properties over unordered structures.
Hence, one might try to add counting to IFP (it is better to use IFP, so
that positiveness would not constrain us), and hope that such an extension
captures PTIME.

This extension of IFP, denoted by IFP (Cnt), can be defined in the same
way as we defined FO(Cnt) from FO: one introduces the additional universe
{0, ... , n- 1 }, where n is the cardinality of the universe of a a-structure 2l,
and extends the logic with counting quantifiers ::Jix. However, this extension
still falls short of PTIME, and the separating example is very complicated.

Theorem 10.27. Ther·e are PTIME properties which are not definable in
IFP(Cnt). D

Another attempt to expand IFP is to introduce generalized quantifier·s.
already seen in Chap. 8. There, we only dealt with unary generali:wd quan
tifiers; here we present a general definition, but for notational simplicity dml
with the case of one additional relation per quantifier.

10.7 A Logic for PTIME? 205

Let R be a relation symbol of arity k, R rf_ a-. Let C <;;; STRUCT[{R}] be a
class of structures closed under isomorphism. This gives rise to a generalized
quantifier Qc and the extension of IFP with Qc, denoted by IFP(Qc), which
is defined as follows. If tp(x, if) is an IFP(Qc) formula of vocabulary a-, and
lxl= k, then

¢(if) = Qcx tp(x, fl) (10.20)

is an IFP (Qc) formula. The other formation rules are exactly the same as for
IFP. The semantics of (10.20) is as follows:

For example, if C is the class of connected graphs, then the sentence
Qcx, y E(x, y) simply tests if the input graph is connected.

If Q is a set of generalized quantifiers, then by IFP(Q) we mean the
extension of IFP with the formulae (10.20) for all the generalized quantifiers
in Q.

There is a "simple" way of getting a logic that captures PTIME: it is
IFP(Qp), where QP is the collection of all PTIME properties. However, this is
cheating: we define the logic in terms of itself. But perhaps there is a nicely
behaving set Q of generalized quantifiers such that IFP(Q) captures PTIME.

The first result, showing that such a class - if it exists - will be hard to
find, says the following.

Proposition 10.28. Let Qn be a collection of generalized quantifiers of arity
at most n. There there exists a vocabulary o-n such that over o-n -structures,
IFP(Qn) fails to capture PTIME. 0

The reason this result is not completely satisfactory is that the arity of
relations in o-n depends on n. For example, Proposition 10.28 says nothing
about the impossibility of capturing PTIME over graphs. And in fact there is
a collection Qgr of generalized binary quantifiers (i.e., of arity 2) such that
IFP(Qgr) expresses all the PTIME properties of graphs (why?). In fact, one
can even show that there is a single ternary generalized quantifier Q:1 such
that IFP(Q3) expresses all the PTIME properties of graphs (intuitively, it is
possible to code Qgr with one ternary generalized quantifier), but Q3 itself is
not PTIME-computable, and hence IFP(Q3) fails to capture PTIME on graphs.

The existence of a generalized quantifier Q3 raises an intriguing possibility
that for some finite collection Qfin of PTIME-computable generalized quanti
fiers, IFP(Qfin) captures PTIME on unordered graphs. However, this attempt
to refute Gurevich's conjecture does not work either.

Theorem 10.29. There is no finite collection Qfin ofPTIME-computable gen
eralized quantifiers such that IFP(Qfin) captures PTIME on unorder·ed graphs.

Thus, given all that we know today, Gurevich's conjecture may well be
true, as it has withstood a number of attempts to produce a logic for PTIME
over unordered structures.

206 10 Fixed Point Logics and Complexity C!a.<;ses

10.8 Bibliographic Notes

Inductive operators and fixed point logics are studied extensively in
Moschovakis [185] in the context of arbitrary models. The systematic: study
of fixed point logics in finite model theory originated with Chandra and Hare!
(33], who introduced the least fixed point operator in the context of database
query languages to overcome well-known limitations of FO. The subject is
treated in detail in Ebbinghaus and Flum [60], Immerman [133], Grohe [106];
see also a recent survey by Dawar and Gurevich (51]. All of tlwse references
present the Tarski-Knaster theorem, least and inflationary fixed point logics.
and simultaneous fixed points.

The "even simple path" example is taken from Kolaitis (148], where it is
attributed to Yannakakis. See also Exercise 10.2.

The stage comparison theorem was proved in Moschovakis [185], and spP
cialized for the finite case in Immerman (130] and Gurevich and Shelah (119]:
the proof presented here follows Leivant [165]. Corollary 10.12 is from Gure
vich and Shelah (119], and Corollary 10.13 from (130].

The connection between fixed point logics and polynomial time was discov
ered by several people in the early 1980s. Sazonov [212] showed in 1980 that a
certain least fixed point construction - of recursive-theoretic flavor captures
PTIME. Then, in 1982, Immerman [129], Vardi [244], and Livchak [172] proved
what is now known as the Immerman-Vardi theorem. Both Imnwrman's and
Vardi's papers appeared in the proceedings of the STOC 1982 conference;
Livchak's paper was published in Russian and became known much later;
hence Theorem 10.14 is usually referred to as the Immerman-Vardi theorem.
In 1986, Immerman published a full version of his 1982 paper (sec [130]).
Theorem 10.15 is from Vardi [244].

DATALOG has been studied extensively in the database literature, see, e.g.,
Abiteboul, Hull, and Vianu [3] for many additional results and references.
Theorem 10.19 is from Papadimitriou [194].

Theorem 10.21 is from Immerman [130, 132]: the first of these papers
showed that POSTRCL captures NLoG, and the other paper proved closure
under complementation (see also Szelepcsenyi [226]).

A number of references discuss Gurevich's conjecture in detail (e.g., Otto
[191], Kolaitis [147], as well as [60]); they also discuss the notion of a "logic"
suitable for capturing PTIME. Theorem 10.27 is from Cai, Fiirer, and Immer
man [30] (see also Otto [191], as well as Gire and Hoang [91] for extensions).
Theorem 10.29 is from Dawar and Hella [52].

Sources for exercises:
Exercise 10.10: Ajtai and Gurevich [13]
Exercise 10.11: Immerman [130]
Exercises 10.12 and 10.13: Gradel [97]
Exercise 10.14: Immerman [131]
Exercise 10.15: Gradel and McColm [101]

10.9 Exercises 207

Exercise 10.16: Abiteboul and Vianu [5]
Exercises 10.17 and 10.18: Afrati, Cosmadakis, and Yannakakis [8]
Exercise 10.19: Gradel and Otto [102]
Exercises 10.20 and 10.21: Grohe [107]
Exercise 10.22: Shmueli [220] and Cosmadakis et al. [43]
Exercise 10.23: Marcinkowski [179]
Exercise 10.24: Gottlob and Koch [94]
Exercise 10.25: Gurevich, Immerman, and Shelah [118]
Exercise 10.26: Dawar and Hella [52]
Exercise 10.27: Dawar, Lindell, and Weinstein [54]

10.9 Exercises

Exercise 10.1. Prove Proposition 10.3.

Exercise 10.2. Prove that the simultaneous fixed point shown before Theorem 10.8
defines pairs of nodes connected by a simple path of even length.

Hint: use Menger's theorem in graph theory.
Also show that this does not generalize to directed graphs.

Exercise 10.3. Prove Theorem 10.8 for a system involving an arbitrary number of
formulae.

Exercise 10.4. Prove Theorem 10.10.

Exercise 10.5. Prove Theorem 10.15.

Exercise 10.6. Prove Theorem 10.19.

Exercise 10.7. Prove that the combined complexity of LFP is EXPTIME-complete.

Exercise 10.8. Consider an alternative semantics for DATALOG programs. Given a
set of rules IT and a structure 2l, an instantiation f3 of all the intensional predicates
is called a model of IT on 2l if every rule of IT is satisfied. Show that for any IT,

there exists a minimal, with respect to inclusion, model Fruin· The minimal model

semantics of DATALOG defines the answer to (IT, Q) on 2l as the interpretation of Q
in Pmin·

Prove that the fixed point and the minimal model semantics of DATALOG coin
cide.

Exercise 10.9. Write down the formulae 1/J; and 'lj;q from the proof of the
Immerman-Vardi theorem, and show that their simultaneous least fixed point com

putes the relations Ti and Hq.

Exercise 10.10. Show that over finite structures, monotone and positive are two

different concepts (they are known to be the same over infinite structures, see Lyndon

[175]). That is, give an example of an FO formula r.p(P, ·) which is monotone in I',
but not equivalent to any FO formula positive in P.

208 10 Fixed Point Logics and Complexity Classes

Exercise 10.11. Assume that the vocabulary a contains at least two distinct con
stants. Prove a stronger normal form result for LFP: every LFP formula is equivalent
to a formula of the form [lfPR,x'P(R, x)](i}, where <pis an FO formula.

Hint: use two constants to eliminate nested fixed points.

Exercise 10.12. Consider a restriction of SO that consists of formulae of the form

QR1 ... QRn Vx 1\ at,
l

where each Q is either ::3 or V, and each at is Horn with respect to R1 R,. That
is, it is of the form

/'1 1\ · .. 1\ /'m -+ (-J,

where each I'J either does not mention R; 's, or is of the form R; (i1), and ;3 is either
of the form R;(i1), or false. We denote such restriction by SO-HoRN. If all the
quantifiers Q are existential, we speak of ::3S0-HORN.

Prove that over ordered structures, SO-HORN and ::3S0-HORN capture PTIME.

Exercise 10.13. The class SO-KROM is defined similarly to SO-HORl", except that
each at is a disjunction of at most two atoms of the form R;(i1) or -.Ri('iJ), and
a formula that does not mention the R;'s. ::3S0-KROM is defined as the restriction
where all second-order quantifiers are existential.

Prove that both SO-KROM and ::3S0-KROM capture NLoG over ordered struc
tures.

Exercise 10.14. Define a variant of the transitive closure logic, denoted by
DETTRCL, where the transitive closure operator trcl is replaced by the determinis
tic transitive closure. When applied to a graph (V, E), it finds pairs (a, b) which are
connected by a deterministic path: on such a path, every node except b must be of
out-degree 1.

Prove that DETTRCL captures DLoG over ordered structures.

Exercise 10.15. Prove that over unordered structures, DETTRCL ~ TRCL ~ LFP.

Exercise 10.16. Consider the following language that computes queries over
STRUCT[a]. Given an input structure m, its programs compute sequences of re
lations, and are defined inductively as follows:

• 0 is a program that computes no relation.
elf II(R1 , ... ,Rn) is a program that computes relations R], ... ,R,, where

R], ... ,Rn f/:a,then

II(R1, ... , Rn): R(x) : <p(x);

where R !f: a U { R1 , ... , R,}, and <p is an FO formula in the vocabulary of a
expanded with R1, ... , Rn, is a program that computes relations R1, .. . , R,, R,
with R obtained by evaluating <p on the expansion of m with R 1, ...• R,, R.

•If II(R1, ... ,Rn) is a program that computes relations R], R,, and
II'(T1 , ... , Tk) is a program over STRUCT[a U {R1, ... , R,} U {S1, 5..}],
where the arity of each S; matches the arity ofT,, then

II(RI, ... ,R,); while change do II'(T1 11.) end:

10.9 Exercises 209

is a program that computes (Rl, ... ,Rn,Tl, ... ,Tk) over u-structures. The
meaning of the last statement is that starting with (0, ... , 0) as the interpreta
tion of the S;'s, one iterates II'; it computes the T;'s, which are then reused as
S; 's, and so on. This is done as long as it changes one relation among the S; 's.
If this program terminates, the values of the relations (T1, ... , Tk) in that state
become the output.

For example, the while loop

while change do T(x, y) :- E(x, y) V :Jz (E(x, z) 1\ S(z, y)) end;

computes the transitive closure of E.
Prove that over ordered structures, such while programs compute precisely the

PSPACE queries.

Exercise 10.17. Let monotone PTIME be the class of all monotone PTIME prop
erties. Show that DATALOG, even in the presence of a successor relation, fails to
capture monotone PTIME.

Hint: Let O" = {R, S}, where R is ternary, and Sis unary. The separating query
is defined as follows: Q is true in 2l iff the system of linear equations

does not have a non-negative solution.

Exercise 10.18. Prove that without the successor relation, DATALOG~ fails to cap
ture PTIME on ordered structures, even if one allows atoms -.(x = y).

Hint: The separating query takes a graph, and outputs pairs of nodes (a, b) such
that there is a path from a to b whose length is a perfect square.

Exercise 10.19. Show how to expand DATALOG with counting, and prove that the
resulting language is equivalent to the expansion of IFP with counting.

Exercise 10.20. Prove that the expansion of IFP with counting captures PTIME
on the class of planar graphs.

Exercise 10.21. Prove that the class of planar graphs is definable in IFP.

Exercise 10.22. You may recall that containment of conjunctive queries is NP
complete (Exercise 6.19). Prove that containment of arbitrary DATALOG queries is
undecidable, but becomes decidable if all intensional predicates are unary.

Exercise 10.23. We say that a DATALOG program II is uniformly bounded if there
is a number n such that on every structure 2l, the fixed point of Fu is reached after
at most n steps.

Prove that uniform boundedness is undecidable for DATALOG, even for programs
that consist of a single rule.

Exercise 10.24. Consider trees represented as in Chap. 7, i.e., structures with two
successor predicates, labeling predicates, and, furthermore, assume that we have
unary predicates Leaf and Root interpreted as the set of leaves, and the singleton
set containing the root.

210 10 Fixed Point Logics and Complexity Classes

Define monadic DATALOG as the restriction of DATALOG where all intensional
predicates are unary.

Prove that over trees, Boolean and unary queries definable in monadic DATA Lot;

and in MSO are precisely the same. In particular, a tree language is definable in
monadic DATALOG iff it is regular.

Exercise 10.25. Prove that there exists a class C of graphs which admits fixed
points of unbounded depth (i.e., for every n there is an inductive operator that
reaches its fixed point on some graph from C in at least n iterations), and yet
LFP = FO on C.

Remark: this exercise says that it is possible for LFP and FO to coincide on a
class of graphs which admits fixed points of unbounded depth. The negation of this
was known as McColm's conjecture; hence the goal of this exercise is to disprove
McColm's conjecture. McColm [181] made two conjectures relating boundedness of
fixed points and collapse of logics; the second conjecture that talks about FO and
the finite variable logic is known to be true (see Exercise 11.19).

For the next three exercises, consider the following statement, known as the
ordered conjecture (see Kolaitis and Vardi [153]):

If C is an infinite class of finite ordered structures, then FO ~ LFP on C.

Exercise 10.26. Prove that if the ordered conjecture does not hold, then PTil\1E f
PSPACE.

Exercise 10.27. Prove that if the ordered conjecture holds, then LINH f ETIM!O.
Here LINH is the linear time hierarchy: the class of languages computed in linear

time by alternating Turing machines, with a constant number of alternations, and
ETIME is the class of languages computed by deterministic Turing machines in time
20(nJ.

Exercise 10.28: Does the ordered conjecture hold?

11

Finite Variable Logics

In this chapter, we introduce finite variable logics: a unifying tool for study
ing fixed point logics. These logics use infinitary connectives already seen in
Chap. 8, but here we impose a different restriction: each formula can use only
finitely many variables. We show that fixed point logics LFP, IFP, and PFP
can be embedded in such a finite variable logic. Furthermore, the finite vari
able logic is easier to study: it can be characterized by games, and this gives us
bounds on the expressive power of fixed point logics; in particular, we show
that without a linear ordering, they fail to capture complexity classes. We
then study definability and ordering of types in finite variable logics, and use
these techniques to relate separating complexity classes to separating some
fixed point logics over unordered structures.

11.1 Logics with Finitely Many Variables

Let us revisit the example of the transitive closure of a relation. Suppose E
is a binary relation. We know how to write FO formulae 'Pn(x, y) stating that
there is a path from x to y of length n (that is, formulae defining the stages
of the fixed point computation of the transitive closure). One can express
'Pn(x,y), n > 1, as ::Jx1 ... ::lxn-1 (E(x,xl)l\ ... 1\E(xn-l,y)), and cpl(x,y) as
E(x, y). If we could use infinitary disjunctions (i.e., the logic C=w of Chap. 8),
we could express the transitive closure query by

V 'Pn(x, y). (11.1)
n~l

One could even define 'Pn(x, y) by induction, as we did in Chap. 10:

'Pl(x,y) = E(x,y), 'Pn+l(x,y) = 3zn (E(x,zn) 1\cpn(Zn,y)), (11.2)

where Zn is a fresh variable. The problem with either definition of the 'Pn 's
together with (11.1) is that the logic C=w is useless in the context of finite

212 11 Finite Variable Logics

model theory: as we saw in Chap. 8, it defines every property of finite struc
tures (Proposition 8.4).

However, if we look carefully at the definition of the 'Pn's given in (11.2),
we can see that there is no need to introduce a fresh variable z, for each new
formula. In fact, we can define formulae 'Pn as follows:

'PI(x,y) = E(x.y)

'Pn+l(x,y) = ::Jz (E(x,z)!dx (z=xllcp,(x,y))).
(11.3)

In definition (11.3), each formula 'Pn uses only three variables, ;r, y, and z, by
carefully reusing them. To define 'Pn(x, y), we need to say that there is a :::
such that E(x, z) holds, and 'Pn(z, y) holds. But with three variables, we only
know how to say that cp,(x, y) holds. So once z is used in E(x, z), it is no
longer needed, and we replace it by x: that is, we say that there is an :r such
that x happens to be equal to z, and 'Pn(;:r;, y) holds: and we know that the
latter is definable with three variables.

With these formulae (11.3), we can still define the transitive closure by
(11.1). What makes the difference now is the fact that the resulting formula
only uses three variables. If one checks the proof of Proposition 8.4, one dis
covers that, to define arbitrary classes of finite structures in Cxw, one needs,
in general, infinitely many variables. So perhaps an infinitary logic in which
the number of variables is finite could be useful after all?

The answer to this question is a resounding yes: we shall see that all
fixed point logics can be coded in a way very similar to (11.3), and that the
resulting infinitary logic can be analyzed by the same techniques we have seen
in previous chapters.

Definition 11.1 (Finite variable logics). The class of FO fommlae that
use at most k distinct variables will be denoted by FO". The class of Lxw
formulae that use at most k variables will be denoted by C':xw (r-eminder: L>Cw
extends FO with infinitar·y conjunctions 1\ and disjunctions V). Finally, we
define the finite variable infinitary logic c~w by

c~w u c~w·
kEN

That is, C~w has formulae of Coow that only use finitely many var·iables.
The quantifier rank qr(·) of C~w formulae is defined as for FO for Boolean

connectives and quantifiers; for- infinitary connectives, we define

qr(V 'Pi) = qr(/\ cpi) = supqr(cp.;) .
.,

Thus, in general the quantifier rank of an infinitary formula is an or
dinal. For example, if the 'Pn's arc FO formulae with qr(cp,) = n, then

11.1 Logics with Finitely Many Variables 213

qr(V,<w VJn) = w, and qr(::Jx Vn<w 'Pn) = w + 1. When we establish a normal
form for .[~w, we shall see that over finite structures it suffices to consider
only formulae of quantifier rank up tow.

Let us give a few examples of definability in .C~w. We first consider linear
orderings: that is, the vocabulary contains one binary relation <. With the
same trick of reusing variables, we define the formulae

~h(x) = (x = x)

(11.4)

The formula ~f;n (a) is true in a linear order L iff the set { b I b <::: a} contains
at least n elements. Indeed, ~h(x) is true for every x, and 7Pn+l(x) says that
there is y < x such that there are at least n elements that do not exceed
y. Thus, for each n we have a sentence 1}/n = 3x 1Pn(x) that is trw' in L iff
ILI2 n.

Now let C be an arbitrary subset of N. Consider the sentence

V (wn 1\ •Wn+l)·
nEC:

This is a sentence of .C~w' as it uses only two variables, x and y, and it is
true in L iff I LIE C. Hence, arbitrary cardinalities of linear orderings can be
tested in .C~w.

Next, consider fixed point computations. Suppose that an FO formula
cp(R, x) defines an inductive operator; that is, either cp is monotone in R,
or we are considering an inflationary fixed point. We have seen in Chap. 10
that stages of the fixed point computation can be defined by FO formulae
cpn(x); the formulae we used, however, may potentially involve arbitrarily
many variables. To be able to express the least fixed point as V, cpn(x), we
need to define those formulae cp" (x) more carefully.

Assume that cp, in addition to x = (x 1 , ... , Xk), uses variables z1, ... , z1.

We introduce additional variables y = (Yl, ... , Yk), and define cp0 (x) as
•(x1 = xi) (i.e., false), and then inductively cp"+1 (x) as cp(R,X) in which
every occurrence of R(u 1, ... , uk), where u1 , ... , uk are variables among x
and z, is replaced by

(11.5)

As usual, x = :il is an abbreviation for ((x 1 = yl) 1\ . .. 1\ (x k = yk)) . Notice that
in the resulting formula, variables from y cannot appear in any subformula of
the form R(-).

Th<~ effect of the substitution is that we use cp with R being given the
interpretation of the nth stage, so Vn cp"(x) does compute the fixed point.

214 11 Finite Variable Logics

Furthermore, we at most doubled the number of variables in cp. Hence, if
r.p E FO"', then both lfp R.i''P and ifp R.i''P are expressible in £~:.,.

If we have a compleX: fixed point formula (e.g., involving nested fixed
points), we can then apply the construction inductively, using the same sub
stitution (11.5), since r.pn need not be an FO formula, and can have infinitary
connectives. This shows that every LFP or IFP formula is equivalent to a
formula of £"/x,w (since for every fixed point, we at most double the number of
variables). Hence, we have the following.

Theorem 11.2. LFP, IFP, PFP <::; £":xow·

Proof. We have proved it already for LFP and IFP; for PFP, the construction
is modified slightly: instead of taking the disjunction of all the tp" 's, we define
the sentence good, as \lx (r.pn(x) <-+ tp"+1 (x)) (indicating that the fixed point
was reached). Then [pfpR.x'P](Y) is expressed by

v· (ij) V (goodn A r.p" (x)) .
nEN

Indeed, if there is no n such that good, holds, then the partial fixed point
is the empty set, and 'lj;(Y) is equivalent to false. Otherwise, let n 0 be the
smallest natural number n for which good11 holds. Then, for all m 2': n 0 , we
have \lx (r.p"0 (x) <-+ r.pm(x)), and hence 'ljJ(fl) defines the partial fixed point.
Therefore, V' defines pfp R.:I''P, and it at most doubles the number of variables.
Using this construction inductively, we see that PFP <::; .C~w· 0

We now revisit the case of orderings. We have shown before that arbitrary
cardinalities of linear orderings are definable in £~w; in other words, every
query on finite linear orderings is £~w-definable. It turns out that this extends
to all ordered structures.

Proposition 11.3. Every quer·y over ordered finite CJ-structures is e1;pressiblc
in £"/x,w. In fact, if rn is the maximum arity of a r·elation symbol in CJ, then it
suffices to use £~t 1 .

Proof. To keep the notation simple, we consider ordered graphs G = (V. E),
with a linear ordering< on V (i.e., rn = 2, and in this case we show definability
in £~w). Recall that we have an £?-x,w formula 1/Jn(x), that uses variablPs .r. y,
and tests if there are at least n elements in V which do not exceed x in the
ordering<. Hence, for each n we have an £?-x,w formula '1/J=n (:r) which holds iff
xis the nth element in the ordering <. Now, for each G we define a formula
xo as

\lx\lz (E(x, z) <-+ V ('1/J=;(x) 1\ ~J=J(z))) 1\ ==Jx '1/Jp(x) 1\ -,==Jx ~'p+l (1·).
(i.j)EE

viewing the universe V of cardinality pas {1, ... ,p}. Here V'=.i(z) is obtained
from '1/J=.i (x) by replacing x by z; that is, this formula uses variables ;:; and y.

11.2 Pebble Games 215

Note that xc E .C~w and G' f= xc iff G' is isomorphic toG (as an ordered
graph). Finally, for a class P of ordered graphs, we let

ifJp :_:::::: v XC·
GEP

Clearly, this formula defines P. D

11.2 Pebble Games

In this section we present Ehrenfeucht-Fralsse-style games which characterize
finite variable logics. There are two elements of these games that we have not
seen before. First, these are pebble games: the spoiler and the duplicator have
a fixed set of pairs of pebbles, and each move consists of placing a pebble on
an element of a structure, or removing a pebble and placing it on another
element. Second, the game does not have to end in a finite number of rounds
(but we can still determine who wins it).

Definition 11.4 (Pebble games). Let m, ~ E STRUCT[a]. A k-pebble
game over m and ~ is played by the spoiler and the duplicator as follows.
The players have a set of pairs of pebbles {(p~,pk), ... , (p~,p!B)}. In each
move, the following happens:

• The spoiler chooses a structure, m or ~, and a number 1 :S: i :S: k.
For the description of the other moves, we assume the spoiler has

chosen m. The other case, when the spoiler chooses ~' is completely sym
metric.

• The spoiler places the pebble Ph on some element of m. If Ph was already
placed on m, this means that the spoiler either leaves it there or removes
it and places it on some other element of m; if p~ was not used, it means
that the spoiler picks that pebble and places it on an element of m.

• The duplicator responds by placing Pk on some element of ~.

We denote the game that continues for n rounds by PGk(m, ~), and the
game that continues forever by PG'k(m, ~).

After each round of the game, the pebbles placed on m and ~ define a
relation F t;;; A x B: if Ph, for some i :S: k, is placed on a E A and Pk is
placed on bE B, then the pair (a, b) is in F.

The duplicator has a winning strategy in PGk(m, ~) if he can ensure that
after· each round j :S: n, the relation F defines a partial isomorphism. That is,
F is a graph of a partial isomorphism. In this case we write m ='k::: ~-

The duplicator has a winning strategy in PG'k(m, ~) if he can ~nsure that
after every round the relation F defines a partial isomorphism. This is denoted
by m ='kw ~-

216 11 Finite Variable Logics

L_j L_j

L_j L_j

(a) (b) (c) (d)

Fig. 11.1. Spoiler winning the pebble game on Lr, and £ 1

These games characterize finite variable logics as follows.

Theorem 11.5. a) Two structures 2l, IB E STRUCT[a] agree on all sen
tences of .CJ~w of quantifier mnk up to n iff 2l =k.,~ lB.

b) Two structures 2l, IB E STRUCT[a] agree on all sentences of £~w iff
2l=rw~E. o

Before we prove this theorem, we give a few examples of pebble games.
First, consider two arbitrary linear orderings Ln. L.111 of lengths n and m,
n =/= m. Here we show that it is the spoiler who wins PG~ (L,, Lm).

The strategy for L.5 and L4 is shown in Fig. 11.1; the general strategy
is exactly the same. We have two pairs of pebbles, and elements pebbled by
pebble 1 are shown as circled, and those pebbled by pebble 2 are shown in
dashed boxes. The spoiler starts by placing pebble 1 on the top clement of
L 5 ; the duplicator is forced to respond by placing the matching pebble on the
top element of L4 . Then the spoiler places the second pebble on the second
clement of L 5 , and the duplicator matches it in L4 (if he does not, he loses in
the next round).

This is the configuration shown in Fig. 11.1 (a). Next, the spoiler removes
pebble 1 from the top element of L 5 and places it on the third element. ThP
spoiler is forced to mimic the move in L4 , to preserve the order relation. WP
are now in the position shown in Fig. 11.1 (b). The spoiler then moves the
second pebble two levels down; the duplicator matches it. We are now in
position (c). At this point the spoiler places pebble 1 on the last element of
L5 , and the duplicator has no place for the matching pebble, and thus he loses
in the position shown in Fig. 11.1 (d).

Note that we could not have expected any other result here, since we know
that all queries over finite linear orderings are expressible in £~w; hence, the
duplicator should not be able to win PG~ (L.,, Lm) unless n = rn.

11.2 Pebble Games 217

As another example, consider structures of the empty vocabulary: that
is, just sets. We claim the following: if IAI, IBI ~ k, then the duplicator wins
PGk'(A, B); in other words, A =k'w B. Indeed, the strategy for the duplicator
is very similar to his strategy in the Ehrenfeucht-Fra1sse game: at all times, he
has to maintain the condition that p~ and VA are placed on the same element
iff Pk and ~B are placed on the same element. Since both sets have at least k
elements, this condition is easily maintained, and the duplicator can win the
infinite game. This gives us the following.

Corollary 11.6. The query EVEN is not expressible in .C~w·

Proof. Assume, to the contrary, that EVEN is expressible by a sentence t:/J of
.C~w. Let k be such that t:/J E .C~w. Choose two sets A and B of cardinalities k
and k + 1, respectively. By the above, A =k'w Band hence A f= t:/J iff B f= <P.
This, however, contradicts the assumption that <P defines EVEN. D

From Corollary 11.6, we derive a result mentioned, but not proved, in
Chap. 10.

Corollary 11.7. • LFP ~ (LFP+<)inv·

• IFP ~ (IFP+<)inv·

• PFP ~ (PFP+ <)inv·

Proof. Since LFP,IFP,PFP <:;;; .C~w' none of them defines EVEN; however,
over ordered structures these logics capture PTIME and PSPACE, and hence
can define EVEN. D

Before proving Theorem 11.5, we make two additional observations. First,
consider an infinitary disjunction i.p = viE[i.pi, where all 'Pi are FO formulae,
and assume that qr(~.p) :::; n. This means that qr(tpi) :::; n for all i E I. We
know that, up to logical equivalence, there are only finitely many different FO
formulae of quantifier rank n. Hence, there is a finite subset I0 C I such that
i.p is equivalent to ViEio i.pi; that is, to an FO formula. Using this argument
inductively on the structure of .C~w formulae, we conclude that for every k,
every .C~w formula of quantifier rank n is equivalent to an FOk formula of
the same quantifier rank. Hence, if ~ and IE agree on all FOk sentences of
quantifier rank at most n, then ~ =k,':: lB.

Now assume that~ and IE agree on all FOk sentences. That is, for every
n, we have~ =k;':: lB. Since ~ and IE are finite, so is the number of different
maps from A k to Bk, and hence every infinite strategy in PG k' (~, IE) is
completely determined by a finite strategy for sufficiently large n: the one in
which all (finitely many) possible configurations of the game appeared. Thus,
for sufficiently large n (that depends on~ and IE), winning PGk(~, IE) implies
winning PGk'(~, IE). We therefore obtain the following.

Proposition 11.8. For every two structures ~' IE, the following are equiva
lent:

218 11 Finite Variable Logics

1. 2l and 23 agree on all FOk sentences, and

2. 2l and 23 agree on all c~w sentences. D

The second observation is about formulae with free variables. We write
(2l,a) ='k':: (23,b) (or (2l,a) ='kw (23,b)), where lal = lbl = rn:::; k, if the
duplicato~ wins the game PGk(2l, 23) (or PG'k(2l, 23)) from the position where
the first rn pebbles have been placed on the elements of a and b respectively.
A slight modification of the proof of Theorem 11.5 shows the following.

Corollary 11.9. Given two structures, 2l, 23, and a E A'". bE /1"'. m :::; k,

a) (2l,a) =k:':: (23,b) iff for every cp(x) E .C~w with qr(cp):::; n, it is the ca8e

that 2l f= cp(a) {'} 23 f= cp(b).

b) (2l, a) ='kw (23, b) iff for ever·y cp(:T) E .C~w• it is the case that

2t F= cp(a) {'} 23 F= cp(b). o

We are now ready to prove Theorem 11.5. As with the Ehrenfeucht-Frai'sse
theorem, we shall use a certain back-and-forth property in the proof. We start
with a few definitions.

Given a partial map f : A ---> B, its domain and range will be denoted by
dom(f) and rng(f); that is, f is defined on dom(f) <;:;: A, and f(dom(f)) =
rng(f) <;:;:B.

We let symbols a and (3 range over finite and infinite ordinals. Given two
structures 2l and 23 and an ordinal (3, let Ip be a set of partial isomorphisms
between 2l and 23, and let Ja = {I11 I (3 < a}. We say that Jn has the
k-back-and-forth property if the following conditions hold:

• Every set If3 is nonempty.

• Iw <;:;: Ir1 for (3 < (3'.

• Each Ir1 is downward-closed: if g E Ir1 and f <;:;: g (i.e., dom(f) <;:;: dom(g),
and f and g coincide on dom(f)), then f E If3·

• Iff E IfJ+l and ldom(f)l < k, then

forth: for every a E A, there is g E I;3 such that f <;:;: g and a E dorn(g):

back: for every b E B, there is g E Ir1 such that f <;:;: g and b E rng(g).

As before, games are nothing but a reformulation of the back-and-forth
property. Indeed, for a finite a, having a family Ja with the k-back-and-forth
property is equivalent to 2l =k.~-l 23: the collection Ir1 simply consists of
configurations from which the duplicator wins with (3 moves remaining. This
also suffices for infinitely long games: as we remarkc~d earlier, for every two
finite structures 2l and 23, and for some n, depending on 2l and 23, it is the
case that 2l =k.':: 23 implies 2l ='kw 23. FurthermorP, if we haVP a sufficiently

11.2 Pebble Games 219

long finite chain J,, some Ir/s will be repeated, as there arc only finitely
many partial isomorphisms between 1.(1. and 93. Hence, such a chain can then
be extended to arbitrary ordinal length.

Therefore, it will be sufficient to establish equivalence between indistin
guishability in £':xow and the existence of a family of partial isomorphisms with
the k-back-and-forth property. This is done in the following lemma.

Lemma 11.10. Given two structures 1.(1. and 93, they agree on all sentences of

£~w of quantifier rank < a iff there is a family Jn = {If:l I /1 < o:} of partial
isomorphisms between 1.(1. and 93 with the k-back-and-forth property.

In the rest of the section, we prove Lemma 11.10. Suppose 1.(1. and 93 agree
on all sentences of £~w of quantifier rank < a. Let /3 < a. Define Ir, as the
set of partial isomorphisms f with I dom(f) I:::; k such that for every ip E £':xow
with qr(lfJ):::; /3, and every a contained in dom(f),

1.(1. F= lfJ(a) {=} 93 F= 'PU(a)).

We show that J, = {If:l I /3 < a} has the k-back-and-forth property.
Since 1.(1. and 93 agree on all sentences of £~w of quantifier rank< a, each Ir>

is nonempty as it contains the empty partial isomorphism. The containment
Iw c;;; I 11 for /3 < /3' is immediate from the definition, as is downward-closure.
Thus, it remains to prove the back-and-forth property.

Assume, to the contrary, that we found f E If:l+ 1 , with /3 + 1 < a, such that
ldom(f) I = m < k, and f violates the forth condition. That is, there exists
a E A such that there is no g E Ir3 extending f with a E dom(g). In this case,
by the definition of If:i, for every bE B we can find a formula 'Pb(x0, x 1 , ... , x,)
of quantifier rank at most /3 such that for some a 1 , ... , am E dom(f), we have
1.(1. f= ipb(a, 01, ... , am) and 93 f= ''Pb(b, f(al), ... , f(am)).

Now let

lfJ(X], ... ,xrn) = ::lxo 1\ I[Jb(Xo,XI,· .. ,xrn)·
bEB

Clearly, 1.(1. f= lfJ(a1, ... , am), but 93 f= •ip(f(a I), ... , f(am)), which contradicts
our assumption f E If:l+l (since q r('P) :::; /1 + 1). The case when f violates the
back condition is handled similarly.

For the other direction, assume that we have a family J, with the k-back
and-forth property. We use (transfinite) induction on /3 to show that for every
lfJ(XJ, ... , Xm) E £~w' m:::; k, with qr(lfJ) :::; /3 <a,

for every f E If:J, a1, ... , Om E dom(f) :
1.(1. F ip(al, ···,am) {=} 93 F ip(f(ai), .. ·, f(am)).

(11.6)

Clearly, (11.6) suffices, since it implies that 1.(1. and 93 agree on £~w sentences
of quantifier rank < a.

220 11 Finite Variable Logic~

The basis case is 3 = 0. Then zp is a Bool<•an combination of atomic
formulae (for finite quantifier ranks. as we saw, infinitary connectives arc
superfluous), and hence (11.6) follows from the assumption that .f is a partial
isomorphism.

We now use induction on the structure of -P· The case of Boolean combi
nations is trivial. If cp =vi '-Pi and qr(zp) > qr(zp;) for all i, then (J is a limit
ordinal and again (11.6) for cp easily follows by applying the hypotlwsis to all
the zp; 's of smaller quantifier rank.

Thus, it remains to consider the case of zp(.r 1 ••••• :r,11)

::l:ro ~J(xo, :rm), with qr(zp) = ;1 + 1 and qr(d for some ;) with
{3 + 1 < a. 'Ve can assume without loss of generality that .r0 is not among
x1, ... , Xm (exercise: why?) and hence m < k.

Let .f E I 1J+l and OJ •.. .• a, E dom(.f). Assume that 2l ~ -P(a 1 a 11 ,);

that is, for some no E A, 2l ~ liJ(oo.riJ, ... , o,). Since I3+1 is downward
closed, we can further assume that dom(.f) = {o 1 a,}. Since ldom(f)l =
rn < k, by the k-back-and-forth property we find g E I,J ext<'IHling I
such that a 11 E dom(_q). Applying (11.6) inductively to 1 ·, we derive 123 ~
~J(g(ao),g(o.t), ... ,g(au,)). That is, 123 ~ 1/{q(ao),.f(ai)f(ou,)) since I
and g agree on a 1, ... , 0 111 • Henc<~, 123 ~ cp(.f(o.J),f(o,)).

The otlwr direction, that 123 ~ cp(.f(ai),f(u 11,)) impli<·s 2l ~
zp(a1 , ... , 0.111), is completely symmetric. This finishes the proof of (1 1.6).
Lemma 11.10, and Theorem 11.5. D

11.3 Definability of Types

For logics lik<~ FO and !\ISO, we have used rank-k type8, which are collections
of all formulae of quantifier rank k that hold in a given structur<'. An extremely
useful feature of types is that they can be defined hy formula<' of quantifin
rank k, and we have used this fact many times.

"\\'hen we mov<~ to finite variable logics, the role of paramder /; is pla.v<•d
by the number of variables rather than the quantifier rank. We can. therefore.
defin<~, FO"-typcs, but then it is not imnwdiately dmr if <'V<TV such type is
itself dPfinable inFO". In this section W<' prove that this is the casP. As with
the case of FO or MSO types, this definability n~snlt proves wry usefuL awl
we derive some interesting corollaries. In particular, we establish a normal
form for L~w, and prove that every dass of finit<' structun•s that is closed
under =/:'w is definable in L"xw·

Definition 11.11 (FOk-types). Given a stnu:lur-e 2l and a tuple 5, the
FO'-type of (2l. ii) is

tPFo' (2l, 5) { zp(.f) E FO~. 1 2l ~ zp(a)}.

An FO" -type is any set of for-rnnlae of FO" of the for-m tPFo' (2l. ii).

11.3 Definability of Types 221

One could have defined .C~w-types as well, as the set of all .C~w formulae
that hold in (2t, a). This, however, would be unnecessary, since every FOk
type completely determines the .C~w-type: this follows from Proposition 11.8
stating that two structures agree on all .C~w formulae iff they agree on all
FOk formulae.

Note that unlike in the cases of FO and MSO, the number of different
FOk -types need not be finite, since we do not restrict the quantifier rank. In
fact we saw in the example of finite linear orderings that there are infinitely
many different F02 -types, since every finite cardinality of a linear ordering
can be characterized by an F02 sentence.

Each FOk -type T is trivially definable in .C~w by V <pEr cp. More interest-

ingly, we can show that FOk -types are definable without infinitary connectives.

Theorem 11.12. For every FOk-type T, there is an FOk formula cp7 (x) such
that, for every structure 2t,

tppQk (2(, a) = T

Before we prove Theorem 11.12, let us state a few corollaries. First, re
stricting our attention to sentences, we obtain the following.

Corollary 11.13. For every structure 2t, there is a sentence l/f'}). ofFOk such
that for any other structure 23, we have 23 f= l/f'}J. iff 2t ='kw 23. D

We know that without restrictions on the number of variables, we can
write a sentence that tests if 23 is isomorphic to 2t, and this is why the full
infinitary logic defines every class of finite structures. Corollary 11.13 shows
that, rather than testing isomorphism as in the full infinitary logic, in .C~w
one can write a sentence that tests ='kw-equivalence.

We can also see that closure under ='kw is sufficient for definability in
,C~w·

Corollary 11.14. If a class C of structures is closed under ='kw (i.e., 2t E C
and 2t ='kw 23 imply 23 E C), then C is definable in .C~w.

Proof. Let T be the collection of .C~w-types T such that there is a structure
2(in c with tpFOk (2t) = T. From closure under ='kw it follows that v rET 'Pr
defines C. D

Definability of .C~w-typcs also yields a normal form result, stating that
only countable disjunctions of FOk formulae suffice.

Corollary 11.15. Every .C~w formula is equivalent to a single countable dis
junction of FOk formulae.

222 11 Finite Variable Logics

Proof. Let cp(x) be an .C':xow formula. Consider th<~ set c'P = { (12!, a) I 12{ F
cp(a)}' such that no two elements of c'P are isomorphic (this ensures that c'P
is countable, since there are only countably many isomorphism types of finit<'
structures). Let <p'){,a(x) be the FOk formula defining tpFo' (12!, a} Let

'1/J(x) v 'P('){.<n (x).
(')l.a)EC,

We claim that cp and '1/J are equivalent. Suppose 113 f= cp(b). Let (113'. b') be

an isomorphic copy of (113, b) present in C'P. Then 113' f= cp('B'.b')(b') and thus

113' f= 'lj;(b') and 113 f= 'lj;(b). Conversely, if 113 f= 11'(b), then for some 12! and a
with 12{ F cp(a), we have tpFOk (12!, a) = tpFO' (113, b); that is, (12!, a) =='tw (113, b).
Since cp is an .C':xow formula, this implies 113 f= cp(b), showing that cp and t/• arc
equivalent. D

Since the negation of an .C~w formula is an .C~w formula, we obtain a dual
result.

Corollary 11.16. Every .C':xow formula is equivalent to a single countable con
junction of FOk formulae.

We now present the proof of Theorem 11.12. To keep the notation sim
ple, we look at the case when there are no free variables; that is, we deal
with tpFOk (12!). Another assumption that we make is that the vocabulary (J is
purely relational. Adding free variables and constant symbols poses no prob
lem (Exercise 11.1).

Fix a structure 12!, and let A<:::k be the set of all tuples of elements of A
of length up to k. For any a= (a1 •... ,al) E A<:::k, where l :s; k, we define a
formula cprf'(x1 , ... , xz). Intuitively, these formulae will have the property that
they precisely characterize what one can say about a in FOk, with quantifier
rank at most m: that is, 113 f= cp;I'(b) iff (12!. a) and (113, b) agree on all the FOk
formulae of quantifier rank up to m.

To define these formulae, consider partial functions h : { x 1 , ... , :q.} --+ A,
and first define formulae cp/~'(if), with free variables if being those in dom(h).
as follows:

• cp~ ('Y) is the conjunction of all atomic and negated atomic formulae true
in 12! of h(if).

• To define cp"/:+ 1 (if), consider two cases:

1. Suppose I dom(h) I< k. Let i be the least index such that :r; r:j dorn (h),
and ha be the extension of h defined on dom(h) U { x;} such that
ha(x;) = a. Then

cp"/:+1 (ff) =:= cpf:(ff) 1\ 1\ ::Jx; cpf:..(if,x;) 1\ Vx; V 'P;;:,(if,x;).
aEA aEA

11.3 Definability of Types 223

2. Suppose ldom(h)l = k:. Let h1 be the restriction of h which ts not
defined only on xi. Then

h:

<f?/~' (x) A 1\ <p;;;+ 1 (xi),
i=l

where Xi is :15 with the variable x 1 excluded.

Finally, we define <p5'(x1 , ... ,:rt) as <p/;'(x), where his given by h(:r;) =a;,
for 'i = 1, ... , l.

To show that formulae <f?"ii' do what they arc supposed to do, we show
that if they hold, a certain sequence of sets of partial isomorphisms with the
k:-back-and-forth property must exist.

Lemma 11.17. Let a= (at, ... ' al) E A:Sk. Then \l) F <p:f'(b) iff there exists
a collection Jm = { Io, It, ... , Irn} of sets of partial isomorphism between ~
and ll3 with the k-back-and-for·th property such that Irn t;;;: Im-1 t;;;: ... t;;;: Io,
and g = { (a1, b1), ... , (ar, b1)} E Irn.

Pr-oof of Lemma 11.17. Since qr(<p5') = rn and~ f= <p:f'(a), the existence of

J."' implies, by Lemma 11.10, that ll3 f= <f?a(b).
For the converse, we establish the existence of Jm by induction on In.

If rn = 0, we let I 0 consist of all the restrictions of g. Clearly, I 0 is not
empty, and since g is a partial isomorphism (because, by the assumption,
ll3 f= <p~(b), and thus a and b satisfy the same atomic formulae), all elements
of I 0 are partial isomorphisms.

For the induction step, to go from rn to rn + 1, we distinguish two cases.

Case 1: l < k:. From ll3 f= <p~'+ 1 (b) and the definition of <p~'+ 1 it follows
that ll3 f= <f?a(b), and thus we have, by the induction hypothesis, a sequence
J',, = {I(1, ••• , I;,} of partial isomorphisms with the k:-back-and-forth prop
erty such that g E I~,.

Looking at the second conjunct of <p~'+ 1 and applying the induction hy
pothesis for rn, we see that for every a E A there exists b E B and a sequence
J;1, = {II), ... ,I:,} of partial isomorphisms with the k:-back-and-forth prop
erty such that 9a,b = { (a 1 , b1), ... , (a,, bz), (a, b)} E I;~,.

We uow define:

I; = I: U U If for i :::; m
oEA

Im+l = {.f I J t;;;: g}.

It is easy to sec that component-wise unions like this preserve the k:-back
and-forth property. Furthermore, since g E I;n, then Im+ 1 t;;;: I;, t;;;: I 111 • Thus,
we only have to check the k:-back-and-forth property with respect to Irn+l
and Im. But this is guaranteed by the second and the third conjunct of <p;-;'+ 1 .

224 11 Finite Variable Logics

Indeed, consider g and a E A- dom(g). Since ll3 f= <p~'+ 1 (b), by the second

conjunct we see that ll3 f= 3x<p5;,(b, x) and hence for some b E B, we have

23 f= 'Pa;,(bb). But then g U {(a, b)} E I~, <:: Im. The back property is proved
similarly. This completes the proof for case 1.

Case 2: l = k. By the definition of <p~•+l for the case of l = k. we see that

23 f= 'Pa' (b), and hence by the induction hypothesis, g is a partial isomorphism.

For each i :S k, let 9i beg without the pair (ai, bi)- Applying the argum0nt
for the case l < k to each 9i, we get a sequence of partial isomorphisms
{I~, ... ,I:n+l} with the k-back-and-forth property such that I:"+ I <:: ... <::
I~. Now we define

k

Ii = {g} u U Ij. j :S rn + 1.
i=l

One can easily verify all the properties of a sequence of partial isomorphisms
with the k-back-and-forth property: in fact, all of the properties are preserved
under component-wise union, and since ldom(g) I = k, the k-back-and-forth
extension for g is not required. This completes the proof case 2 and Lemma
11.17. D

For each a E A'S", consider <prf'(Ql) = {ao I Qt f= <prf'(iio)}. By definition.
m+ 1 · f tl 1' rn 1\ · d h 'Pa IS o 1e 10rm 'Pa ... , an ence

Since Q{ is finite, this sequence eventually stabilizes. Let m 5 be the number
such that <p~'"(Qt) = 'Pa(Qt) for all rn >rna. Then we define

AI = max rn,7 , and
aEASk

lf/21. = 'P~1 1\ /\ lfx1 .. . \fxk (<p~1 (.i) ---+ tp~I+l (:T)) (11. 7)
aEASk

Here E stands for the empty sequence. By the definition of 1\I, Q{ f= WQl·

Furthermore, lf/21. E FOk.
Thus, to conclude the proof, we show that lf/21. defines tpFO' (Qt). In other

words, we need the following.

Lemma 11.18. If ll3 is a finite structure, then 23 f= lf/21. iff tPFo' (Qt)
trFo' (23); that is, Qt ~k'w 23.

Proof of Lemma 11.18. Since lf/21. E FO"" and Qt f= lf/21., it suffices to show that
Q{ ='kw 23 whenever 23 f= lf/21..

Let ll3 f= lf/21.. We define a set G of partial maps between Q{ and 23 by

11.4 Ordering of Types 225

Since 113 I= l]i'21, the sentence cp~f+l is true in 113, and thus G is nonempty, as
the empty partial map is a member of G.

Applying Lemma 11.17 to each g = {(a1 , bi), ... , (a!, b1)} E G, we see that
there is a sequence 'JY = {I8, ... , I~+l} of partial isomorphisms with the
k-back-and-forth property such that I8 2 ... 2 I~+l and g E IXf+J· We
now define a family 'J = {Ii I i EN} by

Ii = U If for i :S: M + 1
gEG

Ii = I M + 1 for i > M + 1.

It remains to show that 'J has the k-back-and-forth property. As we have
seen in the proof of Lemma 11.17, the k-back-and-forth property is preserved
through component-wise union, and since all Ii, i > M + 1, are identical, it
suffices to prove that every partial isomorphism in IM+2 can be extended in
IM+l·

Fix f E IM+2 such that ldom(J)I < k. We show the forth part; the back
part is identical. Let a EA. Since f E IM+2, and the sequence {I0 , ... ,Ifo,f+J}
has the k-back-and-forth property, we can find f' E IM with f ~ f' and
a E dom(J'). Let f' = {(a1, b1), ... , (a!, b1)}. Since f' is a partial isomorphism
from IM, from Lemma 11.17 we conclude that 113 I= cp~1 , ••• ,a!)(bl,···,bl).

Now from the implication in (11.7), we see that 113 I= cpra~~.,a!)(bi, ... , b1);

therefore, f' E G. But then f' E I{r+l and hence f' E IM+I, which proves
the forth part. Since the back part is symmetric, this concludes the proof of
Lemma 11.18 and Theorem 11.12. D

11.4 Ordering of Types

In this section, we show that many interesting properties of types can be
expressed in LFP. In particular, consider the following equivalence relation
>::::pok on tuples of elements of a structure 2l:

Clearly this relation is definable by an £/:X,w formula

T

where T ranges over all FOk-types.
It is more interesting, however, that this relation is definable in a weaker

logic LFP. Furthermore, it turns out that there is a formula of LFP that
defines a certain preorder --<pok on tuples, such that the equivalence relation
induced by this preorder is precisely >::::pok. This means that on structures in
which all elements have different FOk -types, we can define a linear order in

226 11 Finite Variable Logics

LFP, and hence, by the Immerman-Vardi theorem, on such structures LFP
captures PTIME.

We start by showing how to define :::::::Fo' .

Proposition 11.19. Fix a vocabulary (]. For every k and l <::: k, there is an
LFP formula ry(x, if) in 2l free variables .such that joT eveTy Ql E STRUCT[(J],

~Zt F= q(a, b) a ::::::;FO' b.

Pmof The atomic F01.:-type of (Ql, a), with I iii= l <::: k, is the conjunction of
all atomic and negated atomic formulae true of a in Qt. Since there arc finitely
many atomic F01.:-formulae, up to logical equivalence, each atomic type is
definable by an FOk formula. Let a 1 (x), ... , a" (x) list all such formulae. Then
we define

'1/Jo(x, if) = v
This is a formula of quantifier rank 0, and Ql F '1/'o(a. b) iff thP atomic FOk

types of a and b are different.
Next, we define a formula 1/-' in the vocabulary (] expanded with a 21-ary

relation R:

I I

1/J (R, x, if) 1/'o(i, if) v V 3x;'Vy;R(x, if) v V 3y;'Vx;R(.f .. i/). (11.8)
i=1 i=l

and let
[lfp R,x .. Q' 1/J(R. x, if)](x. if).

Consider the fixed point computation for 1/J. Initially, we have tuples (a, b)
with different atomic types; that is, tuples corresponding to the position in
the pebble game in which the spoiler wins. At the next stage, we get all the
positions of the pebble game (a, b) such that, in one move, the spoiler can force
the winning position. In general, the ith stage consists of positions from which
the spoiler can win the pebble game in i - 1 moves, and hence Ql F <p(a, b)
iff from the position (a, b), the spoiler can win the game. In other words,

Ql F cp(a, b) iff (Ql, a) tr:-w (Ql, b), or, equivalently, tpFO' (Qt. a) -1- tpFO' (Ql,b).
Hence, ry can be defined as •cp, which is an LFP formula. 0

We now extend this technique to define a preorder -<Fo" on tuples, whose
associated equivalence relation is precisely ::::::<pok.

Suppose we have a set X partitioned into subsets X 1 , ...• X'". Consider a
binary relation -< on X given by

x-< y ¢? x E Xi, y EX;, and i < j.

We call relations obtained in such a way strict pTeoTder.s. With each strict
preorder -< we associate an equivalence relation whose equivalence classes are
precisely X 1 , ... ,Xm. It can be defined by the formula •(:c-< y) 1\ •(y-< :r).

11.4 Ordering of Types 227

Theorem 11.20. For every vocabulary a, and every k, there exists an LFP
formula x(x, if), with I x 1=1 171= k, such that on every~ E STRUCT[a], the
formula x defines a strict preorder --<Fo• whose equivalence relation is ~Fo•.

As we mentioned before, this result becomes useful when one deals with
structures~ such that for every a,b E A, tPFo•(a) -/=- tPFo•(b) whenever
a -/=- b. Such structures are called k-rigid.

Theorem 11.20 tells us that in a k-rigid structure, there is an LFP-definable
strict preorder whose equivalence classes are of size 1: that is, a linear order.
Hence, from the Immerman-Vardi theorem we obtain:

Corollary 11.21. Over k-rigid structures, LFP captures PTIME. D

Now we prove Theorem 11.20. We shall use the following notation. If a=
(al, ... 'ak) is a tuple, then ai<-a is the tuple in which ai was replaced by a,
i.e., (al, ... ,ai-l,a,ai+l,···,ak)·

Recall the formula 'lj;(x, y) (11.8). The fixed point of this formula defined
the complement of ~Fo• , and it follows from the proof of Proposition 11.19
that the jth stage of the fixed point computation for 'lj;, 'lj;J (x, if), defines the
set of positions from which the spoiler wins with j - 1 moves remaining. In
other words, ~ f= 'lj;J (a, a) iff(~, a) and (23,b) disagree on some FOk formula
of quantifier rank up to j - 1.

We now use this formula 'lj; to define a formula '"'f(S, x, if) such that the
jth stage of the inflationary fixed point computation for '"'! defines a strict
preorder whose equivalence relation is the complement of the relation defined
by 'lj;J (x, Y). In other words, '"Yj (~) defines a relation --<j on Ak such that the
equivalence relation "'j associated with this preorder is

(~,a) ='ff-1 (~,b).
We now explain the idea of the construction. In the beginning, we have to deal
with atomic FOk-types. Since these can be explicitly defined (see the proof of
Proposition 11.19), we can choose an arbitrary ordering on them.

Now, suppose we have defined --<j, the jth stage of the fixed point compu
tation for '"'(, whose equivalence relation is the set of positions from which the
duplicator can play for j - 1 moves (i.e., the complement of the jth stage of
'lj;). Let Y1 , ... , Ys be the equivalence classes.

We have to refine --<j to come up with a preorder --<J+l· For that, we
have to order tuples (a, b) which were equivalent at the jth stage, but become
nonequivalent at stage j + 1. But these are precisely the tuples that get into
the fixed point of 'lj; at stage j + 1.

Looking at the definition of 'lj; (11.8), we see that there are two ways for
'lj;j+l (a, b) to be true (i.e., for (a, b) to get into the fixed point at stage j + 1):

1. There is a E A such that c.pJ (ai a, bi b) holds for every b E A. In other
words, the equivalence class of ai<-a contains no tuple of the form bi<-b
which is different from b.

228 11 Finite Variable Logics

2. Symmetrically, there is b E A such that the equivalence class of b,;~b
contains no tuple of the form ili<-a ol a.

Assume that i' is the minimum number :<:::; k such that either 1 or 2 above, or
both, happen. Let Y be the set of all the tuples ai'c-a for case 1 and b;~~~~ for
case 2. We then consider the smallest, with respect to -<.1, equivalence class
Yp's into which elements of Y may fall. Note that it is impossible that for

some a, b, both a;'c-a and bi'c-b are in Yp. Hence, either

1'. for some a, ai'c-a is in Yp, or

2'. for some b, bi'c-b is in YP.

In case 1', we let a -<.i+ 1 b, and in case 2', we let b -<.1+1 a.
This is the algorithm; it remains to express it in LFP. The formula x(x, if)

will be defined as [ifPs,:I',gf'(S, x, if)](x, if). To express{', we first deal with the
atomic case. Since we have an explicit listing a 1 , ns of formulae defining
atomic types, we can use

!'o(x, if) V (ai(x) 1\ a.J(if))
'i<:i

to order atomic types.
Next, we define

~Wi,il) = Vxi3y; (·S(x,if) 1\ -.S(if,:r)) 1\ Vy;3x; (•S(x,if) 1\ -.S(if,x)),

~;(x, if)= (1\ ~~(x, if)) A ~;,(x, if).
p<i

The formula ~;(x, b) will be used to determine the position i' in the algorithm.
To select tuples a;,__a which are inequivalent to all tuples b;c-b, we use the
formula

and 15r(y, x, if) for the symmetric case (in which we reverse the roles of :r and
y).

Finally, we get the following definition of !'(x, ff):

Notice that I' is not positive in S; however, by the Gurevich-Shelah theorem,
ifp s,x,yl' is equivalent to an LFP formula.

11.5 Canonical Structures and the Abiteboul-Vianu Theorem 229

We leave it to the reader to complete the proof: that is, to show that "(in
deed codes the algorithm described in the beginning of the proof, and to prove
by induction that the jth stage of the inflationary fixed point computation
for"(defines a preorder whose equivalence relation is =k,j_1 . D

11.5 Canonical Structures and the Abiteboul-Vianu
Theorem

Using definability of a linear ordering on FOk-types, we show how to convert
each structure !2l into another structure ltk(!2t), which, in essence, captures
all the information about .C~w-definabi1ity over !2l. The main application of
this construction is the Abiteboul-Vianu theorem, which reduces the problem
of separating complexity classes PTIME and PSPACE to separating two logics
over unordered structures (recall that PTIME and PSPACE are captured by
LFP and PFP over structures with a linear ordering).

Fix k > 0, and a purely relational vocabulary a = { R 1, ... , R1} such
that the arity of each Ri is at most k (since we shall be dealing with FOk
formulae, we can impose this additional restriction without loss of generality).
We shall use the preorder relation --<pok defined in the previous section; its
equivalence relation is a ~FOk b given by tppQk (!2t, a) = tppok (!2t, b), for a, bE
Ak. Whenever k and !2l are clear from the context, we shall write [a] for the
~Fok-equivalence class of a.

Definition 11.22. Given a vocabulary a = { R1 , ... , Rz}, where the ar·ities of
all the Ri 's do not exceed k, and a a-structure !2l, we define a new vocabulary
ck(a) and a structure ltk(!2t) E STRUCT[ck(a)] as follows.

Let t = kk, and let n 1 , ... , ?rt enumerate all the functions 1r : { 1, ... , k} --->

{ 1, ... , k}. Then

where<, the Si 's, and the Pi's are binary, and U, U1 , ... , Uz are unary.
The universe of ltk(!2t) is Ak / ~Fok, the set of ~Fok -equivalence classes

of k-tuples from !2l. The interpretation of the predicates is as follows (where a
stands for (a1, ... , ak)):

• < is interpreted as --<Fok.

• U([a]) holds iff a1 = a2.

• U,([a]) holds iff (a1, ... , a111) E R?, where m :::; k is the ar·ity of R;.

• S;([a], [b]) holds iff a and b differ at most in their ith component.

• P,, contains pairs ([a], [(a1r(l), ... , a1r(k))]) for all a E Ak.

Lemma 11.23. The structur·e ltk(!2t) is well-defined, and< is interpreted as
a linear ordering on its universe.

230 11 Finite Variable Logics

Proof Suppose U([a]) holds and bE [a]. Then a 1 = a2 , and sincP tpFo' (a) =
tpp0 k(b), we have b1 = b2. Since other predicates of <t,,(Qt) are defined in
terms of atomic formulae over m, they are likewise independent of particular
representatives ofthe equivalence classes. Finally, Theorem 11.20 implies that
< is a linear ordering on Ak I ~Fo'. D

The structure ([k(Ql) can be viewed as a canonical structure in terms of
.C~w -definability.

Proposition 11.24. For every Qt, 'B E STRUCT[a],

Ql ='kw 'B -(=} ([k(Ql) ~ ([k('B).

Proof sketch. Suppose Ql ='kw 'B. Since every FOk -type is definable by an FO"
formula, every type that is realized in Ql is realized in 'B. Hence, I A I= I B I·
Furthermore, since -<Fo' is definable by the same formula on all a-structures.
we have an order-preserving map h : Akl ~FO' --> Bk I ~Fo'- It is easy to
verify that such a map is an isomorphism between <tk(Ql) and <t,('B).

For the converse, one can use the isomorphism h: ([k(Ql) --> <tk('B) togetlwr
with relations S; to establish a winning strategy for the duplicator in the k
pebble game. Details are left as an easy exercise for the reader. D

We next show how to translate formulae of LFP and PFP over <t~c(l2l) to
formulae over Ql, and vice versa. We assume, as throughout most of Chap. 10,
that fixed point formulae do not have parameters.

Lemma 11.25. 1. For every LFP or PFP formula <p(.r) over vocabulary cr
that uses at most k variables, there is an LFP (respectively, PFP) formula
<p 0 over vocabulary c k (17) in one free var·iable such that

(11.!))

2. For every LFP or PFP formula <p(x1 , ... , Xm) in the language of c~c (cr),
there is an LFP {respectively, PFP) formula <p* (17) over vocabulary 17 in
km free variables such that

Before proving Lemma 11.25, we present its main application.

Theorem 11.26 (Abiteboul-Vianu). PTIME = PSPACE ifJLFP = PFP.

Proof. Suppose PTIME = PSPACE. Let <p be a PFP formula, and let it usc k
variables. By Lemma 11.25 (1), we have a PFP formula tp 0 over ck(O"). Since
<p0 is in PFP, it is computable in PSPACE, and thus, by the assumption, in
PTIME. Since <p0 is defined over ordered structures of the vocabulary Ck (O"), by
the Immerman-Vardi theorem it is definable in LFP over Ck (O"), by a formula
'1/J(x). Now applying Lemma 11.25 (2), we get an LFP formula ljo*(:i) over
vocabulary a which is equivalent to tp. Hence, LFP = PFP.

For the other direction, if LFP = PFP, then LFP+ < = PFP+ <. and
hence PTIME = PsPACE. D

11.5 Canonical Structures and the Abiteboul-Vianu Theorem 231

Corollary 11.27. The follow·ing are equivalent:

• LFP = PFP;

• LFP+ < = PFP+ <;
• PTIME = PSPACE. D

Notice that this picture differs drastically from what we have seen for logics
capturing DLoc, NLoc, and PTIME: while the exact relationships between
DETTRCL+ < = DLoc;, TRCL+ < = NLoG, and LFP+ < = PTIME are
not known, we do know that

DETTRCL ~ TRCL ~ LFP.

However, for the case of LFP and PFP, we cannot even conclude LFP ~ PFP
without resolving the PTIME vs. PsPACE question.

We now prove Lemma 11.25. As the first step, we prove part 1 for the
case of cp being an FO' formula. Note that in general, x may have fewer
than k: variables. However, in this proof we shall treat any such formula as
defining a k:-ary relation; that is, cp(xJ,, ... , XjJ defines the relation cp(21) =
{(a1, ... ,ak) I 21 f= cp(a1,, ... ,a.iJ}, and when we write 21 f= cp(ii), we
actually mean that ii E A k and ii E cp(21).

Using this convention, we define cp0 by induction on the structure of the
formula:

• If cp is x; = :r:j, then choose 1r so that 1r(l) = i, 1r(2) = j, and let cp0 (J:) =
3y (Prr(x,y) 1\ U(y)).

• If cp is an atomic formula of the form R.;(xj, ... , xjJ, choose 1r so that
7r(1) = j1, ... , 1r(s) = j 8 , and let cp0 (x) = 3y (P'Tr(.1:,y) 1\ Ui(Y)).

• (•cp)o = -.cpo .

• (cpl v cp2) 0 = cp~ v cp~.
• If cp is 3:ri1/{E), then cp 0 (x) = 3y (S;(x, y) 1\ V' 0 (y)).

It is routine to verify, by induction on formulae, that the above transla
tion guarantees (11.9). For example, if cp is .Ti = Xj, then 21 f= cp(ii) implies

that a; = a.i, and hence Q:k(21) f= P'Tr([ii], [b]) for 1r(i) = 1, 1r(j) = 2, and

b = (a;, Oj, .. .). Since Q:A(21) f= U([b]), we conclude that Q:k(21) f= cp 0 ([ii]).
Conversely, if Q:A(21) f= P'Tr([ii], [b]) 1\ U([b]) for 1r as above and somf~ b, we con
clude that there is r E [ii] with C'j = CJ. Since tpFO' (ii) = tpp()k (C), it follows
that a; = a.i and 21 f= cp(ii). The other basis case is similar.

For the induction step, the only nontrivial case is that of cp being 3x;JJ(x).
If 21 F= cp(ii), then for some a, that differs from a in at most the ith position we
have 21 f= J;(iii), and hence by the induction hypothesis, Q:k(21) f= S;([ii], [ii;])/\
1/1°([iii]) and, therefore, Q:k(21) f= cp 0 ([ii]). Conversely, assume that for some b,

232 11 Finite Variable Logics

Q:A(Qt) I= S;([a], [b]) 1\ ([b]). Then we can find r1o ~Po' a and bo ~Fo' b such
that r1o and b0 differ in at most the ith position. Consid<T the k-pebhle gam<'
on (Qt. ao) and ('2t. r1). Suppose that in one move the spoiler goes from (Qt. Ito)
to ('2t, b0). Since the duplicator can play from position (a0 • a). lw can respond
to this move and find b' such that (Qt. b0) =tu) (Qt. b'). Rene<>, D' E [b], all(] it

differs from a in at most the ith position. Sine<~ [b'] = [b], by t h<' induction
hypothesis we conclude that '2t I= 1/;(bt). which witnesses 2l ;= ,:J(r1). This
concludes the proof of (11.9) for FO' formulae.

Furthermore. (11.9) is preserved if we expand the vocabulary by an <·xtra
relation symbol R, with a corresponding R' added to ck(CJ), and interpret Has
a rdation closed under =7:""''. Since \VI' know that all the stag<·s of lfp and pfp
operators d<~fine such relations (see Exercise 11.6). we mnclud<• that (11.9)
holds for LFP and PFP formulae.

The proof of part 2 of Lemma 11.25 is hy straightforward induction 011

the formulae, using the fact that --<Fo' is definable in LFP (Th<'orem 11.20).
Details are left to the reader as an exercise. D

11.6 Bibliographic Notes

Infinitary logics have been studied extensively in model theory. see. e.g., Bar
wis<~ and Fcfmman [18]. The finite variable logic was introduced by Banvise
[17], who also defined the notion of a family of partial isomorphisms with the
k-back-and-forth property. Pebble games were introduced by Immerman [128]
and Poizat [200]. Kolaitis and Vardi [152, 153] studied many asp<~cts of finite
variable logics; in particular, they showed that it suhsurn<'S fix<~cl point logics.
and provPd normal forms for [l~ u).

A systematic: study of finite variable logics was undertaken by Dawar.
Lindell, and \YeinstPin [53], and our pn'sentation here is based 011 that pap<'r.
In particular, definability of FO"-types in FO" is from [:>:3]. as \V<'ll as the
definition of a linear ordering on FO"-types.

Theorem 11.26 is due to Abiteboul and Vianu [6], but the presentation
here is based on tlw model-theoretic approach of [53] rather than t h<' more
computational approach of [6]. The approach of [6] is based on relational com
plexity. Relational complexity classes are defin<'d using machines that compute
directly on structun~s rather than on their cncodings as strings. Abitchoul
and Vianu [6] and Abiteboul, Vardi. and Viarm [4] establish a tight. comH'<'
tion between fixed point logics and relational complexity classes, and show
that questions about containments among standard complexity classes can
h<' translated to questions about containments among relational complexity
classes.

Otto's book [191] is a good sourc<' for information on finite variable logics
over finite models.

11.7 Exercises 233

Sources for exercises:
Exercises 11.6 and 11.7: Dawar, Lindell, and Weinstein [53]
Exercises 11.8 and 11.9: Dawar [49]
Exercise 11.10: de Rougemont [56]
Exercise 11.11: Dawar, Lindell, and Weinstein [53]
Exercise 11.12: Lindell [171]
Exercise 11.13: Grohe [108]
Exercises 11.14 and 11.15: Dawar, Lindell, and Weinstein [53]
Exercises 11.16 and 11.17: Kolaitis and Vardi [154]
Exercise 11.18: Grobe [110]
Exercise 11.19: McColm [181]

Kolaitis and Vardi [153]

11.7 Exercises

Exercise 11.1. Extend the proof of Theorem 11.12 to handle free variables, and
constants in the vocabulary.

Exercise 11.2. Fill in the details at the end of the proof of Theorem 11.20.

Exercise 11.3. Complete the proof of Proposition 11.24.

Exercise 11.4. Complete the proof of Lemma 11.25, part 2.

Exercise 11.5. Prove that the FOk hierarchy is strict: there are properties express
ible in Fok+ 1 which are not expressible in FOk.

Exercise 11.6. The goal of this exercise is to find a tight (as far as the number of
variables is concerned) embedding of fixed point logics into .C:'xow. Let LFPk, IFPk,
and PFPk stand for restrictions of LFP, IFP, and PFP to formulae that use at
most k distinct variables (we assume that fixed point formulae have no parameters).
Prove that LFP\ IFP\ PFPk ~ I.~w·

Hint: Let r.p(R, x) be a formula, and let r.p'(x) define the ith stage of a fixed point
computation. Show by induction on i that the query defined by r.p' is closed under
=k'w, and use Corollary 11.14.

Exercise 11. 7. Prove that if 2t and 'B agree on all FOk sentences of quantifier rank
up tonk+ h: + 1 and lA IS: n, then 2t ='kw 'B.

Exercise 11.8. Consider the complete bipartite graph Kn,m· Show that Kk,k =A':"w
Kk.k-t-1 for every k. Also show that Kn.m is Hamiltonian iff n = rn. Conclude that
Hamiltonicity is not L~w-definable.

Exercise 11.9. Prove that 3-c:olorability is not L~w-definable.

Exercise 11.10. Let In be a graph with n isolated vertices and Cm an undirected
cycle of length m. For two graphs G1 = (V1, E1) and G2 = (V2, E2) with V1 and V2
disjoint, let Gl X G2 be the graph whose nodes are Vt u v2, and the edges include
E1, E2, as well as all the edges (v1,v2) for Vt E V1,v2 E V2. Prove that for a graph
of the form In X Cm, it is impossible to test, in L~w' if n = rn. Usc this result to
give another proof (cf. Exercise 11.8) that Hamiltonicity is not I..::::,w-definable.

234 11 Finite Variable Logics

Exercise 11.11. A binary tree is balanced if all the leaves arc at the same distance
from the root. Prove that £~"' ddines a Boolean query Q on graphs such that if
Q(G) is true, then G is a balanced binary tree.

Exercise 11.12. Prove that there is a PTIME query on balanced binary tn·<~s which
is not LFP-definable.

Condud<~ that LFP ~ L:~w n PTI!\11-:.

Exercise 11.13. Prove that the following problems ar<' PTI~m-comp!Pte for each
fixed k.

• Given two u-structures QL and 23, is it the case that QL =I:"' '23?
• Given au-structure QL and ii, bE A k, are tpFO' (Ql. !7) and tPFo' ('Zl. b) the sam<'?

Exercise 11.14. Prove that if QL is a finite rigid structur<~ (i.e., a structure that has
no nontrivial automorphisms), then then• is a nurnb<>r k such that QL is I.--rigid.

Exercise 11.15. Prove that the structure <!:k (Ql) can be constructed in polynomial
time.

Exercise 11.16. Define ::JL:f::c'" as the fragment of £~'"' that contains all atomic
formulae and is dosed under infinitary conjunctions and disjunctions, and existential
quantification. Let

Prove that DATALOG c:; ::3£~w·
Exercise 11.17. Consider the following modification of the k-pcbble game. For two
structures QL and 23, the spoiler always plays in QL and the duplicator always n~sponds
in 23. The spoiler wins if at some point, the position (ii. b) does not defirH' a partial
homomorphism (as opposed to a partial isomorphism in the standard game). TlH'
duplicator wins (which is denoted by QL <JZC"' 23) if th<' spoikr does not win; that is,
if after each round the position defines a partial homomorphism.

Prove that the following are equivalent:
• QL <lk''"' 23.
• If <P E ::JL:f::cw and 2l f= <P, then 23 f= <P.

Exercise 11.18. By an FOk theory we mean a maximally consistent set of FO'
sentences. Define the k-si:r,e of an FOk theory T as the number of different FO'
types reali:~:ed by finite models ofT. Prov<' that th<>rc is no recursive bound on tlw
si:~:e of the smallest model of an FO' theory in terms of its k-size. That is, for every
k there is a vocabulary CTk such that is no recursive function f with th<· prop<•rtv
that every FOk theory Tin vocabulary u, has a modd of si;-:e at most f(n), when•
n is the k-size ofT.

Exercise 11.19. Let C be a class of a-structures. We call it bounded if for <~V<'ry
relation symbol R tfc u, there exists a number n such that <'VPry FO formula cp(R.:J)
positive in R reaches its least fixed point on any structure in C in at most n iterations.

Prove that the following are equivalent:
• C is bounded;
• L:':!xw. collapses to FO on C.

Exercise 11.20: Is the FO' hierarchy strict over ordered structures? That is, ar<'
there properties which, over ordered structures, are definable in FOk 11 hut not in
FOk, for arbitrary k?

12

Zero-One Laws

In this chapter we show that properties expressible in many logics are almost
surely true or almost surely false; that is, either they hold for almost all
structures, or they fail for almost all structures. This phenomenon is known
as the zero-one law. We prove it for FO, fixed point logics, and £~w· We
shall also see that the "almost everywhere" behavior of logics is drastically
different from their "everywhere" behavior. For example, while satisfiability
in the finite is undecidable, it is decidable if a sentence is true in almost all
finite models.

12.1 Asymptotic Probabilities and Zero-One Laws

To talk about asymptotic probabilities of properties of finite models, we
adopt the convention that the universe of a structure ~ with IAI = n will
be { 0, ... , n - 1}. Let us start by considering the case of undirected graphs.
By G Rn we denote the set of all graphs with the universe { 0, ... , n - 1}. The
number of undirected graphs on {0, ... , n- 1} is

Let P be a property of graphs. We define

f.Ln(P) =
I{G E GRn I G has P}l

IGRnl

That is, f.Ln(P) is the probability that a randomly chosen graph on the set of
nodes { 0, ... , n- 1} has P. Randomly here means with respect to the uniform
distribution: each graph is equally likely to be chosen.

We then define the asymptotic probability of P as

t-L(P) = lim f.Ln(P),
fL------700

(12.1)

236 12 Zero-One Laws

if the limit exists. If P is exprmsed by a sent<~nce <P of smrw logic then we

refer to Jln (<P) and Jl(<P).
In general, ViC can deal with arbitrary <J-structures. In that case, we

can define .s~ as the number of different u-structures with the universe
{0, ... , n- 1}, and s~(P) as the number of different <J-structnn•s with the
universe {0 n- 1} that have the property P, and let

s~('P)
p"(P) = --. s;:.

Then the asymptotic probability p (P) is defined again by (12.lt).

\Ve now consider a few examples:

• Let P lw the property "there are no isolated nodes''. \N<~ claim that JI(P) =
1. For that, w<~ show that JL(P) = 0, where Pis: "there is an isolated nod<•".
To calculate Jin(P), note that th<~re are n ways to choose an isolated node.

(" I) and 2 " ways to put edges on the remaining nodes. HerH·e

and thus Jt(P) = 0.

II

2" I .

• Let P be the property of being connected. Again, v,;e show that JL(P) = 0,
and thus the asymptotic probability of graph cormectivity is 1.

To calculate tt(P), we have to count the rmrnber of graphs with at least
two comwcted components. Assuming the size of on<' cornporH'nt is k.

- there are G) ways to choose a subset X c;; {0 11 ~ I}:

then~ are 2 (:) ways to put edges on X; and

- there are 2(";'·) ways to put edges on tlH' compl<·nwnl of X.

Hence.

Il-l(~'). 2m. 2("/l
~l" (P) < 2:.: ')(~) k=l -

n-1 G) n
+ 2:.: 2k"+kll 2"-1-1

k=2

/)

< -t ---" 0.
2"+1 2n

• Consider the query I'VE!\. Then

Jl 11 (EVEN) = {l
()

Hence, p(EVEN) does not exist.

'11-1
(~) 2:.: 2/;2-f-ku

k=l

ll
< 2n+l +

if n is evC'n.

if n is odd.

fl~l() 2~" . 2:.: ~'.
/; c2

12.1 Asymptotic Probabilities and Zero-One Laws 237

• The last example is the parity query. If CJ has a unary relation U, then 2t
satisfies PARITYu iff I U')J.I mod 2 = 0. Therefore,

/Ln(PARITYu) = _2: (~),
k<n, k even

and hence JL(PARITYu) = ~·

Thus, for some properties P, the asymptotic probability tL(P) is 0 or 1,
for some, like parity, tL(P) could be a number between 0 and 1, and for some,
like EVEN, it may not even exist.

Definition 12.1 (Zero-one law). Let C be a logic. We say that it has the
zero-one law if for every property P (i.e., a Boolean query) definable in C,
either tL(P) = 0, or tL(P) = 1.

The first property P for which we proved tL(P) = 1 was the absence of
isolated nodes: this property is FO-definable. Graph connectivity, which also
has asymptotic probability 1, is not FO-definable, but it is definable in LFP
and hence in C':x,w· On the other hand, the EVEN and PARITYu queries, which
violate the zero-one law, are not £"/x,w-definable, as we saw in Chap. 11. It
turns out that tL(P) is 0 or 1 for every property definable in C':x,w·

Theorem 12.2. C':x,w has the zero-one law.

Corollary 12.3. FO, LFP, IFP, and PFP all have the zero-one law.

Zero-one laws can be seen as statements that a logic cannot do nontrivial
counting. For example, if a logic C has the zero-one law, then EVEN is not
expressible in it, as well as any divisibility properties (e.g., is the size of a
certain set congruent to q modulo p?), cardinality comparisons (e.g., is I X I
bigger than I Y I?), etc.

Note also that while LFP, IFP, PFP, and C':x,w all have the zero-one law,
their extensions with ordering no longer have it, since LFP+ <defines EVEN,

a PTIME query.
In the presence of a linear order (in fact, even successor), FO fails to have

the zero-one law too. To see this, let S be the successor relation, and consider
the sentence

Vx'Vy (vz (--.S(z,x)A--.S(y,z)) --> E(x,y)),

saying that if x is the initial and y the final element of the successor relation,
then there is an edge between them. Since this sentence states the existence
of one specific edge, its asymptotic probability is ~.

We shall prove Theorem 12.2 in the next section after we introduce the
main tool for the proof: extension axioms.

238 12 Zero-One Laws

T S-T
• • • • • •

z

Fig. 12.1. Extension axiom

12.2 Extension Axioms

E.rtension axioms arc statements defined as follows. Let S b<' a finite set of
cardinality n , and let T ~ S be of cardinality rn. Then the extension axiom
EA,.m says that there exists z ¢ S such that for all :r; E T. thcrr is an edge
between z and x, and for all .1: E S - T, there is no edge hetwePn z and .r:.

This is illustrated in Fig. 12.1.
Extension axioms can be expressed in FO in the language of graphs. In

fact, EAn.m. is given by the following sentence:

(") (\ Z #X;

\fx1 ,J;11 (./\. x; # .T.7) ----> =:Jz 1\ 'A E(z, :r;).
'l.< rn

iicj ~A J' () 1\ I \ I :'_.; z, .l'.J

'i>/11

(12.2)

The extension axiom EAn.m is vacuously true in a structure with fewer
than n elements, but we shall normally consider it in structures with at least
n elements.

We shall be using special cases of extension axioms, when lSI = '2/,; ami
IT I is k. Such an extension axiom will be denoted by EA, . That is, EA, says
if X n Y = 0, and I X 1=1 Y I= k, then there is z such that there is an edge
(x,z) for all x E X but there is no edge (y ,z) for any y E Y.

Proposition 12.4. f.L (EAk) = 1 jo1· each k.

Proof. We show instead that Jl(•EAk) = 0. L<'t n > 2k. Not<' that for E1h
to fail , there must be disjoint X and Y of cardinality k: such that there is no
z ¢XU Y with B(.T, z) for all :r E X and •E(y , z) for all y E Y. W<• 11 0 w

calculate JJ·n(•EAk), for n > 2/,;.

• There are G.) ways to choose X .

12.2 Extension Axioms 239

• There are (n~k) ways to choose Y. Therefore, there are at most G~) ·
(n~k) ::::; n 2k ways to choose X andY.

• Since there are no restrictions on edges on XU Y, there are 2C:i') ways to
put edges on XU Y.

• Again, since there are no restrictions on edges outside of XU Y, there are

2(n-;2 k) ways to put edges outside of X U Y.

• The only restriction we have is on putting edges between X U Y and its
complement XU Y: for each of then- 2k elements z E XU Y, we can
put edges between z and the 2k elements of X U Y in every possible way
except one, where z is connected to every member of X and not connected
to any member of Y. Hence, for each z there are 22k - 1 ways of putting
edges between z and XU Y, and therefore the number of ways to put
edges between XU Y and XU Y is (22k - l)n- 2k.

Thus,
n2k . 2C2k) . 2(n-;2 k) . (22k _ l)n-2k

J-Ln(•EAA:) :S 2 (~)

A simple calculation shows that

(2k) (n-2k) 2 2 • 2 2

2(~)
<

1
22k(n-2k) ·

Combining (12.3) and (12.4) we obtain

1-Ln (·EAk) ::::; n2k . (1 - 2!k r-2k

proving that Jt(·EAk) = 0 and p,(EAk) = 1.

____, 0,

Corollary 12.5. p,(EAn,m) = 1, for any n and m::::; n.

(12.3)

(12.4)

D

Proof For graphs of size > 2n, EAn implies EAn,m for any m ::::; n. D

Corollary 12.6. Each EAk has arbitrarily large finite models. D

Notice that it is not immediately obvious from the statement of EAk that
there are finite graphs with at least 2k elements satisfying it. However, Propo
sition 12.4 tells us that we can find such graphs; in fact, almost all graphs
satisfy EAk.

We now move to the proof of the zero-one law for £":xow. First, we need a
lemma.

240 12 Zero-One Laws

Lemma 12. 7. Let G1, G2 be finite graphs such that GJ. G2 f= EAn.n1 for all
m::::; n::::; k. Then G1 ='kw G2.

Proof The extension axioms provide the strategy. Suppose we have a position
in the game where (a 1 , ... , ak) have been played in G1 and (b1 , bk) in
G2 . Let the spoiler move the ith pebble from a; to some element a. Let
I c:;;; { 1, ... , k} - { i} be all the indices such that there is an edge from a
to aj, for all j E I. Then by the extension axioms we can find b E G2 such
that there is an edge from b to every b1, for j E I, and there are no edges
from b to any bz, for l rf. I. Hence, the duplicator can play b as the response
to a. This shows that the pebble game can continue indefinitely, and thus
G1 ='kw G2. 0

And finally, we prove the zero-one law. Let <P be from .C~w· Suppose there
is a model G of EAk, of size at least 2k, that is also a model of <P. Suppose G'
is a graph that satisfies EA~.: and has at least 2k elements. Then, by Lemma
12.7, we have G' ='kw G and hence G' f= <P. Therefore, Jl(<p) 2': Jl(EAk) = 1.
Conversely, assume that no model of EAk of size 2': 2k is a model of <P. Then
Jl(P)::::; Jl(-,EAk) = 0. 0

We now revisit the example of graph connectivity, for which the asymptotic
probability was shown to be 1. If we look at EA 2 , then for graphs with at least
four nodes it implies that, for any :r =/=- y, there exists z such that E(:c. z) and
E(y, z) hold. Hence, every graph with at least four nodes satisfying EA2 is
connected, and thus Jl(connectivity) = 1.

As another example of using extension axioms for computing asymptotic
probabilities, consider EA 2 and an edge (x, y). As before, we can find a node
z such that E(x, z) and E(y, z) hold, and hence a graph satisfying EA 2 has a
cycle (x, y, z). This means that Jl(acyclicity) = 0.

Finally, we explain how to state the extension axioms for an arbitrary vo
cabulary O" that contains only relation symbols. Given variables x 1 , ...• ;r,,
let Au(x1 , ... ,xn) be the collection of all atomic CT-forrnulae of the form
R(xi,, ... , xi"'), where R ranges over relations from CT, and m is the arity
of R. Let F c:;;; Au(xr, ... ,xn)· With F, we associate a formula XF(.rJ, ... ,.rn)
(called a complete description) given by

1\ 'P 1\ 1\

That is, a complete description states precisely which atomic formulae m
x 1 , ... , Xn are true, and which are not.

Let F now be a subset of Au(x 1, ••• ,xn), and G a subset of
Au(x1 , ... ,Xn,Xn+d such that G extends F; that is, F c:;;; G. Then the exten
sion axiom EAF.G is the sentence

12.3 The Random Graph 241

saying that every complete description inn variables can be extended to every
consistent complete description in n + 1 variables. A similar argument shows
that J-L(EAF,G) = 1. Therefore, the zero-one law holds for arbitrary finite
structures, not only graphs.

12.3 The Random Graph

In this section we deal with a certain infinite structure. This structure, called
the random graph, has an interesting FO theory: it consists of precisely all the
sentences P for which J-L(P) = 1. By analyzing the random graph, we prove
that it is decidable, for an FO sentence P, whether J-L(P) = 1.

First, recall the BIT predicate: BIT(i, j) is true iff the jth bit of the binary
expansion of i is 1.

Definition 12.8. The random graph is defined as the infinite {undirected}
graph R{} = (N, E) where there is an edge between i and j, for j < i, iff
BIT(i, j) is true.

Why is this graph called random? After all, the construction is completely
deterministic. It turns out there is a probabilistic construction that results
in this graph. Suppose someone wants to randomly build a countable graph
whose nodes are natural numbers. When reaching a new node n, this person
would look at all nodes k < n, and for each of them will toss a coin to
decide if there is an edge between k and n. What kind of graph does one get
as the result? It turns out that with probability 1, the constructed graph is
isomorphic to R{}.

However, for our purposes, we do not need the probabilistic construction.
What is important to us is that the random graph satisfies all the extension
axioms. Indeed, to see that R{} I= EAn,m, let S C N be of size n and X ~ S be
of size m. Let l be a number which, when given in binary, has ones in positions
from X, and zeros in positions from S - X. Furthermore, assume that l has
a one in some position whose number is higher than the maximal number
in S. Then l witnesses EAn,rn for S and T. To give a concrete example, if
S = {0, 1, 2, 3, 4} and X = {0, 2, 3}, then the number l is 45, or 101101 in
binary.

Next, we define a theory

EA = {EAk I kEN}. (12.5)

Recall that a theory T (a set of sentences over vocabulary a) is complete if
for each sentence P, either T I= P or T I= -.rfJ; it is w-categorical if, up to

242 12 Zero-One Laws

isomorphism, it has only one countable model, and decidable. if it is d<'ridahl<'
whether T f= cp_

Theorem 12.9. EA is complete, v..:-categorical. and decidable.

Proof For w-categoricity, we claim that up to isomorphism, 7?() is the only
countable model of EA. Suppose that Q is another model of EA (and
thus it satisfies all the extension axioms },'A.11 _11 ,). \Ve dai:n that 7?() =..., Q:
that is, the duplicator can play countably many moves of the Elm~nfeucht
Fra"isse game on 7?() and Q. Indeed. suppose after round r we have a posi
tion ((a 1 , ...• or). (b1 ..•. , b,)) defining a partial isomorphism. aud suppose till'
spoiler plays a,+l in 7?(). LPt I= {iS r I 7?() f= E(a,+l· u,)}. Since Q f= EA.
by the appropriate extension axiom we can find b,+ 1 suc:lt that Q f= I:(b,+ 1 • h;)
iffi E I. Thus, the resulting position ((a 1 a,.a,+ 1), (b 1 •...• b,.h,+ 1)) still
defines a partial isomorphism.

If we have two countable structures such that 2l =~· 23, th<m 2l ~ 23.
Indeed, if A = { o; I i E N} and B = { b; I i E N}. let tlw spoil<~r play, in
each even rouwL tlw smallest unused dmrwnt of A, and in each odd rouwl
the smallest unused element of R. Then t hP union of the sequence of partial
isomorphisms generatf~d by this play is an isomorphism between 2l and 23.

Thus, \Ve havr~ shown that Q f= EA implies Q ~ RQ and hence EA is
w-categorical.

The next step is to show completeness of EA. Suppose that we han' a
sentence 4> such that neither EA f= <J> nor EA f= ---4>. Thm>. both theories
EAU { 4>} and EAU { •P} are consistent. By the LowPnheim-SkolPm theorem,
we get two countablP models Q', Q" of EA such that Q' f= <!> and Q" f= ---4>.
However, by uJ-categoricity, this means that Q' ~ Q" ~ 7?(). This contradidim1
proves that EA is complde.

Finally, a classical result in model theory says that a r<'cursivdy axioma
ti>\able complete th(~ory is decidabl<~. Since (12.5) proYides a recnrsivP axiom
atization. we conc:lude that EA is d('ciclable. D

Corollary 12.10. IftJ> is an FO sentence, then 7?() f= <J> iff I'(<J>) =I.

Proof. Let 7?() f= P. Since EA is complete, EA f= <I>, and hencP, by cmu
pactness, for somP k > 0, {RA, I i S /,;} f= <[>. Thus, E.!1.,, f= tJ> and lwrHT
p(P) 2> f!.(EAA) = 1. Convers<~ly, if 7?() f-= ,iJ>, th<'n p(-4') = Land 1'(<1>) c= 0.
Hence, for any rJ> with ~L(c])) = 1, we have 7?() f= -;:. D

Combinin~ Corollary 12.10 and dPcidahility of EA. we obtain tlw follow-
ing.

Corollary 12.11. For an FO sentence P it i8 decidable whether· 1'(<1>) = I.

Thus, Trakhtenbrot's theorem tells us that it is undecidable wlH'tlH'r a
S('ntence is true in all finite models, but nm'' \Ve see that it is decidable whether
a sentence is true in almost all finite mudds.

12.4 Zero-One Law and Second-OrdPr Logic 243

12.4 Zero-One Law and Second-Order Logic

We have proved the zero-one law for the finite variable logic .C~w and its
fragments such as FO and fixed point logics. It is natural to ask what other
logics have it. Since the zero-one law can be seen as a statement saying that
a logic cannot count, counting logics cannot have it. Another possibility is
second-order logic and its fragments. Even such a simple fragment as 380,
the existential second-order logic, does not have the zero-one law: since 380
equals NP, the query EVEN is in 380. But we shall see that some nontrivial
restrictions of 380 have the zmo-one law.

One way to obtain such restrictions is to look at quantifier prefixes of the
first-order part. Recall that an 380 sentence can be written as

(12.6)

where each Qi is 'v' or 3, and r.p is quantifier-free. If r is a regular expression
over the alphabet {3, \1}, by 3SO(r) we denote the set of all sentences (12.6)
such that the string Q 1 ... Q 111 is in the language denoted by r. For example,
380(3*\f*) is a fragment of 380 that consists of sentences (12.6) for which
the first-order part has all existential quantifiers in front of the universal
quantifiers.

Theorem 12.12. 380(3*\f*) has the zero-one law.

Pmof. To keep the notation simple, we shall prove this for undirected graphs,
but the result is true for arbitrary vocabularies that contain only relation
symbols. The result will follow from two lemmas.

Lemma 12.13. Let 5 1 , ... , Sm be r·elation symbols, and r.p an FO sentence of
vocabulary {51 , ... , Sm, E} such that

R{J F 'v'St · · · 'v'Srn r.p(S1, ... , Sm)·

Then thcr·e is an FO sentence <P of vocabular·y {E} such that p.(<P)
<P --+ \f § r.p is a valid sentence.

1 and

Lemma 12.14. Let 51 , ... , Sm be relation symbols, and r.p(x, fj) a quantifier
fr-ee FO formula of vocabulary { S 1, ... , Sm, E} such that

R[J F= 3S\ ... 38m 3:£ \Iff r.p(S, x, iJ).

Then there is an FO sentence tJt of vocabu.lar-y { E} such that p,(<P)
<P --+ 3S 3:£ \fy r.p is a finitely valid sentence.

1 and

First, th(~Se lemmas imply the theorem. Indeed, assume that we are given
an ::180(3*\f*) sentence 8 = 3S 3£ \fy r.p. Let R[J f= 8. Then, by Lemma
12.14, there is a sentence <P with Jt(<P) = 1 such that 8 is true in every finite

244 12 Zero-One Laws

model of P, and hence ;1,(8) = 1. Conversely, assumC' RQ f= -,(-1. Sine<' --,E:-J is
an VSO sentence, by Lemma 12.13 we find a sentence P with fl(<I>) = I such
that --,(9 is true in every modd of P, and thus /L(--,f3) = 1 and f.l(8) = 0.
Hence, JL(8) is either 0 or 1. It remains to prov(~ the lemmas.

Proof of Lemma 12.1.'1. Assume that RQ f= 'v'Scp(S), but for every FO sentene<'
P with Jl(P) = 1, it is the case that (<P---. \IS cp) is not a valid sentence (i.e.,
P 1\ ~S--,cp(S) has a model).

Consider the theory T = E AU { ''P} of vocabulary { S\ Sm, E}. Sinn~
every finite mnjunc:tion of extension axioms has asymptotic probability 1, by
compactness we conclude that T is consistent, and by the Liiwenheim-Skolem
theorem, it has a countable model 2l. Since EA is w-categoric:al, the { E}
reduc:t of 2l is isomorphic to RQ. But then RQ f= ~S--,cp(!]), a contradiction.
This prow~s Lemma 12.13.

Proof of Lemma 12.14. Let I Sl = 1n and 1-fl = n. Let A1 , Arn witness tlw
second-order quantifiers, and let a 1 , .•• , a~~. lw the elements of RQ \Vitlwssing
FO existential quantifiers. Let RQ0 be the finite subgraph of RQ with tiH~

universe { a1 , ... , an}. We can find finitely many extension axioms { L'A 1..1}

such that their conjunction implies the existence of a subgraph isomorphic
to RQ0 . Let P be the conjunction of all such extension axioms. Let 2l lw
a finite model of P. By the extension axioms, there is a subgraph RQ'2J. of
RQ that is isomorphic to 2l and contains RQ0 . Now we claim that R[;h I=
~/J~iViJ cp. To witness the second-order quantifiers, we takP the restrictions of
the A;. 's to RQ'2J.; as witnesses of FO existential quantifiers we take a 1 ••••• 11 11 •

Since universal sentences are preserved under substructures, we concludP that
RQ'}J. F Vfl cp(A, a, il), and thus RQ2(F ~S~:N;~7 !.p. Therefor<~. 2l F :J.'l35Vy Y•
which proves the lemma. []

There are more results concerning z<~ro-one laws for fragments of SO, hut
they are significantly more complicated, and we present them without proofs.
One other prefix class which admits the zero-one lmv is 3*V~*: that is, exact l~·
one universal quantifier is present.

Theorem 12.15. ~SO(~*V~*) has the zem-one law. []

Going to two universal quantifiers, however, creates problems.

Theorem 12.16. :JSO(W~) does not have the zem-one law, even if the FO
part does not usc equaldy. D

For some prefix classes, the failure of thP zero-om' law is fairly easy to
show. Consider, for example, the sentence

(
,'1'(:1:, y) 1\ --,S(.r, 1·))

~s \f:dy\fz A ,~(.T. z) ---. Y, = z
1\ S (J'. z) f--'t S (z . . r)

12.5 Almost Everywhere Equivalence of Logics 245

This in an 380(\13\1) sentence saying there is a permutation Sin which every
element has order 2; that is, this sentence expresses EVEN and thus 380(\13\1)
fails the zero-one law. A similar sentence can be written in 380(VVV3). There
sult can further be strengthened to show that both 380(\13\1) and 380(VVV3)
fail to have the zero-one law even if the FO order part does not mention
equality.

12.5 Almost Everywhere Equivalence of Logics

In this short section, we shall prove a somewhat surprising result that on
almost all structures, there is no difference between FO, LFP, PFP, and .C~w·

Definition 12.17. Given a logic .C, its fragment .C', and a vocabulary a, we
say that .C and .C' are almost everywhere equivalent over a, if there is a class
C of finite a-structures such that JL(C) = 1 and for every .C formula cp, there
is an .C' formula '1/J such that cp and '1/J coincide on structures from C.

Theorem 12.18 . .C~w and FO are almost everywhere equivalent over a, for
any purely relational vocabulary a.

Proof sketch. For simplicity, we deal with undirected graphs. Let Ck be the
class of finite graphs satisfying EAk. We claim that on Ck, every .C~w formula
is equivalent to an FOk formula. Indeed, for a tuple ii = (a1 , ... , ak) in a
structure l2l E Ck, its FOk type tpp0 k (l21, ii) is completely determined by the
atomic type of ii; that is, by the atomic formulae E(ai, aJ) that hold for ii.
To see this, notice that if ii and b have the same atomic type, then (a, b) is a
partial isomorphism, and by EAk from the position (a, b) the duplicator can
play indefinitely in the k-pebble game; hence, (l21, ii) ='kw (l21, b).

Therefore, there are only finitely many FOk types, and each .C~w formula
is a disjunction of those, and thus equivalent to an FOk formula. (In fact, we
proved a stronger statement that on ck, every .c~w formula is equivalent to
a quantifier-free FOk formula.)

We now consider the classes C1 ~ C2 ~ ... , and observe that since each
JL(Ck) is 1, then for any sequence t:1 > E2 > ... > 0 such that limn--+oo En = 0,
we can find an increasing sequence of numbers n 1 < n2 < ... < nk < ... such
that

We then define

C = {l21 E STRUCT[{E}] J if IAI 2:: nk, then l2l E Ck}·

One can easily check that JL(C) = 1. We claim that every .C~w formula is
equivalent to an FO formula on C. Indeed, let cp be an .C~w formula. We know
that on Ck, it is equivalent to an FOk formula cp'. Thus, to find a formula 'ljJ

246 12 Zero-One Laws

to which r.p is equivalent on C, one explicitly enumerates all the structures of
cardinality up to n~,; and evaluates r.p on them. Then, one writes an FO formula
1/Jk saying that if~ is one of the structures with IAI < n~,;, then th(~) = r.p(~),

and for all the structures with !AI :::: n~,;, 1/Jk agrees with r.p'. Since the number
of structures of cardinality up to n~,; is fixed, this can be done in FO. D

This result has complexity-theoretic implications. While we know that
LFP and PFP queries have respectively PTIME and PSPACE data complexity,
Theorem 12.18 shows that their complexity can he reduced to AC0 on almost
all structures.

12.6 Bibliographic Notes

That FO has the zero-one law was proved first by Glebskii et al. [92] in 1969,
and independently by Fagin (announced in 1972, but the journal version [73]
appeared in 1976). Fagin used extension axioms introduced by Gaifman [87].
Blass, Gurevich, and Kazen [22] and - independently - Talanov and Knya;~,ev
[227] proved that LFP has the zero-one law, and the result for £"-'xv.) is due to
Kolaitis and Vardi [152].

The random graph was discovered by Erdos and Renyi [67] (the proba
bilistic construction); the deterministic construction used here is due to Rado
[203]. In fact, R{} is sometimes referred to as the Rado graph. This is also a
standard construction in model theory (the Frai'sse limit of finite graphs, see
[125]). The results about the theory of the random graph are from Gaifmau
[87]. Fagin [74] offers some additional insights iuto the history of extension ax
ioms. The fact that the infinite Ehrenfeucht-Fralsse game implies isomorphism
of countable structures is from Karp [143].

The study of the zero-one law for fragments of ::JSO was initiated by Ko
laitis and Vardi [150], where they proved Theorem 12.12. Theorem 12.15 is
from Kolaitis and Vardi [151], and Theorem 12.16 is from Le Bars [163]. A
good survey on zero-one laws and SO is Kolaitis and Vardi [155] (in partic
ular, it explains how to prove that the zero-one law fails for ::JS0(\1::3\f) and
::JSO(W\1::3) without equality).

Theorem 12.18 is from Hella, Kolaitis, and Luostn [122]. For related results
in the context of database query evaluation, see Abiteboul, Compton. and
Vianu [1].

Sources for exercises:
Exercises 12.3 and 12.4: Fagin [73]
Exercise 12.5: Lynch [173]
Exercise 12.6: Kaufmann and Shelah [144] and Le Bars [164]
Exercise 12.7: Grandjean [104]
Exercise 12.8: Hodges [125]
Exercise 12.9 (b): Cameron [31]

Exercise 12.11: Le Bars [163]
Exercise 12.12: Kolaitis and Vardi [150]

Kolaitis and Vardi [155]
Blass, Gurevich, and Kozen [22]

12.7 Exercises

12.7 Exercises 247

Exercise 12.1. Calculate J-L(P) for the following properties P:

• rigidity;
• 2-colorability;
• being a tree;
• Hamiltonicity;
• having diameter 2.

Exercise 12.2. Prove the zero-one law for arbitrary vocabularies, using extension
axioms EAF,G·

Exercise 12.3. Instead of J-ln(P), consider vn(P) as the ratio of the number of
different isomorphism types of graphs on {0, ... , n-1} that have P and the number
of all different isomorphism types of graphs on {0, ... , n -1 }. Let v(P) be defined as
the limit of vn(P). Prove that if Pis an FO-definable property, then v(P) = J-L(P),
and thus is either 0 or 1.

Exercise 12.4. If constant or function symbols are allowed in the vocabulary, the
zero-one law may not be true. Specifically, prove that:

• if cis a constant symbol and U a unary predicate symbol, then U(c) has asymp
totic probability ~;

• iff is a unary function symbol, then Vx -.(x = f(x)) has asymptotic probability
l
e

Exercise 12.5. Instead of the usual successor relation, consider a circular successor:
a relation of the form {(a1, a2), (a2, a3), ... , (an-1, an), (an, a!)}. Prove that in the
presence of a circular successor, FO continues to have the zero-one law.

Exercise 12.6. Prove that MSO does not have the zero-one law.
Hint: choose a vocabulary u to consist of several binary relations, and prove that

there is an FO formula rp(x, y) of vocabulary u U {U}, where U is unary, such that
the MSO sentence 3U rp1 almost surely holds, where rp' states that the set of pairs
for (x,y) for which rp(x,y) holds is a linear ordering.

Then the failure of the zero-one law follows since we know that MSO+ < can
define EVEN.

Prove a stronger version of this failure, for the vocabulary of one binary relation.

Exercise 12. 7. Prove that for vocabularies with bounded arities, the problem of
deciding whether J-L(P) = 1, where Pis FO, is PSPACE-complete.

Exercise 12.8. Prove that the random graph admits quantifier elimination: that is,
every formula rp(x) is equivalent to a quantifier-free formula rp'(x).

248 12 Zero-One Laws

Exercise 12.9. (a) Consider the following undirected graph Q: its univ<·rse is N ~
{n E N I n > 0} and there is an edge between n and m, for n > 111, iff n is
divisible by p,, the mth prime. Prove that Q is isomorphic to the random graph
1?{}.

Hint: the proof does not require any numh<'r th<'ory, and is a simple application
of extension axioms.

(h) Consider another countable graph Q' whose universe is the s<'t of prim<'s con
gruent to 1 modulo 4. Put an edg<~ between Jl and q if p is a <ptadratic residm·
modulo q. Prove that Q' is isomorphic to the random graph R{/.

Exercise 12.10. Let <J> be an arbitrary :JSO sentenc<~. Prow that it is undecidahl<•
whether JL(<I>) = 1.

Exercise 12.11. Prove that the restriction of :JSO, where the first-order part if' a
formula of F0 2 , does not have the zero-one law.

Exercise 12.12. Prove that for vocabulari<'s with hound<•d aritics, the problem of
deciding whether Jl.(<l>) = 1 is

• NEXPTIME-complete, if <l> is an :JSO(:J*I;f*) sentence, or an :JSO(:J*'v':J*) sentence:
• EXPTIME-complete, if <l> is an LFP sentence.

Exercise 12.13: Does :JSO(W:J) have the zero-one law over graphs'~

13

Embedded Finite Models

In finite model theory, we deal with logics over finite structures. In embedded
finite model theory, we deal with logics over finite structures embedded into
infinite ones. For example, one assumes that nodes of graphs are numbers,
and writes sentences like

3x3y (E(x,y)l\(x·y=x·x+l))

saying that there is an edge (x, y) in a graph with xy = x2 + 1. The infinite
structure in this case could be (IR, +,·),or (N, +,·),or (Q, +,}

What kinds of queries can one write in this setting? We shall see in this
chapter that the answer depends heavily on the properties of the infinite
structure into which the finite structures are embedded: for example, queries
such as EVEN and graph connectivity turn out to be expressible on structuws
embedded into (N, +,·),or (Q, +,·),but not (IR, +, ·).

The main motivation for embedded finite models comes from database tlw
ory. Relational calculus - that is, FO · is the basic relational query language.
However, databases store interpreted elements such as numbers or strings,
and queries in all practical languages use domain-specific operations, like
arithmetic operations for numbers, or concatenation and prefix comparison
for strings, etc. Embedded finite model theory studies precisely these kinds
of languages over finite models, where the underlying domain is potentially
infinite, and operations over that domain can be used in formulae.

13.1 Embedded Finite Models: the Setting

Assume that we have two vocabularies, Q and u, where u is finite and rela
tional. Let 9.11 be an infinite fl-structure (U, D), where U is an infinite set.
For example, if [! contains two binary functions + and ·, then (IR, +, · j and
(N, +, · j are two possible infinite !?-structures, with + and · interpreted, in
both cases, as addition and multiplication respectively.

250 13 Embedded Finite l\Iodcb

Definition 13.1. Let 9J1 = (U, D) be an infinite f?-str·v.ctun~, and let rT =

{ R l, ... , Rm}. Sv.ppose the arity of each R; is]!; > 0. Then an cmlwddcd
finite model (i.e., a rT -str-ucture embedded ·into 9J1) is a structure

where each R? is a finite subset of lfP·, and A is the set of all the elements

of U that occur- in the relations Rfl Rfl. The set A is mlled the active
domain of 2l, and is denoted by adom(2l). D

So far this is not that much different from the usual finite rnodd. <'xcept
that the universe comes from a given infinite set l!. 'Vhat makes the setting
different, however, is the presence of the underlying structun· sm, which makes
it possible to usc rich logics for defining queries on Pmhedded finite modds.
That is, instead of just FO over 2l, we shall use FO over

(9J1, 2l) '.2! '2l) (U. fl. R 1 •..•• R1 .

making use of operations availabk on 9J1.
Before we define this logic, denoted by F0(9J1. (J), we shall address the

issue of quantification. The universe of (9J1, 2l) is U, so saying 3.rcp(.r) mmns
that there is an element of U that witnesses cp. But while \V<~ are dealing with
finite structures 2l embedckd into sm, quantification over the entire set u is
not always very convenient.

Consider, for example, the simple property ofreflexivity. In tlH' usual finite
model theory context, to state that a binary relation r~' is n•flt>xive. we would
say vx E(x, .r). Howev<~r, if the interpretation of v:r is ''for all 1· E [T", this
sentence would be false in all embedded finit<~ models! What we really want
to say here is: "for all :r in the active domain, E(:r, .r:) holds".

The definition of F0(9J1, CJ) thus provicks additional syntax to quantify
over dements of the active domain.

Definition 13.2. Given 9J1 = (U. fl) and a r·elational vocabular·y rT, first-onl<·r
logic (FO) over 9J1 and CJ, denoted by F0(9J1, rT), is defined as follows:

• Any atomic FO for-rn:ula in the language of 9J1 is an atomic F0(9J1. rT) joT
mula. For· any p-ary symbol R from (J and tenns t 1 t 1, in the lan.rruaye
of 9J1, R(t 1 •... , t)l) is an atomic F0(9J1. (}) fonrmla.

• Formulae of F0(9J1. rT) are closed nnder the Boolean counectives V. 1\. and

• If 'P is an F0(9J1. (J) formula, then the following an~ F'0(9J1. rT) fonnulac:

- 3:r cp,

v:r ',),
- 3:r E adorn ',), and

-v.r; E adorn cp.

13.1 Embedded Finite Models: the Setting 251

The class of first-order formulae in the language of 9J1 will be denoted by
F0(9J1) (i.e., the formulae built up from atomic 9J1-formulae by Boolean con
nectives and quantification ::3, \f). The class of formulae not using the symbols
from J? will be denoted by FO(O") (in this case all four quantifiers are allowed).

The notions of free and bound variables are the usual ones. To define the
semantics, we need to define the relation (9J1, 2l) f= 'P(ii), for a formula i.p(x)
and a tuple a over U of values of free variables. All the cases are standard,
except quantification. If we have a formula 'P(x, ff), and a tuple of elements b
(values for Y), then

(9J1,2l) f= ::Jx 'P(:r.b) iff (9J1,2l) f= I.{J(a,b) for some a E U.

On the other hand,

(9J1,2l) f= ::lxEadorn i.p(x,b) iff (9J1,2l) f= 'P(a,b) for some a E adorn(2l).

The definitions for the universal quantification are:

(9J1, 2l) f= \fx i.p(x, b) iff (9J1, 2l) f= 'P(a, b) for all a E U
(9J1,2l) f= \fxEadorn i.p(x,b) iff (9J1,2l) f= 'P(a,b) for all a E adorn(2l).

Since 9J1 is most of the time clear from the context, we shall often write
2l f= 'P(ii) instead of the more formal (9J1, 2l) f= 'P(ii).

The quantifiers ::Jx E adorn 'P and \f:r E adorn 'P are called active-domain
quantifiers. We shall sometimes refer to the usual quantifies ::3 and \1 as nn
restr·icted quantifiers.

From the point of view of expressive power, active-domain quantifiers are a
mem convenience: since adorn(2l) is definable with unrestricted quantification,
so are these quantifiers. But we use them separately in order to define an
important sublogic of F0(9J1, a).

Definition 13.3. By FOact(9.n, O") we denote the fragment of F0(9.n, O") that
only nses qnantifier·s ::Jx E adorn and \fx E adorn. Formulae in this fragment
are called the active-domain formulae.

Before moving on to the expressive power of F0(9J1, O"), we briefly discuss
evaluation of such formulae. Since quantification is no longer restricted to a
finite set, it is not clear a priori that formulae of F0(9J1, O") can be evaluat<~d -
and, indeed, in some cases there is no algorithm for evaluating them. However,
there is one special case when evaluation of formulae is "easy" (that is, easy
to explain, not necessarily easy to evaluate).

Suppose we have a sentence q> of F0(9J1, O"), and an embedded finite model
2l. We further assume that every element c E adorn(2l) is definable over 9J1:
that is, there is an F0(9J1) formula ac(x) such that 9J1 f= ac(x) iff x =c.

In such a case, we replace every occurrence of an atomic formula
R(t 1(x), ... , trn(x)), where REa and the t;'s are terms, by

252 13 Embedded Finite Models

V n,. 1 (t1 (i)) 1\ ... 1\ n,."' (tm(i)).
(r·J ... ,cm)EH"'

That is, we say that the tuple of values of the i;(i)'s is one of the tupks in
R'<J.. Thus, if <JJ'2i is the sentence obtained from <P hy such a n~placement, then

(911. 2l) F= <P (13.1)

Notice that <1>'21 is an F0(911) sentence, since all tlw J-relatious disappeared.
Now using (13.1) we can propose the following evaluation algorithm: given <]J,

construct <JJ'2i, and check if 911 f= <P21 . The last is possible if the theory of 911 is
decidable.

13.2 Analyzing Embedded Finite Models

When we briefly looked at the standard model-theoretic techniques in Chap. 3,
we noticed that they are generally inapplicable in the setting of finite model
theory. For embedded finite models, we mix the finite and tlw infinite: Wl' study
logics over pairs (911, 2l), where 911 is infinite and 2l is finite. So the question
arises: can we use techniques of either finitP or infinitl' model tlll'ory'?

It turns out that we cannot use finite or infinite modd-theorf'tic techniques
directly; as we an~ about to show, in general, they fail over embedded finitl'
models. Then we outline a new kind of tools that is used \vith emlwdded
finite models: by using infinite model-theoretic techniques, we reduce qUl~stions
about embedded finite modds to questions about finite nwd(~ls, for which thl'
prec~~ding 12 chapters give us plenty of answers. In general. we shall SPl' thai
the behavior of F0(911, J) depends heavily on modd-theor<'tic properties of
the underlying structure 911.

We now discuss standard (finite) model-tlworetic tools and their applica
bility to the study of f~rnbedded finite models.

First, notice that compactness fails over embedded finite modds for thl'
saml" reason as for finite models. Orw can VvTite sentencl's ;,n, n ;:>: 0, stating
that adom(2l) contains at least n dements. Then T = Pn I n ;:>: 0} is finitely
consistent: every finite set of sPntences has a finite modeL How<~ver, T its<·lf
does not have a finite model.

Onl' tool that definitely applies in the ernlwdded settinp; is EhrPnfPucht
Fra'isse games. However, playing a game is very hard. AssumP, for l'xamplE',
that 911 is the rml field (JR:., +,-). Suppose J is empty, and we want to show
that the query EVE!\, testing if I adorn(2l) I is Pven, is not expr<'ssiblP (v.:hich,
as we shall see latf~r, is a true statement). As in tlw proof giv<~n in Chap. 3,
suppose EVEN is expressiblP by a sentfmce <P of quantifier rank k. Bdore, Wl'
picked two structures, 2l1 of cardinality k and 2l2 of cardinality k + 1, and
showed that 2l1 =k 2l2 . Our problem now is that showinp; '?1 1 ==,. 2l2 no longl'r
sufficl~s, as we have to prove

13.2 Analyzing Embedded Finite Models 253

(9J1, 2h) '=k (9J1, 2l2) (13.2)

instead. For example, in the old strategy for winning the game on 2l1 and
2l2 , if the spoiler plays any point a 1 in 2l1 in the first move, the duplicator
can respond by any point 2l2 • But now we have to account for additional
atomic formulae such as p(x) = 0, where p is a polynomial. So if we know
that p(ai) = 0 for some given p, the strategy must also ensure that p(a2) = 0.
It is not at all clear how one can play a game like that, to satisfy (13.2).

The next obvious approach is to try finite model-theoretic techniques that
avoid Ehrenfeucht-Frai'sse games, such as locality and zero-one laws. This ap
proach, however, cannot be used for all structures 9J1, as the following example
shows.

Let 1)1 be the well-known structure (N, +,·);that is, natural numbers with
the usual arithmetic operations. A a-structure over 1)1 is a a-structure whose
active domain is a finite subset of N, and hence it can be encoded by some
reasonable encoding (e.g., a slight modification of the encoding of Chap. 6,
where in addition all numbers in the active domain are encoded in binary).
A Boolean query on a-structures embedded into 1)1 is a function Q from such
structures into {true, false}. It is computable if there is a computable function
!Q: {0, 1}*----> {0, 1} such that !Q(s) = 1 iff sis an encoding of a structure 2l
such that Q(2l) = true.

Proposition 13.4. Every computable Boolean query on a-structures embed
ded into 1)1 can be expressed in FO(IJt, a).

Proof. Without loss of generality, we assume that a contains a single binary
relation E. We use the following well-known fact about 1)1: every computable
predicate P ~ Nm is definable by an FO(IJt) formula, which we shall denote
by 'lj;p(x 1 , ... ,xm)· The idea of the proof then is to code finite a-structures
with numbers. For a query Q, the sentence defining it will be

(13.3)

where x(x) says that the input structure 2l is coded by the number x, and
the predicate PQ is the computable predicate such that PQ(n) holds iff n is
the code of a structure 2l with Q(2l) = true.

Thus, we have to show how to code structures. Let Pn denote the nth
prime, with the numeration starting at p 0 = 2. Suppose we have a structure
2l with adam (2l) = { n 1 , ... , nk}. We first code the active domain by

k

codeo(2l) = ITPni·
i=l

There is a formula xo(:r) of FO(IJt, a) such that 2l f= xo(n) iff code0 (2l) = n.
Such a formula states the following condition:

254 13 Embedded Finite Models

• for each l E adam(~), n is divisible by Pt but not divisible by pf, and

• if n is divisible by a prime number p, then p is of the form p1 for some
l E adam(~).

Since the binary relation {(n,pn) I n 2" 0} is computable and thus definahlP
in FO(SJl), Xo can be expressed as an FO(sn, O") formula.

We next code the edge relation E. Let pair : N x N -+ N be the standard
pairing function. We then code E 21 by

codel(~) = II Ppair(n;. ni) ·

(n;.nj)EE 21

As in the case of coding the active domain, there exists a formula \ 1 (J:) such
that ~ f= XI (n) iff code1 (~) = n ·· the proof is the same as for '\' 0 . Finally, WP
code the whole structure by

code(~) = pair(code0 (~),code 1 (~)).

Clearly,~ -1- 23 implies code(~) -1- code(23), so we did define a coding function.
Moreover, since xo and Xt are FO(SJl, O") formulae, the formula \(:r:) can bP
defined as 3y3z xo(Y) Ax1 (z) A '1/Jp(y, z, x), where Pis the graph of the pairing
function. This completes the coding scheme, and thus shows that (13.3) defines
Q on structures embedded into sn. 0

Therefore, in FO(sn, O") we can express queries that violate locality notions
(e.g., connectivity) and queries that do not obey the zero-one law (e.g., parity).

Hence, we need a totally different set of techniques for proving bounds on
the expressive power ofF0(9J1, O"). If we want to prove results about F0(9J1. O"),
perhaps we can relate this logic to something we know how to deal with:
the pure finite model theory setting. In our new terminology, this would he
FOact(11vh O"), where 110 = (U, 0) is a structure of the empty vocabulary. That
is, there are no functions or predicates from 9J1 used in formulae, and all
quantification is restricted to the finite universe ad om(~). (N oticP that the
setting of FOact(110, O") is in fact a bit more restrictive than the usual finite
model theory setting: in the latter, we quantify over a finite universe that may
be larger than the active domain.)

For technical reasons that will become clear a bit later, we shall deal not
with~ but rather with 11< = (U, <), where < is a linear order on U. Then
FOact (11<, O") corresponds to what we called FO+ < in the finite model theory
setting. We know a number of results about this logic: in particular, it cannot
express the query EVEN (Theorem 3.6) nor can it express graph connectiYity
(Theorem 5.8).

We now present the first of our two new tools. First, we need the following.
Suppose D' expands D by adding some (perhaps infinitely many) predicate
symbols. We call a structure 9J1' = (U, D') a definitional expansion of 9J1 =
(U, D) if for every predicate P E D' - [2, there exists a formula lf'p(.r) in the
language of 9J1 such that pm' = {a I 9J1 F= 1; p (a)}.

13.2 Analyzing Embedded Finite Models 255

Definition 13.5. We say that 9J1 admits the restricted quantifier collapse, or

RQC, if there exists a definitional expansion 9)1' of 9J1 such that

FOact (9J1', 0")

for every O".

The notion of RQC can be formulated without using a definitional ex
pansion as follows. For every F0(9J1, O") formula rp(x), there is an equivalent

formula rp'(x) such that no O"-relation appears within the scope of an unre
stricted quantifier ::3 or 1::/ (i.e., O"-relations only appear within the scope of
restricted quantifiers ::lx E adorn and 1::/x E adorn).

Then~ is one special form of the restricted quantifier collapse, which arises
for structures 9J1 that have the collapse and also have quantifier elimination
(that is, every F0(9J1) formula is equivalent to a quantifier-free one). In this
case, if FOact (9J1', O") refers to a definable predicate P E []'- n, we know that
P is definable by a quantifier-free formula over 9Jl. Hence, using the definition
of P, we obtain an equivalent F0(9J1, O") formula. Thus, we have:

Proposition 13.6. If 9J1 admits the restricted quantifier collapse (RQC) and

has quantifier elimination, then

F0(9J1, O") (13.4)

The condition in (13.4) is usually called the natural-active collapse, since

the standard unrestricted interpretation of quantifiers is sometimes called the
"natural interpretation".

Using RQC, or the natural-active collapse, eliminates quantification out
side of the active domain. To reduce the expressiveness of F0(9J1, O") to that
of FOact (11<, O"), we would also like to eliminate all references to 9J1 functions
and predicates, except possibly order. This, however, in general is impossible:
how could one express a query like ::Jx E ad om ::Jy E adorn E (x, y) 1\ x · y = :r + 1?

To deal with this problem, we use the notion of genericity which comes

from the classical relational database setting. Informally, it states the follow
ing: when one evaluates formulae on embedded finite models, exact values

of elements in the active domain do not matter. For example, the answer
to the query "Does a graph have diameter 2?" is the same for the graph
{(1,2),(1,3),(1,4)} and for the graph {(5,10),(5,15),(5,20)}, which is ob
tained by the mapping 1 f-+ 5, 2 f-+ 10, 3 f-+ 15,4 f-+ 20.

In general, generic queries commute with permutations of the universe.
Queries expressible in F0(9J1, cr) need not be generic: for example, the query
given by ::Jx E adorrdy E adorn E(.r, y) 1\x·y = x+ 1 is true onE= { (1, 2)} but
false on E = { (1, 3)}. However, as all queries definable in standard logics over
finite structures are generic, to reduce questions about F0(9J1, O") to those in
ordinary finite model theory, it suffices to restrict one's attention to generic
queries.

256 13 Embedded Finite Models

\Ve now define genericity for queries (which map a finit<' IT-strnct ure 2l to
a finite subset of Am, m 2 0). Given a function 7r : U __, U. we extend it to
finite iT-structures 2l by replacing each occurrenc<' of o E adorn (2l) \vit.h n(o).

Definition 13.7. • A quer:q Q is generic ·if for every partial ·injective func
tion 7r : U --+ U which is defined on adom(2l), it is the case that
Q(2l) = Q(n(2l)).

• The clas.~ of generic queries definable in F0(1111. IT) or· FOa,t(1111. cr) is de
noted by FOg"u(1111. iT) or· FO~:·;~ (1111. iT), r·esper:tivdy.

While it is undecidable in general if an F0(1111, IT) quPry is gc·neric. most
queries whose inexpressibility we want to prove are generic.

Definition 13.8. We say that 1111 admits the active-gcrwrir collapse. if

Now using the different notions of collapse togd.her. \Ve come up \\·ith the
following methodology of proving hounds on FO (1111. a).

Proposition 13.9. Let 1111 admit both tlw restr"icted-quant'ijier· collapse (RQC)
and the active-generic collapse. Then ever·y generic queTy e:z:pressible zn
FO(I111,1T) is also c1:pressible in FOacdll<,a). D

For example, it would follow from Thc·orem 3.6 that for 9J1 as in thP propo
sition above, EVEN is not expressible in F0(9Jl, iT). Furtlwrmore. for such 1111.
every query in FOg''11 (9Jl. a) is Gaifman-local. by Proposition 13.~} and TIH'o
rem 5.8.

Thus, our next goal is to see for \vhat structures collap.-;e n~sults can be
established. W<~ start with the active-generic collapse, and prov<', in til<' n<•xt
section, that it holds for all structures.

The situation with RQC is not nearly as simple•. \Ve shall see that it fails for
(N, +. ·) and (Q, +.·),hut w<" shall prov<~ it forth<~ ordered real fidel (JR.+.·.<
, 0, 1). This structure motivated much oft he initial work on embedded finitP
models due to its database applications; this will h<~ explain<'d in Sect. 13.6.
More examples of RQC (or its failure) are given in the <'XPrcises. \Ve shall also
revisit the random graph of tlw previous chapter and relat<' queries oyer it to
those definable in MSO.

13.3 Active-Generic Collapse

Our goal is to prove the following result.

Theorem 13.10. Ever'JJ infindc stnu:tv.r·e 9J1 admits the aelive-gewTic col
lapse. [J

13.3 Active-Generic Collapse 257

We shall assume that 9J1 is ordered: that is, one of its predicates is <
interpreted as a linear order on its universe U. If this were not the case, we
could have expanded 9J1 to 9)1< by adding a linear order. Since F0(9J1, a) c;:
F0(9J1<,a), the active-generic collapse for 9)1< would imply the collapse for
9J1:

F0~~;1 (9J1,a) c;: F0~~~(9J1<,a) c;: FOact(il<,a).

The idea behind the proof of Theorem 13.10 is as follows: we show that
for each formula, its behavior on some infinite set is described by a first-order
formula which only uses < and no other symbol from the vocabulary of 9J1.
This is called the Ramsey property. We then show how genericity and the
Ramsey property imply the collapse.

Definition 13.11. Let 9J1 = (U, D) be an ordered structure. We say that an
FOact(9J1, a) formula r.p(x) has the Ramsey property if the following is true:

Let X be an infinite subset of U. Then there exists an infinite set
Y c;: X and an FOact (il<, a) formula 1/;(x) such that for· ever·y a
structure Q(with adorn (Qt) C Y, and for every a over Y, it is the case
that 12t f= rp(a) ,__. 1f;(a).

We now prove the Ramsey property for an arbitrary ordered 9J1. The
following simple lemma will often be used as a first step in proofs of collapse
results. Before stating it, note that for an F0(9J1, a) formula (x = y) can
be viewed as both an atomic FO(a) formula and an atomic F0(9J1) formula.
We choose to view it as an atomic F0(9J1) formula; that is, atomic FO(a)
formulae an~ only those of the form R(· · ·) for R E a.

Lemma 13.12. Let r.p(x) be an F0(9J1, a) formula. Then there exists an equiv
alent formula ·tj;(x) such that every atomic sub formula of 1j; is either an FO (a)
formula, or an F0(9J1) formula. Furthermore, it can be assumed that none of
the free variables :l occurs in an FO(a)-atomic subformula of 1/;(x). If r.p is an
FOact (9J1, a) for·mula, then 'lj; is also an FOact (9J1, a) formula.

Proof. Introduce m fresh variables z1 , ... , Zm, where m is the maximal arity of
a relation in a, and replace any atomic formula of the form R(t1 (iJ), ... , t, (if)),
where l <::;: m and the t;'s are 9J1-terms, by ::Jz1 E adorn ... 3z1 E adorn f\.;(z; =
t1 (il)) 1\ R(z1 , ... , z1). Similarly use existential quantifiers to eliminate the free
x-variables from FO(a)-atomic formulae. 0

The key in the inductive proof of the Ramsey property is the case of
F0(9J1) subformulae. For this, we first recall the infinite version of Ramsey's
theorem, in the form most convenient for our purposes.

Theorem 13.13 (Ramsey). Given an infinite ordered set X, and any par·ti
tion of the .~et of all ordered m-tuplcs (x1, ... , :rrn), x1 < ... < :r:m, of elements
of X into l classes A 1 , ••• , Az, there exists an infinite subset Y c;: X such that
all ordered rn-tuples of elements of Y belong to the same class A;. 0

258 13 Embedded Finite 1\iodels

The following is a standard model-theoretic result that we prov(' hen· for
the sake of completerwss.

Lemma 13.14. Let ;,.J(:F) be an FO(IJJ!) fonnula. Then -,; has thl' Ramsey
property.

Pmof. Consider a (finite) enumeration of all the \vays in which the variablPs .r
may appear in the order of U. For example, if .r = (x 1 ••.•• . r 1). one possibility
is J: 1 = J:;J,£2 = :r 1, and .r 1 < .r2 . L(~t P be such an arrangement, and
((P) a first-order formula that defines it (J· 1 = J":l 1\ .c2 = .r 1 1\ .r 1 < .r2 in
the above example). Note that there are finitely many such arrangements P;
let P be tlw set of all of those. Each P induces an equivalence relation 011

.f: for example, {(J: 1,.r;,), (x2 .. r 1)} for P above. Let :;P be a subtupk of.?
containing a representative for each class (<'.g., (:r 1 .:~·4)) and h~t _,;~"(.fl') lw

obtained from cp by replacing all variables from an <'quivalenc<' class hy t]H•
chosen representatiw. Then <p(:r) is equivalent to

V ((I') 1\ 'Pl'(:rr').
PEP

We now show the following. Ld P' c;; P and n E: P'- Jpt X C lT lw an
infinite set. Assume that 7/{1) is given by

V ((P) 1\ cpr(:re).
PEP'

Then there exists an infinite set Y c;; X and a quantifier-frp(~ formula ; n, (.r)

oft he vocabulary { <} such that ~.' is equivalent to

v
PEP'-{n,}

for tuples i of elements of Y.
To sec this, suppose that P0 has m (~qui valence classes. Consid<T a partition

of tuples of xm ordered according to nl into two classes: A 1 oft hose tuples
for which cpR' p:Po) is tnw, and A1 of those for which cpn (.fP") is fals<'. By
Ramsey's theorem, for some infinite set Y c;; X (~itlwr all ordered tuples
over ym are in A1 , or all are in A 2 . In tlw first case. v is equivalent to

((n) V VrEP'-{l'o} ((P) 1\ cpPCrl'), and in the s('cond case u is equiYalent to

V PEP'-{Po} ((P) 1\ cpP(:fP), proving the claim.
The lemma now follows by applying this claim indw:tively to every parti

tion P E P, passing to smaller infinite sets, while getting rid of all the formulae
containing symbols other than = and <. At the end we have an infinite set
over which cp is equivalent to a quantifiPr-frce formula in the yocabulary { <}.

D

The next lemma lifts the Ramsey propmty from FO(IJJ!) formulae to arbi
trary FOact (IJJ!. a) formulae.

13.3 Active-Generic Collapse 259

Lemma 13.15. Ever·y FOact(9J1, iT) forrn11la has the Ramsey property.

Pr·oof. By Lemma 13.12, we assume that every atomic subformula is an
FOacd iT) formula or an F0(9J1) formula. The base cases for the induction
are the case of FOact (iT) formulae, where there is no need to change the for
mula or find a subset, and the case of F0(9J1) atomic formulae, which is given
by Lemma 13.14.

Let <p(x) = <p1 (:f)!\ <p2 (:f), where X ~ U is infinite. First, find 1/J1, Y1 ~ X,
such that for every 2l and a over Y1 , it is the case that 2l I= <p1 (a) +-> 'lf;l (a).
Next, by using the hypothesis for <p 2 and }} , find an infinite set Y2 ~ Y1 such
that for every 2l and a over Y2 , it is the case that 2l I= <p2 (a) +-> 'ljJ2 (a). Then
take 'lj; = 1/Jt !\ 'lf;2 and Y = Y2.

The case of <p = •<p' is trivial.
For the existential case, let <p(:r) = ::Jy E adorn ;p1 (y, x). By the hypothesis,

find Y ~ X and '1/11 (y. x) such that for every 2l and a over Y and every bE Y
we have 2ll= ;p1 (b,a) +->1};1(b,a). Let 'lj;(x) =::lyE adorn 1};1 (y,x). Then, for
every 2l and a over Y, 2ll= 'lj;(ii) iff 2ll= Vh(b,ii) for some bE adorn(2l) iff
2ll= ;p1 (b,ii) for some bE adorn(2l) iff2ll= <p1(ii), thus finishing the proof. 0

To finish the proof of Theorem 13.10, we have to show the following.

Lemma 13.16. Assume that every FOact(9J1, iT) formula has the Ramsey
proper·ty. Then 9J1 admits the active-generic collapse.

Proof. Let Q be a generic query definable in FOact(9J1, iT). By the Ramsey
property, we find an infinite X ~ U and an FOact (ll<, iT)-definable Q' that
coincides with Q on X. We claim they coincide everywhere. Let 2l be a iT
structure. Since X is infinite, there exists a partial monotone injective function
1r from adom(2l) into X such that for every pair of elements a < a' of adom(2l),
there exist x 1 ,x2 ,x:1 EX -1r(adom(2l)) with the property that x 1 < 1r(a) <
X2 < 1r(a') < X;J.

By the genericity of Q, we have 1r(Q(2l)) = Q(1r(2l)). Thus, Q(1r(2l)) coin
cides with the restriction of Q'(1r(2l)) to X. We now notice that Q' does not
extend its active domain. Indeed, if adam(Q' (1r(2l))) contained an element
b rf. 1r(adorn(2l)), we could have replaced this element by b' EX -1r(adorn(2l))

such that for every a E 7r (adam (2l)), a < b iff a < b'. Since Q' is FOact (ll<. iT)
definable, this would imply that b' E adom(Q'(1r(2l))), which contradicts the
fact that over X, the queries Q and Q' coincide.

Hence, 1r((J(2l)) = Q(1r(2l)) = Q'(1r(2l)). Again, since Q' is FOact(ll<, iJ)
definable, it commutes with any monotone injective map, and thus Q' (1r(2l)) =

1r(Q'(2l)). We have shown that 1r(Q(2l)) = 1r(Q'(2l)), from which Q(2l)
Q'(2l) follows. 0

This completes the proof of Theorem 13.10.

Thus, no matter what functions and predicates there are in 9J1, FO can
not express more generic active-domain semantics queries over it than just
FOart(ll<, a). In particular, we have the following.

260 13 Embedded Finite Models

Corollary 13.17. Let 9J1 be an arbitmry str·uctnr·e. Then qner·ies such as
EVEN, PARITY, rnajor·ity, connectivity, tmnsitive clo.m.r·e, and ar:yclir:ity ar·e
not definable in FOact (9J1. o'). D

13.4 Restricted Quantifier Collapse

One part of our program for establishing bounds on F0(9J1. 0') has been very
successful: we prove the active-generic mllapse for arbitrary structures. Can
we hope to achiew~ the same succPss with the restricted-quantifier <'ollapse
(RQC)? The answer is clearly negative.

Corollary 13.18. The restricted-quantifier collapse fails over IJ1 = (N, +.-).

Pr·oof. By Corollary 13.17, parity is not definable in FOa,t(IJl.O'), but by
Proposition 13.4, it is expressible in FO(IJl,O'). D

FurthermorE~, RQC fails over (Ql, +.·),since it is possible to define natural
numbers within this structure, and then emulate the proof of Proposition 1:3.4
to show that every computable query is expressible.

However, the situation becomes very different when we mov<' to the real
numbers. \Ve shall consider the real ordered field: that is, th(• structun·

R = (R+.·,<.0,1).

This is the structure that motivated much of the initial devdopment in em
bedded finite models, due to its dose connections with questions about the
expressiveness of languages for geographical databas(~S.

Consider the following FO(R, { E}) sentence. \vhere E is a binary relation
symbol:

3v3v\f:r:E adorn\fyE adorn (E(:z:, y) -+ y = u · .r + 1'). (13.5)

saying that all elements of E C JR 2 lie on a line. Notice that it is essential
that the first two quantifiers range over the entin' set JR. For example. if E is
interpreted as {(2,2),(3,3),(4,4)}, then the sentence (13.5) is true, and the
witnesses for the existential quantifiers are u = 1 and u = 0. I3ut rwit her 0
nor 1 is in the active domain of E.

Nevertheless, (13.5) can be expressr~d by an FOact (R. { F}) sentencP. To
see this, notice that E lies on a line iff every tlm='e points in R ar<' collirH•ar.
This can be expressed as

\f:z:1 E adorn\fy1 E adom \f:r:2 E adorn\1,1}2 E adornYr;3 E o.dom\ly;l E ndom

((E(.T,.yl)/\E(x2,Y2)/\E(:r:J.JJ:l))-+ collinPar(.F.J7l) (13.G)

13.4 Restricted Quantifier Collapse 261

where collinear(x,Y) is a formula, over R, stating that (:r1 ,yt), (x 2 ,y2), and
(x 3 , y3) are collinear. It is easy to check that collinear(x, Y) can be written as
a quantifier-free formula (in fact, due to the quantifier elimination for the real
field, every formula over R is equivalent to a quantifier-free formula, but the
condition for collinearity can easily be expressed directly). Hence, (13.6) is an
FOact(R, {E}) formula, equivalent to (13.5).

This example is an instance of a much more general result, stating that
the real field R admits RQC. In fact, we show the natural-active collapse for
R (since R has quantifier elimination). Moreover, the proof is constructive.

Theorem 13.19. The real field R = (1Ft,+,·,<, 0, 1) admits the restr·icted

quantifier· collapse. That is, for every FO(R, cr) formula cp(x), there is an

equivalent FOact (R, cr) formula ipact (x). M oreuver, ther·e is an algor·ithm that

constructs IPact fmm ip.

Proof. The proof of this result is by induction on the structure of the formula.
We shall always assume, by Lemma 13.12, that all atomic FO(cr) formulae are
of the form S(ij), whew]J contains only variables. Thus, the base cases of the
induction are as follows:

• IP(x) is S(x). In this case IPact = IP·

• cp(x) is an atomic FO(R) formula. Again, ipact = cp in this case.

The cases of Boolean operations are simple:

• If ip = 't/J V X, then IPact = t/Jact V X act;

• if ip = •'t/J, then VI act = •'l/Jact.

We now move to the case of an unrestricted existential quantifier. \'\h~

shall first treat the case of CT-structures 2{ with adom(2t) of. 0; at the end of
the proof, we shall explain how to deal with empty structures.

Suppose cp(x) = 3z fi(x, z). By the induction hypothesis, f3 can be assumed
to be of the form

f'i(x,z) = Qy1Eadom ... QymEadom BC(a;(x,y,z)),

where each Q is either 3 or 'V, and:

1. BC (a; (:C, y, z)) is a Boolean combination of atomic formulae a 1 , ... , n,;

2. each FO(CT) atomic formula is of the form S('t7), where 11 c;;; y;
3. all atomic FO(R) formulae are of the form p(x, y, z) = 0 or p(x, :tT z) > 0,

where p is a polynomial; aJl(l

262 13 Embedded Finite Models

4. n, m > 0, and at least one of the FO(R) atomic formulaE> involws a
multivariate polynomial p(.r!, JT z) = y; - --: for some y;.

The reason for this is that, under the assumption adom(21) fc 0. we
can always replace d by

{-} 1\ (==Jy E adorn (y- y = 0) 1\ ((y-:.: = 0) v -{IJ -:.: = 0))).

Putting the resulting formula in the prenex normal form fulfills the l'OJl
ditions listed in this item.

We now assumE' that o; (.r, Fl;:,). 1 ::; i ::; n, an' FO(R) al omic formulal'

p,(J,,i/,z){:}o, and n 1, n <iS:;_ are FO(rT) atomic formula<'. \Ve let rl,

be the dq~ree, in z, of Jr,. For each r1. b. by pf·r;(:;) Wl' denote tlw univariall'

polynomial p; (a, b. z). Note that the degree of p:1 r; is at most d,. Wl' let d =
maxi d;. \Vhenever we refer to the _jth root of a univariate polynomial p.
we mean its _jth real root in thP usual ordering, if such a root exists, and 0
otherwise. Note that thl~re exists an FO(R) formula rootjJr) which holds iff
.T is the _jth root of p.

We now prove tlw following.

Lemma 13.20. Let;:(:?) be as above, wher-e the a.ssumptions 1 4 hold. Ll't '41
be .such that adom(21) fc 0. Fi:z: a tuple of r-eal rmmber·s a. Then (R. 21) I= ;:(r7)
iff ther·e e:rist i, k S n, and j./::; d and two tupli·s b. i' O'llfT adom(21) of length
1m, .mch that

(R. 21 J F= i3 (a, <'/ ; rf/) v d (ii. r<'/ + 1))(~ u'.i; 1) VuU./' 1 -,
.I

Proof of Lemma 13.20. One direction is trivial: if therl' is a witrwss of a givt•n
form, then there is a witness. For the other direction .. assunw that (R. 21) f=

,.;;1,1; -+-r ~~/·
;:(a). \Ve tlwn must show that tlwre exists n 11 E lR of the form 2 or

r-:~r; ± l such that (R, 21) f= j-J(r7, uo)-

Lct b1 , ... , bM be the enunwration of all the tuples of length ll71 consisting

of elements of udom (21). Consider all univariate polynomials p','- 5~ (.~). and l('t

f';.Jk be the kth root of p7,r;, (z), for k S d. LP! S be thP family of all elements
of the form r;1k, i S n, _j S I\1, k ::; d. It follows from our assumptions that
S f f/J and adorn(21) c;;. S', sinc-l' one of tlw polynomials is y, - z. \\'e let 1'111 i 11

and '!'max be the minimum and the maximum dlmwnts of s·, n~spectively.
SuppOS(~ (R.21) f= .i-J(a.a0). If a0 E S', then then· is a polynomial p,. a

tuple b, and j s d such that 0() = <7; 5. By Sl~lecting t = r;_ /,- = i .I = j' Wl' S<'('

that a 0 is of the required form.

13.4 Restricted Quantifier Collapse 263

Assume a0 ¢ S. There are three possible cases:

1. ao < Tmin, or

2. Uo > Tmax, Or

3. there exist ri, r2 E S such that ri < a0 < r 2, and there is no other r E S
with TI < T < T2.

We claim that for every Pi and every bj:

. (ii,bj ()) . (ii,bj (1)) . 1 Sign Pi ao = sign Pi r min - m case

. (ii,bj ()) . (ii,bj (1)) . 2 Sign Pi ao =sign Pi Tmax + m case (13.7)

. (ab()) . (iib(ri+r2)). sign pi' 1 ao = stgn Pi' 1 --2- m case 3.

Indeed, in the third case, suppose sign (p~·bj (ao)) -1- sign (p~,bj (T] r 2)).

Then the interval [a0 , r 1 !"2] contains a real root of p~,bJ (z), which then must
be in S. We conclude that there is an element of S between ri and r 2, a
contradiction. The other two cases are similar.

Let ai be (rmin -1) for case 1, (rmax + 1) for case 2, and r1!r2 for case 3.

Then for every tuple bj,j:::; M, and every atomic formula ai, we have

(13.8)

This follows from (13.7) and the fact that FO(a) atomic formulae may not
contain variable z.

We can now use (13.8) to conclude that {3(ii, a0) <--+ {3(ii, at). Clearly,
the equivalence (13.8) propagates through Boolean combinations of formu
lae. Furthermore, notice that if for a finite set A and m > 0, a(ii, b, b, a0) <--+

a(ii, b,b, a I) for every b E A and every bE Am, then

(3x E A a(ii,x,b,ao)) <--+ (3x E A a(ii,x,b,ai))

for every bE Am. This shows that (13.8) propagates through active-domain
quantification, and hence {3(ii,a0) <--+ {3(ii,at).

Thus, if (R, ~) f= {3(ii, a0), then (R, ~) f= {3(ii, at). Since ai is of the right
form (either r- 1, orr+ 1 for r E S, or rtr' for r, r' E S), this concludes the
proof of the lemma.

To conclude the proof of the theorem, we note that Lemma 13.20 can be
translated into an FO definition as follows. For each FO(R) atomic formula
a(x, y, z), and for any two tuples il, v of the same length as fj, we define the
following formulae:

264 13 Embedded Finite Models

• aik;l (x, y, il, v), for i, k :S n, j, l :S d, says that n(i. :if.;:;) holds when .:; is
r·~··ii+r.r.ii

equal to ' 2 kL • That is,

• a0(x,y,i1) fori :S n,j :S d, says that a(i.:if,z) holds for.:= 1L''7 + 1:
that is,

• aij(x,y,il) fori :S n,j :S d, says that a(x,y.z) holds for z = rD'' -1;
the FO definition is similar to the one given above, except that we use a
conjunct z = Zt - 1.

Note that by quantifier elimination for R, we may assume that all formulae
1/2 (~ ~ ~ ~) + (~ ~ ~) d - (~ ~ ~) 'fi f aik:il x, y, u, v , ai:i x, y, u , an ai:i x, y, u are quanti er- ree.

For i, k :S n, and j, l :S d, let 'Yi1fi~ (x,ij. il, 'IJ) be the Boolean combination

BC(as) where each atomic FO(R) formula a is replaced by n~{j1 (i, :t7. il. T').

L (31/2 (~ ~ ~) b et i:ikl x, u. v e

Q d Q d 1/2 (~ ~ ~ .~) y 1 Ea om ... y,Ea om '~·ik:il ;c,y.1L,u.

Likewise, we define '/.;j(x, y, il) to be the Boolean combination BC(ns) where

each atomic FO(R) formula a is replaced by rxij(i:.y,il), and let ;f!j(.f.t7) lw

'!{;(x,y,il) preceded by the quantifier prefix of j'J. Finally, we define ti;j(.r.Ti)
as f3{j (x, il), except by using formulae aij (x, y. il).

Now Lemma 13.20 says that =Jz f'J(:i!, z) is equivalent to

=JiiEadom=JvEadom V V (fJi1/A~(x.i1,iJ) v fJ(j(;T.17) v ;3ij(.r.il))
i.k<:n :iJ<:d

which is an FOact (R, a) formula.
This eompletes the proof of the translation for the ease of structures Ql with

adom(Ql) i- 0. To deal with empty structures Ql, consider a formula -P(;f), and
let cp' (x) be an FO(R) formula obtained from cp(;r) by replacing each atomic
FO(a) subformula by false. Note that if adom(Ql) = 0, then (R. Ql) f= 'PUll iff
R f= cp'(a). By quantifier elimination, we may assume that -P' is quantifier
free. Hence, 'P is equivalent to

(·=JyEadom(y=y)l\'fJ'(x)) V (=JyEadom(y=y)I\-Pac~(.TJ). (13.9)

where 'Pact is constructed by the algorithm for the case of nonempty structures.
Clearly, (13.9) will work for both empty and nonempty structures. Since (13.9)
is an FOact (R, a) formula, this rompletes the proof. D

13.5 The Random Graph and Collapse to MSO 265

Corollary 13.21. Every generic query in FO(R, a) is expressible in
FOact ((IR, <),a). In particular, every such query is local, and EVEN is not
expressible in FO(R, a). 0

What other structures have RQC? There are many known examples, some
of them presented as exercises at the end of the chapter. It follows immediately
from Theorem 13.19 that (IR, +, <) has RQC. Another example is given by
(IR, +, ·, e"), the expansion of the real field with the function x r---> ex. The field
of complex numbers is known to have RQC, as well as several structures on
finite strings. See Exercises 13.10- 13.14.

13.5 The Random Graph and Collapse to MSO

The real field is a structure with a decidable theory. So is the structure 3 =

(Z, +, <), which also admits RQC (see Exercise 13.10). In fact both admit
quantifier elimination: for 3, one has to add all the definable relations (x -
y) mod k = 0, as well as constant 1.

Could it be true that one can guarantee RQC for every structure 9J1 with
decidable theory? We give a negative answer here, which establishes a different
kind of collapse: of F0(9J1, a) to MSO under the active-domain semantics.

The structure is the random graph R{i = (U, E), introduced in Chap. 12.
This is any undirected graph on a countably infinite set U that satisfies every
sentence that is true in almost all finite undirected graphs. Recall that the set
of all such sentences forms a complete theory with infinite models, and that
this theory is decidable and w-categorical.

The random graph satisfies the extension axioms EAn,m (12.2), for each
n 2": m 2": 0. These say that for every finite n-element subset S of U, and an
m-element subset T of S, there exists z (j_ S such that (z, x) E E for all x E T,
and (z, x) (j_ E for all x E S - T.

Recall that MSO (see Chap. 7), is a restriction of second-order logic in
which second-order variables range over sets. We define MSOact (9J1, a) as MSO
over the vocabulary that consists of both [l and a, every first-order quantifier
is an active-domain quantifier (i.e., :lxE adorn or 'VxE adorn), and every MSO
quantifier is restricted to the active domain. We write such MSO quantifiers
as :JX <:;;adorn or 'VX <:;;adorn. The semantics is as follows: (9J1, 1.2t) ~ :JX <:;;
adorn c.p(X, ·) iffor some set C <:;; adorn(1.2t), it is the case that (9J1, 1.2t) ~ c.p(C, ·).

Theorem 13.22. For every a,

FO(RQ, a) = MSOact(RQ, a).

Proof. The idea is to use the extension axioms to model MSO queries. Con
sider an MSOact formula c.p(x)

QX1 <:;;adorn ... QXm <:;;adorn Qy1 E adorn ... QynE adorn a(X,x,Y),

266 13 Embedded Finite Models

where the X; 's are second-order variables, the YJ 's arc first-order variables,
and a is a Boolean combination of u- and 'Rg-formulae in variables :f, i], and
formulae X;(xj) and X;(y1). Construct a new FO(Rg,u) formula cp'(:f) by
replacing each QX; ~ adam with Qz; tj_ adam U :1 (which is FO-definablP),
and changing every atomic subformula X;('U) to E(z1,u). In other words, a
subset X; of the active domain is identified by an element ::1 from which there
are edges to all elements of X;, and no edges to the elcmmts of the active
domain which do not belong to X;. It is then easy to see, from the extension
axioms, that cp' is equivalent to rp. Hence, MSOact(Rg, u) ~ FO(Rg, u).

For the other direction, proceed by induction on the FO(Rg. u) formu
lae. The only nontrivial case is that of unrestricted existential quantification.
Suppose we have an MSOact(Rg, u) formula

rp(x,z) QX~adom QiJEadorn a(X,.r,fj.::),

where x = (x 1 , ... , Xn), and a again is a Boolean combination of atomic u
and 'Rg-formulae, as well as formulae X; (u), where u is one of the first-ordPr
variables z, x, fl. We want to find an MSOact formula equivalent to :3:: cp.

Such a formula is a disjunction of the form

::lz E adorn <p V V rp(x, x;) V ::lz tj_ adorn .p.

Both ::lz E adam <p and cp(x, x1) are MSOact(Rg, u) formulae. To eliminate
z from ::Jz tj_ adorn rp, all we have to know about z is its connections to .r
and to the active domain in the random graph; the former is taken care of
by a disjunction listing all subsets of { 1, ... , n}, and thP latter by a second
order quantifier over the active domain. For I ~ {1, n}, lPt u(.i) he a
quantifier-free formula saying that no x;, :r1 with i E I, j tj_ I, could be equal.
We introduce a new second-order variable Z and define an l\1S0act formula
'ljJ(x) as

::JZ~adom V (xr(x)/\QX~adom Qi]Eadom nf(X.Z.:r.m).
J<;:{l.. .. ,n}

where af (X, Z, x, if) is obtained from n by:

1. replacing each E(z, x;) by true fori E I and false fori tj_ I,

2. replacing each E(z, YJ) by Z(y1), and

3. replacing each X;(z) by false.

The extension axioms then ensure that 1)1 is equivalent to ::Jz tj_ adorn cp. 0

The active-generic collapse, as it turns out, can be extended to MSO.

Proposition 13.23. Every generic query in MSOact(Rg, u) i8 expressible in
MSO over u-structures.

13.6 An Application: Constraint Databases 267

Proof. First, we notice that there exists an infinite subset Z of Rg such that
for every pair a, bE Z, there is no edge between a and b (such a subset is easy
to construct using one of the concrete representations of the random graph).
Next, we show by induction on the formulae that for every MSOact(R£/, a)

formula VJCX' x) and every infinite set Z' <;;; z' there is an infinite set Z" <;;; z
and an MSO formula VJ'(X,x) of vocabulary a such that for every a-structure

1.2i, and an interpretation of x, X as C, 6 over adom(1.2i),

(R£1, 1.2t) F= VJ (6, C) f--7 VJ' (6, C).

Indeed, atomic formulae E(x, y) can be replaced by false. The rest of the

proof is exactly the same as the proof of Lemma 13.15: the active-domain

MSO quantifiers are handled exactly as the active-domain FO quantifiers.
Next, the same proof as in Lemma 13.16 shows that if VJ defines a generic

query, then it is equivalent to VJ 1 over all a-structures. This proves the propo
sition. 0

Corollary 13.24. The class of generic querie8 expre88ible in FO(R£1, a) ~s

precisely the class of quer-ies definable in MSO over a-structures. 0

Thus, Rg provides an example of a structure with quantifier elimination
and decidable first-order theory (see Exercise 12.8) that does not admit RQC,
but at the same time, one can establish meaningful bounds on the expressive
ness of queries. For example, each generic query in FO(R£/, a) can be evaluated

in PH, and string languages definable in FO(R£/, a) are precisely the regular
languages.

13.6 An Application: Constraint Databases

The framework of constraint databases can be described formally as the logic
F0(9J1, a), where each m-relation 8 in a is interpreted not as a finite set, but
as a definable subset of U"'. That is, there is a formula as(x 1 , ••• ,xm) of

F0(9J1) such that 8 is the set {a I9J1 f= as(a)}.
The main application of constraint databases is in querying spatial infor

mation. The key idea of constraint databases is that regions are represented
by FO formulae over some underlying structure: typically either the real field
R, or Rlin = (IR, +, -, 0, 1, <). That is, they are described by polynomial or
linear constraints over the reals.

To illustrate how linear constraints can be used to describe a specific spa
tial database, consider the following example, representing an approximate
map of Belgium (a real map will have many more constraints, but the basic
ideas are the same). Fig. 13.1 shows the map itsdf, while Fig. 13.2 shows how
regions and citi!~s are described by constraints.

One can then use FO(R,a) or FO(Rlin,a) to query those databases as
if they were usual relational databases that store infinitely many points. For

268 13 Embedded Finite lVIodels

17

16

15

14

13

12

11

10

8

6

4

• Brugcs
• Antwerp

Flemish Region

Brussels Region

Grusscls

• Charleroi

•
Hasse it

Walloon Region

•
Bastognc

:1 4 o 6 7 8 9 10 11 12 1:1 14 1;, 16 n 1K 19 20 21 22 2:1

Fig. 13.1. Spatial information map of Belgium

example, to find all points in the \Valloon region that arc cast of Hasselt 011('

would write

;p(.r,y) = Walloon(:r,y)A==iu.u (Hasselt(u,u)/\.r > u). (l:UO)

To find all the points in the Walloon n~gion that are on tlw direct line
from Hassclt to Liege, one writPs a formula ~,J(:r, y) as the conjunction of
\Valloon(:r. y) and

(

Hasselt(u. c) 1\ Li{~ge(s, t))
/\0<,\ 1\ ,\<I

3v.r.s,I.A -, (1- ')
. (\ .C = /\U + - /\ .S

1\ iJ = Au + (l - ,\)t

(l:Ul)

In these examples, (13.10) is an FO ((R <). iT) quer)·, while (13.11) needs
to be expressed in the more expressivl~ language FO(R. iT).

We now give one simple application of embedded finite modds to eou
straint databases. A basic property of regions is their topological cormect.ivity.
Most regions represented in geographical databases arc comH'cted (and the few
examples of unconnected ones to be rather well known, as they usually lead
to nasty political problems). But can we test this property in FO-bas<~d quny

13.6 An Application: Constraint Databases 269

Cities Regions

Namr~ Geometry Name Geometry

Antwerp (x = 10)/\
(y =Hi)

Bastogne (J: = 19)/\
(y = 6)

Bruges (J; = 5)/\
(y = 16)

Brussels (x = 10.5)/\
(y = 12.5)

Charleroi (.x = 10)/\
(y = 8)

Hasselt (.7: = 16)/\
(y = 14)

Liege (x=17)/\
(y = 11)

Brussels (y :S: 13) 1\ (x :S: 11)/\
(y 2': 12) 1\ (x 2': 10)

Flanders (y :S: 17) 1\ (5x- y :S: 78)/\
(x - 14y :S: -150)/\
(x+y2':45)/\
(3x - 4y 2': -5:~)/\
(•((y :S: 13) 1\ (x :S: 11)/\
1\(y 2': 12) 1\ (x 2': 10)))

\Valloon ((x - 14y ;:: -150) 1\ (y :S: 12)/\
(19x + 7y :S: 375)/\
(J:- 2y :S: 15) 1\ (x 2': 13)/\
(5x + 4y 2': 89)) V
((3y- x 2': 5) 1\ (x + y 2': 45)/\
(x- 14y 2': -150) 1\ (x 2': 13))

Fig. 13.2. A spatial database of Belgium

languages? We now give a simple proof of the negative answer, by reduction
to collapse results.

Theorem 13.25. Topological connectivity is not expr·essible in FO(R, CJ).

Proof. Assume, to the contrary, that topological connectivity of sets in JR:l is
definable (one can show that connectivity of sets on the plane is undefinable
as well; the proof involves a slightly more complicated reduction and is the
subject. of Exercise 13.5). We show that graph connectivity is then definable.

Suppose we have a finite undirected graph G with adom(G) c JR. For
each edge (a, b) in G, we define the segment s(a, b) in JR3 between (a, 1, 0)
and (0, 0, b). Each point in s(a, b) is of the form (>.a, A, (1 ->.)b) for some
0 :S: A :S: 1. Not<~ that this implies that s(a, b) n 8(c, d) i=- 0 can only happen if
a = cor b = d, since (Aa, A, (1 ->.)b) = (JLc, Jt, (1- JL)d) implies A = p and
thus for A i=- 0. 1 we have a = c and b = d, for A = 0 we get b = d, and for
A = 1 we get a = c.

Now we encode each edge (a, b) by the set e(a, b) = s(a, b) U 8(b, a) U
s(a, a) U s(b, b) (see Fig. 13.3). Note that e(a, b) is a connected set, and that
c(a, b) n e(c, d) i=- 0 iff the edges (a, b) and (c, d) have a common node.

We then define a new set Xc in JR:l as

Xc; U e(a, b).
(o,b)EG

It follows that Xc; is topologically connected iff G is connected as a graph.
Since the transformation G ----+ Xc; is definable in FO(R, CJ), the assumption

270 13 Embedded Finite Models

.·

Fig. 13.3. Embedding an edge (a, b) into JR3

that topological connectivity is definable implies that so is graph courwctivit_y.
However , we know from Corollary 13.21 that graph connecr.ivity cannot lw
expressed. This contradiction proves the theorem. 0

13.7 Bibliographic Notes

The framework of embedded finite models originated in database theory, in
connection with attempts to understand query languages that use interpreted
operations, as well as query languages for constraint databases. Constraint.
databases were introduced by Kanellakis , Kuper , and Reves;~, [142] (see also
the surveys by Kuper, Libkin , and Paredaens [158), Libkin [168], and Van dPn
Bussche [242]) .

Soon after [142] was published, it became clear that many questions about
languages for constraint databases reduce to questions about embedded fiiJit. e
models. For example, Grumbach and Su [115] present many reductions to the
finite case.

Collapse results as a technique for proving bounds 011 F0(9J1, a) wen' in
troduced by Paredaens , Van den Bussc:he, and Van Gucht. [197), where tlw
restrc:ited-quant.ifier collapse for R 1in was proved. The collapse for the real
field was shown by Benedikt and Libkin [19] (in fact the proof in [19] appliPs
to a larger class of a-minimal structures; sec [243]). The active-generic collapsP
was shown by Otto and Van den Bussche [193]; the proof giveu here follows
[19]. For the basics of Ramsey theory, see Graham, Rothschild, aud Spen('er
[103]. The collapse to MSO over the random graph is from [168], although one
direction was proved earlier by [193].

13.8 Exercises 271

Inexpressibility of connectivity by reduction to the finite case was first

shown in [115]; for a different approach that characterizes topological proper

ties expressible in FO(R, { S}), where Sis binary, see Kuijpers, Paredaens, and
Van den Bussche [157]. For a study of these problems over complex numbers,

we refer to Chapuis and Koiran [36]. See also Exercise 13.6.
Although we said in the beginning of the chapter that no collapse results

were proved with the help of Ehrenfeucht-Fra1sse games, results by Fournier

[83] show how to use games to establish bounds on the quantifier rank for

expresssing certain properties over embedded finite models. An example is

presented in Exercise 13.8.
In this chapter we used a number of well-known results in classical model

theory, such as decidability and quantifier elimination for the real field R (see

Tarski [229]) and undecidability of the FO theory of (Q, +, ·) (see Robinson

[206]).

Sources for exercises:
Exercise 13.4:
Exercise 13.6:
Exercise 13.7:
Exercise 13.8:
Exercise 13.9:
Exercise 13.10:

Benedikt and Libkin [19]
Chapuis and Koiran [36]
Grumbach and Su [115]
Fournier [83]
Hull and Su [127]
Flum and Ziegler [82]
(see also [168] for a self-contained proof)

Exercise 13.11: Benedikt and Libkin [19]
Exercise 13.12: Flurn and Ziegler [82]
Exercise 13.13: Barrington et al. [15]
Exercises 13.14 13.16: Benedikt et al. [21]

13.8 Exercises

Exercise 13.1. Give an example of a noncomputable query expressible in FO('Jl, o}

Exercise 13.2. Prove that it is undecidable if a query expressible in FO(Wl, a) is
generic (even if the theory of 9J1 is decidable).

Exercise 13.3. Suppose that Sis a binary relation symbol, and R is a ternary one,

and both arc interpreted as set'~ definable over the real field R = (IR, +, ·, 0, 1, <).
Show how to express the following in FO(R, { S, R}):

• S is a graph of a function f : IR --+ IR;
• S is a graph of a continuous function f : IR --+ IR;
• S is a graph of a differentiable function f : IR --+ IR;
• R is a trajectory of an object: that is, a triple (:r, y, t) E R gives a position (:r, y)

at timet;
• a formula r.p(:r,y,v) which holds iff vis the speed of the object at timet (as

suming that R defines a trajectory).

272 13 Embedded Finite Models

Exercise 13.4. Prove a generalization of the Ramsey property (i.e., each active
semantics sentence expressing a generic query can be written using just the order
relation) for SO, ::ISO, FO(Cnt), and a fixed point logic of your choice. Also prove
that £~w does not have such a generalized Ramsey property.

Exercise 13.5. Use a reduction different from the one in the proof of Theorem 13.25
to show that topological connectivity of subsets of IR2 is not definable in FO(R, { 5}),
where 5 is binary.

Exercise 13.6. Prove that topological connectivity of subsets of <C2 which arc de
finable in (<C, +, -, ·, 0, 1) cannot be expressed inFO((<C, +. -. ·, 0. 1), {5}), where S
is binary.

Exercise 13. 7. Prove that if 5 and 5' are interpreted as subsets of IR2 definable in
R, then none of the following is expressible in FO(R, { 8. 5'}):

• 5 contains at least one hole (assuming 5 is a closed set).
• 5 has a Eulerian traversal. That is, if 5 is a union of line segments, then it has

a traversal going through each line segment exactly once.
• S and 5' are homeomorphic.

Use reductions to the finite case for all three problems.

Exercise 13.8. Show that in FO(R, !7) one can express EVEN for sets of cardinality
upton using a sentence of quantifier rank 0(v'log n).

Exercise 13.9. Prove the natural-active collapse for 1.4J = (U. 0).

Exercise 13.10. Prove the restricted quantifier collapse for (Z.+. <).

Exercise 13.11. An ordered structure 9J1 = (U, fl, <) is called a-minimal if
every definable subset of U is a finite union of points and open intervals
(a, b), (-oo, a), (a, oo).

Prove the restricted quantifier collapse for an arbitrary o-minimal structure.
Hint: you will need the following uniform bounds result of Pillay and Steinhorn

[198]. If cp(x, y) is an FO(!.m) formula, then there exists a constant k such that.
for every b, the set {a I 9J1 f= cp(a, b)} is a union of fewer than k points and open
intervals.

One can use this result to infer that (.IR, +,·,ex) admits the restricted quantifier
collapse, since Wilkie [248] proved that it is a-minimal.

Exercise 13.12. We say that a structure 9J1 has the finite cover property if there is
a formula cp(x, y) such that for every n > 0, one can find tuples ii1, ... , iin such that
:Jx A#i cp(x, iii) holds for each i :=::: n, but :lx A .is, cp(x. iiJ) does not hold.

• Prove that if 9J1 does not have the finite cover property, then it admits thf~

restricted quantifier collapse.
• Conclude that (<C, +, ·) and (N, succ) admit the restricted quantifiPr collapse.

13.8 Exercises 273

Exercise 13.13. We say that a language L <;;; E* has a neutral letter if there exist;;

a E E such that for every two strings 8, 5 1 E E*, we have 8 · s' E L iff s ·a· s' E L.
Now let f2 be a set of arithmetic predicates. We say that a language Lis FO(fl)

definable if there is an FO sentence P L of vocabulary cr E U f! such that M I' f= P L

iff s E L. Here Mf is the structure Ms expanded with the interpretation of fl

predicates on its universe.
The following statement is known as the Crane Beach conjecture for f!: if L is

FO(f!)-definable and has a neutral letter, then it is star-free.

• Use Exercise 13.10 to prove that the Crane Beach conjecture is true when f! =
{ +} (the graph of the addition operation).

• Prove that the Crane Beach conjecture is false when fl = { +, X} (hint: use
Theorem 6.12).

Exercise 13.14. Consider the structure (E*,-<,(fa)aEE), where-< is the prefix

relation, and fa : E* --> E* is defined by fa(x) = x ·a. Prove that this structure

has the restricted quantifier collapse. Prove that it still has the restricted quantifier
collapse when augmented with the following:

• The predicate PL, for each regular language L, that is true of s iff 8 is in L.

• The functions Ya: E* --> E* defined by Ya(x) =a· x.

Exercise 13.15. Suppose S is an infinite set, and C <;;; 25 is a family of subsets of

S. Let F C S be finite; we say that C shatters F if the collection {F n C I C E C}
is g::.(F), the powerset of F. The Vapnik-Chervonenkis (VC) dimension of C is the

maximal cardinality of a finite set shattered by C. If arbitrarily large finite sets are
shattered by C, we let the VC dimension be oo.

If 9J1 is a structure and tp(x, if) is an F0(9J1) formula, with I xI= n, I iJ I= m,

then for each (L E un, we define tp(a,9J1) ={bE u= I9J1 F tp(a,b)}, and let F,(9J1)

be { tp(a, 9J1) I a E un }. Families of sets arising in such a way are called definable
families. We say that 9J1 has finite VC dimension if every definable family in 9J1 has

finite VC dimension.
Prove that if 9J1 admits the restricted quantifier collapse, then it has finite VC

dimension.

Exercise 13.16. Consider an expansion 9J1 of (E*, -<, (fa)aEE) with the predicate

el(x,y) which is true iff lxi=IYI· We have seen this structure in Chap. 7 (Exercise
7.20); it defines precisely the regular relations.

Prove that F0(9J1, cr) cannot express EVEN.

Exercise 13.17: For the structure 9J1 of Exercise 13.16, is F0~;';'(9J1, cr) contained

in FOact (.U<, !J)?

14

Other Applications of Finite Model Theory

In this final chapter, we briefly outline three different application areas of
finite model theory. In mathematical logic, finite models are used as a tool for
proving decidability results for satisfiability of FO sentences. In the area of
temporal logics and verification, one analyzes the behavior of certain logics on
some special finite structures (Kripke structures). And finally, it was recently
discovered that many constraint satisfaction problems can be reduced to the
existence of a homomorphism between two finite structures.

14.1 Finite Model Property and Decision Problems

The classical decision problem in mathematical logic is the satisfiability prob
lem for FO sentences: that is,

Given a first-order sentence P, does it have a model?

We know that in general, satisfiability is undecidable. However, a complete
classification of decidable fragments in terms of quantifier-prefix classes exists.
For the rest of the section, we assume that the vocabulary is purely relational.

We have already seen classes of formulae defined by their quantifier prefixes
in Sect. 12.4. For a regular expression r over the alphabet {:3, \1}, we denote
by FO(r) the set of all prenex sentences

where the string Q 1 .•. Qn is in the language denoted by r. Here, each Q; is
either :3 or \1, and r.p is quantifier-free.

It is known that there are precisely two maximal prefix classes for which the
satisfiability problem is decidable: these are FO(::l*\1*) (known as the Bernays
Schonfinkel class), and FO(::l*\1:3*) (known as the Ackermann class).

The proof technique in both cases relies on the following property.

276 14 Other Applications of Finite Model Theory

Definition 14.1. We say that a class K of sentences has the finite model
property if for every sentence c;P in K, either c;P is unsatisfiable, or it ha8 a
finite model.

In other words, in a class K that has the finite model property, every
satisfiable sentence has a finite model.

It turns out that both FO(::J*V*) and FO(::J*V::J*) have the finite model
property, and, furthermore, there is an upper bound on the size of a finite
model of P in terms of II P II, the size of P. We prove this for the Bernays
Schonfinkel class.

Proposition 14.2. If P is a satisfiable sentence of FO(::J*Vx), then it ha8 a

model whose size is at most linear in II P II·

Proof Let c;P be
::lx1 ... ::l:r:, Vyt ... Vym ~.p(:r, if),

where 1.p is quantifier-free. Let lj;(x) be Vif ~.p(x, if).
Since c;P is satisfiable, it has a model~- Let a 1 , ... , an witness the existential

quantifiers: that is, ~ f= 1/J(a). Let ~~ be the finite substructure of~ whose
universe is { a1, ... , an}. Since '¢ is a universal formula, it is preserved under
taking substructures. Hence,~~ f= 1/J(a), and therefore,~~ f= cf>. Thus, we have
shown that c;P has a model whose universe has at most n elements. D

This immediately gives us the decision procedure for the class FO(::J*V*):
given a sentence c;P with n existential quantifiers, look at all nonisornorphir
structures whose universes are of size up to n, and check if any of them is a
model of P. This algorithm also suggests a complexity bound: one can guess
a structure ~ with IAI ::; n, and check if~ f= P. Notice that in terms of II c;P II,
the size of such a structure could be exponential. For each relation symbol
R of arity m, there could be up to n 111 different tuples in R'2l. Since there
is no a priori bound on the arity of R, it may well depend on II c;P II, which
gives us an exponential upper bound on II~ II· Hence, the algorithm runs in
nondeterministic exponential time.

It turns out that one cannot improve this bound.

Theorem 14.3. The satisfiability pr·oblem for FO(::J*V*) is NEXPTIME

complete. D

If we have a vocabulary of bounded arity (i.e., there is a constant J.· such
that every relation symbol has arity at most k), then the size of a struct un'
on n elements is at most polynomial in n. Thus, in this ease one has to cheek
if ~ f= i.p, where II A II is polynomial in n. As we know from the results
on the combined complexity of FO, this can be done in PSPAC:K HPncf', for
a vocabulary of bounded arity, the satisfiability problem for FO(::J*V*) ts m
PSPACE.

14.1 Finite Model Property and Decision Problems 277

We now see an application of this decidability result in database theory. In
Chap. 6, we studied conjunctive queries: those of the form 3xcp, where cp is a
conjunction of atomic formulae. We also saw (Exercise 6.19) that containment
of conjunctive queries is NP-complete.

Another class of queries often used in database theory is unions of con
junctive queries; that is, queries of the form Q1 U ... U Qm, where each Qi
is a conjunctive query. Can the decidability of containment be extended to
union of conjunctive queries? That is, is it decidable whether Q(Ql) ~ Q'(Ql)
for all Ql, when Q and Q' are unions of conjunctive queries? We now give the
positive answer using the decidability of the Bernays-Schonfinkel class.

Putting all existential quantifiers in front, we can assume without loss of
generality that Q is given by cp(x) = 3fl a(x, if), and Q' by 'lj;(x) = 3fl {3(x, if),
where o: and {3 are monotone Boolean combinations of atomic formulae. Our
goal is to check whether cp = 'Vx (cp(x)---> 'lj;(x)) is a valid sentence.

Assuming that if and z are distinct variables, we can rewrite cjj as

vx 'Vfl 3z (•a(x, if) v f3(x, z)).

We know that cjj is valid iff -,cp is not satisfiable. But -,cp is equivalent to
3x 3fl 'Vz (a 1\ •f3); that is, to an F0(3*V*) sentence. This gives us the fol
lowing.

Proposition 14.4. Fix a relational vocabulary u. Let Q and Q' be unions
of conjunctive queries over u. Then testing whether Q ~ Q' is decidable in
PSPACE. 0

The complexity bound given by the reduction to the Bernays-Schonfinkel
class is not the optimal one, but it is not very far off: for a fixed vocabulary
u, the complexity of containment of unions of conjunctive queries is known to
be II~ -complete.

We now move to the Ackermann class F0(3*V3*). Again, we have the
finite model property.

Theorem 14.5. Let cp be an F0(3*'V3*) sentence. If cp is satisfiable, then it
has a model whose size is at most exponential in II cp II- D

Even though the size of the finite model jumps from linear to exponential,
the complexity of the decision problem does not get worse, and in fact in some
cases the problem becomes easier.

Theorem 14.6. The satisfiability problem for F0(3*'V3*) is NEXPTIME
complete. Furthermore, when restricted to sentences that do not mention
eq1wlity, the problem becomes ExPT!ME-complete. D

Finally, we consider finite variable restrictions of FO. Recall that FOk:
refers to the fragment of FO that consists of formulae in which at most k
distinct variables are used.

278 14 Other Applications of Finite Model Theory

~n'd)
~grPen

yellow

I

Fig. 14.1. An example of a Kripke structure

2 2 Theorem 14. 7. FO has the finite model pmperty: each satisfiable FO sen-
tence has a finite model whose size is at most exponential in II if? II· Further·
more, the satisfiability pmblem for· F02 is NEXPTIME-complete. The satisfia
bility pmblern for FOk, k > 2, is undecidable. D

14.2 Temporal and Modal Logics

In this section, we look at logics that are used in verifying temporal propPrtiPs
of reactive systems. The finite structure in this case is usually a transition
system, or a K ripke structure. It can be viewed as a labeled dirPcted graph,
where the nodes describe possible states the system could bP in, and the edges
indicate when a transition from one state to another is possihlP. To descrilw
possible states of the system, one uses a collection of propositional variablPs,
and specifies which of them are true in a given state.

An example of a Kripke structure is given in Fig. 14.1. We have threP
propositional variables, red, green, and yellow. The states are those in which
only one variable is true, and the other two are false. As expected, from a red
light one can go to green, from green to yellow, and from yellow to red, and
the system can stay in any of these states.

Sometimes edges of Kripke structures are labeled too, but since it is easy
to push those labels back into the states, we shall assume that edges arP not
labeled.

Thus, formally, a Kripke structure, for a finite alphabet E, is a finite
structure .5{ = (S, E, (Pa)aEE), where Sis the set of states, E is a binary
relation on S, and for each a E E, Pa is a unary relation on S, i.e., a subset
of S. Since assigning relations Pa can be viewed as labeling states with lPttc'rs
from E, we shall also refer to the labeling function>.: S----> 21"·, given by

14.2 Temporal and Modal Logics 279

..\(s) = {aEE I sEPa}·

We now define the simplest of the logics we deal with in this section:
the propositional modal logic, ML. Its formulae are given by the following
grammar:

cp, '1/J ::= a (a E E) I cp /\ '1/J I ---,cp I Dcp I Ocp. (14.1)

The semantics of ML formulae is given with respect to a Kripke structure .lt
and a state s. That is, each formula defines a set of states where it holds. The
formal definition of the semantics is as follows:

• (Jt,s) f= a, a E E iff a E ..\(s);

• (Jt, s) f= cp /\ 'ljJ iff (Jt, s) f= <p and (Jt, s) f= '1/J;

• (Jt, s) F= ---,cp iff (Jt, s) ~ <p;

• (Jt, s) f= Dcp iff (Jt, s') f= cp for all s' such that (s, s') E E;

• (Jt, s) f= Ocp iff (Jt, s') f= cp for somes' such that (s, s') E E.

Thus, D is the "for all" modality, and 0 is the "there exists" modality: Dcp
(Ocp) means that cp holds in every (in some) state to which there is an edge
from the current state.

Notice also that 0 is superfluous since Ocp is equivalent to ---,0---,cp.

ML can be translated into FO as follows. For each ML formula cp, we
define an FO formula cp0 (x) such that (Jt, s) f= cp iff .lt f= cp0 (s). This is done
as follows:

• a0 = Pa(x);
• (cp /\ '1/J) o = cpo /\ '1/Jo;

• (---,cp)o -,cpa;

• (Dcp) 0 = Vy (R(x, y)--+ Vx (x = y--+ cp0 (x))).

For the translation of Dcp, we employed the technique of reusing variables that
was central in Chapter 11. Thus, cp0 is always an F02 formula, as it uses only
two variables: x andy. Summing up, we obtained the following.

Proposition 14.8. Every formula of the propositional modal logic ML is
equivalent to an F02 formula. Consequently, every satisfiable formula cp of
ML has a model which is at most exponential in II cp II· D

The expressiveness of ML is rather limited; in particular, since it is a
fragment of FO, it cannot express reachability properties which are of utmost
importance in verifying properties of finite-state systems. We thus move to
more expressive logics, LTL and CTL.

280 14 Other Applications of Finite Model Th<'ory

The formulae of the linear time temporal logic, LTL, are given by the
following grammar:

tp, tp1 ::= a (a E E) l ''P I 'P 1\ tp1 I Xtp I tpUtp'. (14.2)

The formulae of the computation tree logic, CTL, are given by

tp, tp1 ::= a (a E E) I ''P I 'P 1\ 'P1 I
EXtp I AXtp I E(tpUtp') I A(tpUtp').

(14.3)

In both of these logics, we talk about properties of path9 in the Kripke
structure. A path in .5t is an infinite sequence of nodes 1r = s1s2 ... such that
(s;, si+I) E E for all i. Of course, in a finite structure, some of thP nodes must
occur infinitely often on a path.

The connective X means "next time", or "for the next node on the path".
The connective U is "until": 'P holds until some point where tp' holds. E is
the existential quantifier "there is a path", and A is the universal quantifi<>r:
"for all paths".

To give the formal semantics, we introduce a logic that subsumes both
LTL and CTL. This logic, denoted by CTL *, has two kinds of formulae: state
formulae denoted by tp, and path formulae denoted by V'· These arc given by
the following two grammars:

tp, tp1 ::=a (a E E) I ''P I 'P 1\ 'P1 I E4' I A1b
·~J, 'lj/ ::= 'P I •'1/J I '1/J 1\ 'lj/ I X'lj; I ·~JU'lj/.

(14.4)

The semantics of a state formula is again given with respect to a KripkP
structure .5t and a state s. The semantics of a path formula V' is given with
respect to .5t and a path 1r in Jt. If 1r = s1 s2s:3 ... , we shall write 1r" for thP
path starting at sk; that is, sksk+1

Formally, we define the semantics as follows:

• (.5t,s) f= a, a E E iff a E ..\(s);

• (.5t, s) F= 'P A 'P' iff (.5t, s) F= 'P and (.5t, s) F= 'P';

• (.5t, s) F= ''P iff (.5t, s) ~ tp;

• (.5t, s) f= E'lj; iff there is a path 1r = s1s2 ... such that s1 = sand (.5t. 1r) f=
'1/J;

• (.5t,s) f= Alj; iff for every path 7r = s1s2 ... such that s1 = 8, we have
(.5t, 7r) F= ·1/J;

• if 'P is a state formula, and 1r = s 1 s2 ... , then (.tt. 1r) f= 'P iff (K s1) f= tp;

• (.5t, 1r) F= 'l/J 1\ '1/J' iff (.5t, 1r) F= 'l/J and (.5t, 1r) F= 4>';
• (.5t, 1r) F= •'l/J iff (.5t, 1r) ~ '1/J;

• (.5t, 7r) F X'lj; iff (.5t, 7r2) F 'ljJ;

14.2 Temporal and Modal Logics 281

• (.It, 1r) f= 1/! U~/ ifthere exists k 2" 1 such that (.It, 1r") f= ?j/ and (.It, 1r') f= t/1

for all i < k.

Not(~ that LTL formulae are path formulae, and CTL formulae are state
formulae. LTL formulae are typically evaluated along a single infinite path
(hence the name linear temporal logic). On the other hand, CTL is well-suited
to describe branching processes (hence the name computation tree logic). If
we want to talk about an LTL formula 'ljJ being true in a given state of a
Kripke structure, we shall mean that the formula A7/J is true in that state.

Some derived formulae are often useful in describing temporal properties.
For example, F?jJ = trueU?jJ, means "eventually", or sometime in the future,
7/J holds, and G'ljJ = --,F--,'1/J means "always", or "globally", 7/J holds (true itself
can be assumed to be a formula in any of the logics: for example, a V •a).
Thus, AG7/J means that 1/J holds along every path starting from a given state,
and EF\b means that along some path, 7/J eventually holds.

For the example in Fig. 14.1, consider a CTL formula AG(yellow -->

AFgreen), saying that if the light is yellow, it will eventually become green.
This formula is actually false in the structure shown in Fig. 14.1, since
yellow can continue to hold indefinitely long due to the loop. However,
AG (yellow--> (AGyellowV AFgreen)), saying that either yellow holds forever
or eventually changes to green, is true in that structure.

The main difference between CTL and LTL is that CTL is better suited
for talking about branching paths that start in a given node (this is the
reason logics like CTL are sometimes referred to as branching-time logics),
while LTL, on the other hand, is better suited for talking about properties of
a single path starting in a given node (and thus one speaks of a linear·-tirne

logic). For example, consider the CTL formula AG(EFa). It says that along
every path from a given node, from every node there is a path that leads to a
state labeled a. It is known that this formula is not expressible in LTL. Tlw
formula A(FGa), saying that on every path, starting from some node a will
hold forever, is a state formula resulting by applying the A quantifier to the
LTL formula FGa; this formula is not expressible in CTL.

While all the (~xamples seen so far could have been specified in other logics
used in this book for example, MSO or LFP - the main advantage of these
temporal logics is that the model-checking problem for them can be solwd
efficiently. The model-checking problem is to determine whether (.It, s) f= zp,
for some Kripke structure .It, state s, and a formula zp. The data complexity
for CTL * and its sublogics can easily be seen to be polynomial (since CTL *
formulae can be expressed in LFP), but it turns out that the situation is much
better than this.

Theorem 14.9. The model-checking problem for ML, LTL, CTL, and CTL *
is fixed-parameter linear. For logic8 ML and CTL it can be solved in time

0(11 rp II · II .It II) and for LTL and CTL *, the bound is 2°(1ft11l · II .It II· D

282 14 Other Applications of Finite !\lode! Theor~·

~'e illustrate the idea of the proof for the case of ~IL. Suppose we haw a
formula cp and a Kripke structure k Consider all the subformula<' cp 1 •...• cp,
of cp listed in an ordPr that ensures that if cp1 is a subfonnula of yi, then j < i.
The algorithm then inductively labels each state s of .R \Vith either yi or 'l(J,.
depending on which formula holds in that state. For the base case. there is
nothing to do sinc·e the states are already labekd with Pit her a or ·,a for each
a E E. For the induction, the only nontrivial case is ,,,..}wn cp, = D.;i for some
j :::; i. Then for each state 8, wP check all the states s' with (8, s') E E. and
see if all such s' have been labeled with cp1 in the jth step: if so. we label s
by cp;; if not, we label it by '~?i. This algorithm can be irnplcmPntPd in time
O(ll cp II · 11-RII).

Next, we look at the connection betv.reen temporal and modal logics and
other logics for finite structures we haw seen. ~'e already m<•ntiorwd that ?-.IL
can be embedded into F02 . \Vhat about LTL? Vv'e can answer this quPstion
for a simple kind of Kripke structures used in Chap. 7: t.hPsP are structures of
the vocabulary CYL; = (<, (1~,)oE~'), us<~d to represent strings.

Theorem 14.10. Over finite str·ings ·triewed as sl.r-uctun·s of vocabulary a~·,
LTL and FO ar·e equally e:rpressive: LTL = FO. D

Interestingly, Theorem 14.10 holds for w-strings as w(•]J. hut this is outside
the scope of this book.

For CTL, one needs to talk about different paths, and lwnce OIH' should
be able to express reachability properties such as "can a st ;1te labdcd 11 be
reached from a state labeled b"? This suggests a dose conn('ction between
CTL and logics that can express the transitive closure 01wrator. ''-'e illustrate
this by means of the following exampk.

Consid(~r a CTL formula AFa stating that aloug every path, a evPntually
holds. \Ve now express this in a variant of DATA LOG. Let (171. T) be the
following DATALOG~ program:

R(.r.y)
H(:r. y)

'Po(.l:). lc'(:l', y)
,f>a(z). U(:r, .~). E(z. y)

This program computes a subset of the transitivc closure: the set of pairs
(b.b') for which there is a path b =' b1,b2 ,h 11 -I,/J, = b' such that !lOll<' of
the b/s, i < r1, is labele~d a. Kext, we defim~ a program (II2. U) that usPs!? as
an ext<~nsional pn~dicat<':

l!(:r) R(.r.:r)
U(.l') ,f~,(x). F(.r. y). U(y)

Suppose we have an infinite path over .R. Since .R is finite, it must haw a loop.
If thPrc is a loop such that R(:L :r) hoids, then there is an infinitP path from
x such that -,a holds along this path. If \VP han• any other path such that -lu

holds along it, then it starts \Vith a few edg<'S and ewnt uallv enters a loop in

14.2 Temporal and Modal Logics 283

which no node is labeled a. Hence, U is the set of nodes from which there is
an infinite path on which •a holds. Thus, taking the program (II:;, Q) given
by

Q(x) :- •U(x)

we get a program that computes AFa. Notice that this program is stratified
(for each stratum, the negated predicates are those defined in the previous
strata) and linear (each intensional predicate appears at most once in the
right hand sides of rules). The above translation techniques can be extended
to prove the following.

Theorem 14.11. CTL formulae can be expressed in either of the following:

• the linear stratified DATALOG~;

• the transitive closure logic TRCL. D

Next, we define a fixed point modal logic, called the J.L-calculus and denoted
by CALC~'' that subsumes LTL, CTL, and CTL*. Consider the propositional
modal logic ML, and extend its syntax with propositional variables x, y, .. . ,
viewed as monadic second-order variables (i.e., each such variable denotes a
set of states). Now formulae have free variables. Suppose we have a formula
<p(x, ii) where x occurs positively in <p. Then J.LX.<p(x, if) is a formula with free
variables if.

To define the semantics of 'ljJ(if) = J.LX.<p(x, if) on a Kripke structure J'i,
assume that each Yi from if is interpreted as a propositional variable: that is,
a subset Y; of S consisting of nodes where it holds. Then <p(x, Y) defines an
operator F: : 25 ---+ 25 given by

F: (X) = { s E S (J'i, s) f= <p(X, Y)}.

If x occurs positively, then this operator is monotone. We define the semantics
of the J.L operator by

(J'i, s) f= J.LX.<p(x, Y) ~ s E lfp(F:).

Consider, for example, the formula J.LX.a VOx. This formula is true in (J'i, s)
if along each path starting in s, a will eventually become true. Hence, this is
the CTL formula AFa. In general, every CTL * formula can be expressed in
CALCJL'

Each CALC11 formula <p can be translated into an LFP formula <p0 (x)
such that (J'i,s) f= <p iff J'i f= <p0 (s). FUrthermore, one can show that CALC1,

formulae can be translated into MSO formulae as well. Summing up, we have
the following relationship between the temporal logics:

c { LTL } c C * c C c { LFP } ML 7:- CTL 7:- TL 7:- ALC1" 7:- MSO .

284 14 Other Applications of Finite Model Theory

a a

Fig. 14.2. Bisimulation equivalence

In the f.L-Calculus, it is common to use both least and greatest fix<>d points.
The latter are definable by vx.cp(x) = 'f.LX.,cp(--,x), assuming that .r occurs
positively in cp. Notice that negating both cp and each occurrence of .r in it
ensures that if x occurs positively in cp, then it occurs positively in ''P(--,;r),
and hence the least fixed point is well-defined. Using the greatest and the least
fixed points, the formulae of the f.L-calculus can be written in the alternating
style so that negations are applied only to propositions. We shall denote the
fragment of the f.L-calculus that consists of such alternating formulae with
alternation depth at most k by CALc;~.

Theorem 14.12. The complexity of the model-checking pr-oblem for· CALc~;

is O(II'PII·II.itllk). D

Since CALC1, can be embedded into LFP, its data complexity is polyno
mial. The combined complexity is known to be in NP n coNP. Furthermore,
CALC11 has the finite model property: if cp is a satisfiable formula of CALC1"

then there is a Kripke structure .it of size at most exponential in cp such that
(.it, s) f= cp for somes E S.

Finally, we present another way to connect temporal logics with other log
ics seen in this book. Since logics like CALC1, talk about temporal properties
of paths, they cannot distinguish structures in which all paths agree on all
temporal properties, even if the structures themselves are different. For exam
ple, consider the structures .it1 and .it2 shown in Fig. 14.2. Even though they
are different, all the paths realized in these structures are the same: an infi
nite path on which every node is labeled a. CALC1, cannot see the difference
between them, although these structures are easily distinguishPd by the FO
sentence "There is a node with two distinct successors."

One can formally capture this notion of indistinguishability using the defi
nition of bisimilarity. Let .it= (S, E, (Pa)aEE) and .it'= (S', E', (P,;)aa). WP
say that (.it, s) and (.it', s') are bisimilar if there is a binary relation R <;;; S x S'
such that

• (s, s') E R;

14.3 Constraint Satisfaction and Homomorphisms of Finite Models 285

• if (u, v') E R, then Pa(n) iff P/, (u'), for all a E E;

• if (v,v.') E Rand (u.v) E E, then there is v' E S' such that. (11.1/) E R
and (u.', v') E E';

• if (u., u') E Rand ('1L 1 , v') E E', then there is v E S such that (u, u') E R
and (n, v) E E.

A property of Kripke structures is bisirnulation-invariant if whenever it.
holds in (.R.s), it also holds in every (.it',s') which is bisimilar to (.it.s). As
we have seen, even FO can express properties which are not. bisimulat.ion
invariant., but CALc,, and its sublogics only express bisimulation-invariant.
properties.

The following result shows how to use bisimulation-invariance to relate
temporal logics and other logics seen in this book.

Theorem 14.13. • The class of bisirnulation-invariant properties expr-ess

ible in FO is precisely the class of properties expressible in ML.

• The clas8 of bisirnulation-invariant properties expressible in MSO ·ts pre-

cisely the cla8s of properties expre8sible in CALCp. D

14.3 Constraint Satisfaction and Homomorphisms of
Finite Models

Constraint satisfaction problems are problems of the following kind. Suppose
we arc given a set V of variables, a finite domain D where the variables can
take values, and a set of constraints C. The problem is whether there exists
an assignment. of values to variables that. satisfies all the constraints.

Each constraint in the set Cis specified as a pair (iJ, R) where iJ is a tuple of
variables from V, of length n, and R is an n-ary relation on D. The assignment
of values to variables is then a mapping h: V-+ D. Such a mapping satisfies
the constraint (fi. R) if h(iJ) E R.

For example, satisfiability of certain propositional formulae can be viewed
as a constraint satisfaction problem. Consider the MONOTONE 3-SAT prob
lem. That is, W(~ have a CNF formula <p(x 1 , ... , Xm) in which every clause
is either (:r:; V :r:.i V xk), or (':r:; V 'XJ V -,;r:k). Consider the constraint sat
isfaction problem where V = {:r1 , ... ,x11 }, D = {0,1}, and for each clause
(:r:; V:r1 Vx,) we have a constraint. ((xi, x.i, :r:k), {0, 1 f3~{ (0, 0, 0)}), and for each
clause ('x;V -,;cJ V -,;r;,.) we have a constraint ((xi, Xj, x~c), {0, 1 r' ~ { (1, 1, 1)}).
Then the resulting constraint. satisfaction problem (V, D, C) has a solution iff
<p is satisfiable.

There is a nice representation of constraint satisfaction problems in terms
of the existence of a certain homomorphism between finite structures.

Suppose we are given a constraint satisfaction problem P = Cll, D. C). Let
Rf, ... , Rj list all the relations mentioned in C. Let crp = (R 1 , ... , R1). We
define two CJp-structures as follows:

286 14 Other Applications of Finite l\loclel Theory

Then

2tp = (V, {u 1 u::,Rf) E c} {i" 1 (li.ll~J E c})
'23p = (IJ, Rf, R;';,).

P has a solution
{=} tlwre exists a homomorphism h : 121 p _, '23 p.

Thus, the constraint satisfaction problem is really the problem of checkin~
whether tlwre is a homomorphism between two structures. \Ve tlms usC' th<•
notation

CSP(2t, '23) {=} then• exists a homomorphism h : 2t -~ '23.

To see another example, let K, be the cliqu<' on 111 dements. Then
CSP(G, Km) holds iff G is m-colorable.

The constraint satisfaction problem can easily lw related to conjunctive
query evaluation. Suppose we have a vocabulary a that consists only of re
lation symbols, and a a-structure 21. Let A = { a1 a 11 }. \Ve define the
Boolean conjunctiYe query CQ21 as

:=l.rJ ... :=l.rn 1\ 1\ ll (:r i 1 •••••• I" i n) •

REcr (a, 1 •.... 0 1111)EI?'21

Proposition 14.14. CSP(2t, '23) is tnw iff '23 f= CQ 21 . []

If C and C' are two classes of structures, tlH'n we write CSP(C, C') for the
class of problems CSP(2t. '23) where 2t E C and '23 E: C'. \Ve use All for the
class of all finite structures.

The rn-colorability example shows that CSP(AII. All) contains ~P-hard
problems. Furthermore, each problem in CSP(AII. All) can lw solwd in NP:
given 2t and '23, we simply guess a mapping h : A -+ B, and check, in polyno
mial time, if it is a homomorphism lwtwP<'n 2t and '23. Thus, CSP(AII. All) is
NP-complctC'.

This naturally leads to the following qU<~stion: under what mnditious is
CSP (C, C') tractable?

\Ve first answer this question in the setting suggested by the examples
of MOJ.\OTONE 3-SAT and m-colorability. In both of these examples, we
were interested in the problem of the form CSP(AII, 23); that is, in tll<' Pxis
tence of a homomorphism into a fixed structure_ This is a very commm1 class
of constraint satisfaction problems. We shall write' CSP('23) for CSP(AIL 23).
Thus, the first question we addn~ss is when CSP(23) can be)';Uaranteed to lw
tractable.

All problems of the form CSP('23) whose complexity is knmvn fall into
two categories: they arc eithPr tractablP, or NP-compl<'h'. This is a real di
chotomy: if PT!ME of NP, thC're aw :"JP problems which arC' neith<'r tractable

14.3 Constraint Satisfaction and Homomorphisms of Finite Models 287

nor NP-complete. In fact, it has been conjectured that for any ~' the prob
lem CSP(~) is either tractable, or NP-complete. In general, this conjecture
remains unproven, but some partial solutions are known. For example:

Theorem 14.15. For every ~ with IBI ::; 3, CSP(~) is either tractable, or
NP -complete. D

Moreover, for the case of IBI = 2 (so-called Boolean constraint satisfaction
problem), one can classify precisely for which structures~ the corresponding
problem CSP(~) is tractable.

For more general structures~' one can use logical definability to find some
fairly large classes that guarantee tractability.

If one tries to think of a logic in which CSP(~) can be expressed, one
immediately thinks of MSO. Indeed, suppose that the universe of ~ is
{b0 , ... , bn-d· Then the MSO sentence characterizing CSP(~) is of the form

::IXo ... ::IXn-1 IJ!,

where IJ! is an FO sentence stating that, on a structure 2l expanded with n
sets X 0 , ... , Xn- 1 , the sets Xi form a partition of A, and the map defined by
sending all elements of xi into bi, for i = 0, ... 'n- 1, is a homomorphism
from 2l to~-

However, while in many cases MSO is tractable, in general it is not suit
able to establish tractability results without putting restrictions on a class of
structures 2l, since MSO can express NP-complete problems.

To express CSP(~) in a tractable logic, we instead consider the negation
of CSP(~): that is,

·CSP(~) = {2ll there is no homomorphism h: 2l-> ~}.

If 2l E ·CSP(~) and 2l is a substructure of 2l', then 2l' E ·CSP(~).
This monotonicity property suggests that for some ~' the class -,CSP(~)
could be definable in a rather expressive tractable monotone language such as
DATALOG. If this were the case, then CSP(~) would be tractable as well.

Trying to express ·CSP(~) in DATALOG may be a bit hard, but it turns
out that instead one could attempt to express -,CSP(~) in a richer infinitary
logic.

Theorem 14.16. For each ~' the problem ·CSP(~) is expressible in
DATALOG iff it is expressible in ::I.C~w· D

Thus, one general way of achieving tractability is to show that the negation
of the constraint satisfaction problem is expressible in the existential fragment
of the very rich finite variable logic .C~w.

Moving back to the general problem CSP(C,C'), one may ask whether
CSP (C, C') is tractable whenever CSP (C, ~) is tractable for all ~ E C'. The

288 14 Other Applications of Finite Model Theory

answer to this is negative: for each fixed graph G, the problem CSP({ K,, I
rn EN}, G) is tractable, but CSP({ Km I m E N}, All) is not. However, for the
class of structures above, a uniform version of the tractability result can be
shown.

Theorem 14.17. Let C 0 ATALoa'" be the class of stmctures 23 such that
·CSP(23) is expr·essible by a DATALOG program that uses at most k: distinct
variables. Then CSP(AII, CDATAwak) is in PTIME. D

Yet another tractable restriction uses the notion of treewidth encountered
in Chap. 6. If we let 7Wk be the class of graphs of treewidth at most k:, then
one can show that ·CSP(7Wk> 23) is expressible in DATALOG (in fact, in the
k-variable fragment of DATALOG). Hence, CSP(7Wk, 23) is tractable.

In fact, this can be generalized as follows. We call two structures 2l and
23 homomorphically equivalent if there exist homomorphisms h : 2l ---> 23
and h' : 23 ---> 2l. Let WWk be the class of all structures homomorphically
equivalent to a structure in 7Wk·

Theorem 14.18. CSP(WWk, All) can be expressed in LFP {in fact, using at
most 2k variables) and consequently is 'in PTIME. D

Thus, definability results for fixed point and finite variable logics describe
rather large classes of tractable constraint satisfaction problems.

14.4 Bibliographic Notes

A comprehensive survey of decidable and undecidable cases for the satisfi
ability problem is given in Borger, Gradel, and Gurevich [25]. It describes
both the Bernays-Schi:infinkel and Ackermann classes, and proves complex
ity bounds for them. The finite model property for F02 is due to Mortinwr
[184]; the complexity bound is from Gradel, Kolaitis, and Vardi [100]. Tlw
II~ -completeness of containment of unions of conjunctive queries is clue to
Sagiv and Yannakakis [211].

There are a number of books and surveys in which temporal and modal
logics are described in detail: van Benthem [240], Clarke, Grumherg, and Pel eel
[37], Emerson [64, 65], Vardi [246]. Theorem 14.10 is from Kamp [141]. Abite
boul, Herr, and Van den Bussche [2] showed that Kamp's theorem no longn
holds if one moves from strings to arbitrary structures. It is also known that
for the translation from LTL to FO, three variables suffice (i.e., over strings,
LTL equals FO:\ see, e.g., Schneider [214]), hut two variables do not suffice
(as shown by Etessami, Vardi, and Wilke [69]). The example of expressing
a CTL property in DATALOG is from Gottlob, Gradel, and Veith [93], and
Theorem 14.11 is from [93] and Immerman and Vardi [136]. Equivalence of
bisimulation-invariant FO and modal logic is from van Bentlwm [240]. and

14.4 Bibliographic Notes 289

the corresponding result for MSO and CALC11 is from Janin and Walukiewicz
[138]; for a related result about CTL *, see Moller and Rabinovich [183].

Constraint satisfaction is a classical AI problem (see, e.g., Tsang [235]).
The idea of viewing constraint satisfaction as the existence of a homomorphism
between two structures is due to Feder and Vardi [77]. They also suggested
using expressibility in DATALOG as a tool for proving tractability, and formu
lated the dichotomy conjecture. Theorem 14.15 is due to Schaefer [213] (for
IBI = 2) and Bulatov [28] (for IBI = 3). The existence of complexity classes
between PTIME and NP-complete, mentioned before Theorem 14.15, is due to
Ladner [159]. Other results in that section are from Kolaitis and Vardi [156]
and Dalmau, Kolaitis, and Vardi [48]. The converse of Theorem 14.18 was
proved recently by Grohe [112].

References

1. S. Abiteboul, K. Compton, and V. Vianu. Queries are easier than you thought
(probably). In ACM Symp. on Principles of Database Systems, 1992, ACM
Press, pages 23-32.

2. S. Abiteboul, L. Herr, and J. Van den Bussche. Temporal connectives versus
explicit timestamps to query temporal databases. Journal of Computer and
System Sciences, 58 (1999), 54-68.

3. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases, Addison
Wesley, 1995.

4. S. Abiteboul, M. Y. Vardi, and V. Vianu. Fixpoint logics, relational machines,
and computational complexity. Journal of the ACM, 44 (1997), 30-56.

5. S. Abiteboul and V. Vianu. Fixpoint extensions of first-order logic and datalog
like languages. In Proc. IEEE Symp. on Logic in Computer Science, 1989, pages
71-79.

6. S. Abiteboul and V. Vianu. Computing with first-order logic. Journal of
Computer and System Sciences, 50 (1995), 309-335.

7. J.W. Addison, L. Henkin, A. Tarski, eds. The Theory of Models. North
Holland, 1965.

8. F. Afrati, S. Cosmadakis, and M. Yannakakis. On datalog vs. polynomial time.
Journal of Computer and System Sciences, 51 (1995), 177-196.

9. A. Aho and J. Ullman. The universality of data retrieval languages. In
Proc. ACM Symp. on Principles of Programming Languages, JgJg, ACM Press,
pages 110-120.

10. M. Ajtai. Ef formulae on finite structures. Annals of Pure and Applied Logic,
24 (1983), 1-48.

11. M. Ajtai and R. Fagin. Reachability is harder for directed than for undirected
graphs. Journal of Symbolic Logic, 55 (1990), 113-150.

12. M. Ajtai, R. Fagin, and L. Stockmeyer. The closure of monadic NP. Journal
of Computer and System Sciences, 60 (2000), 660-716.

13. M. Ajtai andY. Gurevich. Monotone versus positive. Journal of the ACM, 34
(1987), 1004-1015.

292 References

14. G. Asser. Das Repriisentantenproblem im Pradikatenkalkiil der Ersten Stufe
mit Identitat. Zeitschrift for Mathematische Logik und Grundlagen der Math
ematik, 1 (1955), 252--263.

15. D.A.M. Barrington, N. Immerman, C. Lautemann, N. Schweikardt, and
D. Therien. The Crane Beach conjecture. In IEEE Symp. on Logic in Computer
Science, 2001, pages 187--196.

16. D.A.M. Barrington, N. Immerman, and H. Straubing. On uniformity within
NC1 . Journal of Computer and System Sciences, 41 (1990), 274-306.

17. J. Barwise. On Moschovakis closure ordinals. Journal of Symbolic Logic, 42
(1977), 292-296.

18. J. Barwise and S. Feferman, eds. Model- Theoretic Logics. Springer-Verlag,
1985.

19. M. Benedikt and L. Libkin. Relational queries over interpreted structures.
Journal of the ACM, 47 (2000), 644-680.

20. M. Benedikt and L. Libkin. Tree extension algebras: logics, automata, and
query languages. In IEEE Symp. on Logic in Computer Science, 2002, pagefi
203-212.

21. M. Benedikt, L. Libkin, T. Schwentick, and L. Segoufin. Definable relations
and first-order query languages over strings. Journal of the ACM, 50 (2003),
694-751.

22. A. Blass, Y. Gurevich, and D. Kozen. A zero-one law for logic with a fixed-point
operator. Information and Control, 67 (1985), 70- 90.

23. A. Blumensath and E. Gradel. Automatic structures. In IEEE Symp. on Logic
in Computer Science, 2000, pages 51-62.

24. H. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25 (1996), 1305-1317.

25. E. Borger, E. Gradel, and Y. Gurevich. The Classical Decision Problem.
Springer-Verlag, 1997.

26. V. Bruyere, G. Hansel, C. Michaux, and R. Villemaire. Logic and p
recognizable sets of integers. Bulletin of the Belgian Mathematical Society,
1 (1994), 191-238.

27. J.R. Biichi. Weak second-order arithmetic and finite automata. Zeitschrift fiir
Mathematische Logik und Grundlagen der Mathematik, 6 (1960), 66-92.

28. A. Bulatov. A dichotomy theorem for constraints on a three-dement set. IEEE
Symp. on Foundations of Computer Science, 2002, pages 649-658.

29. S. R. Buss. First-order proof theory of arithmetic. In Handbook of Proof
Theory, Elsevier, Amsterdam, 1998, pages 79-147.

30. J. Cai, M. Fiirer, and N. Immerman. On optimal lower bound on the number
of variables for graph identification. Combinatorica, 12 (1992), 389-410.

31. P.J. Cameron. The random graph revisited. In Eur. Congr. of Mathematics,
Vol. 1, Progress in Mathematics, Birkhauser, 2001, pages 267 274.

32. A. Chandra and D. Hare!. Computable queries for relational databases . .Jom·nal
of Computer and System Sciences, 21 (1980), 156 178.

33. A. Chandra and D. Hare!. Structure and complexity of relational querief'.
Journal of Computer and System Sciences, 25 (1982), 99-128.

References 293

34. A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In ACM Symp. on Theory of Computing, 1977, pages
77-90.

35. C.C. Chang and H.J. Keisler. Model Theory. North-Holland, 1990.

36. 0. Chapuis and P. Koiran. Definability of geometric properties in algebraically
closed fields. Mathematical Logic Quarterly, 45 (1999), 533-550.

37. E. Clarke, 0. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.

38. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata: Techniques and Applications. Available at
www.grappa.univ-lille3.fr/tata. October 2002.

39. S.A. Cook. The complexity of theorem-proving procedures. In Proc. ACM
Symp. on Theory of Computing, 1971, ACM Press, pages 151-158.

40. S.A. Cook. Proof complexity and bounded arithmetic. Manuscript, Univ. of
Toronto, 2002.

41. S.A. Cook andY. Liu. A complete axiomatization for blocks world. In Proc. 'lth
Int. Symp. on Artificial Intelligence and Mathematics, January, 2002.

42. S. Cosmadakis. Logical reducibility and monadic NP. In Proc. IEEE Symp.
on Foundations of Computer Science, 1993, pages 52-61.

43. S. Cosmadakis, H. Gaifman, P. Kanellakis, and M. Vardi. Decidable opti
mization problems for database logic programs. In ACM Symp. on Theory of
Computing, 1988, pages 477-490.

44. B. Courcelle. Graph rewriting: an algebraic and logic approach. In Handbook
of Theoretical Computer Science, Vol. B, North-Holland, 1990, pages 193--242.

45. B. Courcelle. On the expression of graph properties in some fragments of
monadic second-order logic. In (134], pages 33-62.

46. B. Courcelle. The monadic second-order logic on graphs VI: on several repre
sentations of graphs by relational structures. Discrete Applied Mathematics,
54 (1994), 117-149.

47. B. Courcelle and J. Makowsky. Fusion in relational structures and the verifica
tion of monadic second-order properties. Mathematical Structures in Compute7'
Science, 12 (2002), 203--235.

48. V. Dalmau, Ph. Kolaitis, and M. Vardi. Constraint satisfaction, bounded
treewidth, and finite-variable logics. Proc. Principles and Practice of Con
straint Programming, Springer-Verlag LNCS 2470, 2002, pages 310-326.

49. A. Dawar. A restricted second order logic for finite structures. Logic and
Computational Complexity, Springer-Verlag, LNCS 960, 1994, pages 393-413.

50. A. Dawar, K. Doets, S. Lindell, and S. Weinstein. Elementary properties of
finite ranks. Mathematical Logic Quarterly, 44 (1998), 349-353.

51. A. Dawar andY. Gurevich. Fixed point logics. Bulletin of Symbolic Logic, 8
(2002), 65-88.

52. A. Dawar and L. Hella. The expressive power of finitely many generalized
quantifiers. Information and Computation, 123 (1995), 172-184.

53. A. Dawar, S. Lindell, and S. Weinstein. Infinitary logic and inductive definabil
ity over finite structures. Information and Computation, 119 (1995), 160--175.

294 References

54. A. Dawar, S. Lindell, and S. Weinstein. First order logic, fixed point logic,
and linear order. In Computer Science Logic, Springer-Verlag LNCS Vol. 1092,
1995, pages 161-177.

55. L. Denenberg, Y. Gurevich, and S. Shelah. Definability by constant-depth
polynomial-size circuits. Information and Control, 70 (1986), 216-240.

56. M. de Rougemont. Second-order and inductive definability on finite struc
tures. Zeitschrift fur Mathematische Logik und Grundlagen der· Mathematik,
33 (1987), 47-63.

57. G. Dong, L. Libkin, and L. Wong. Local properties of query languages. Theo
retical Computer Science, 239 (2000), 277-308.

58. R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

59. D.-Z. Du, K.-1. Ko. Theory of Computational Complexity. Wiley-lnterscience,
2000.

60. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.

61. H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer
Verlag, 1984.

62. A. Ehrenfeucht. An application of games to the completeness problem for
formalized theories. Fundamenta Mathematicae, 49 (1961), 129-1,11.

63. T. Eiter, G. Gottlob, and Y. Gurevich. Existential second-order logic owr
strings. Journal of the ACM, 47 (2000), 77-131.

64. E.A. Emerson. Temporal and modal logic. In Handbook of Theoretical Com-
puter Science, Vol. B, North-Holland, 1990, pages 995-1072.

65. E.A. Emerson. Model checking and the mu-calculus. In [134], pages 185-214.

66. H. Enderton. A Mathematical Introduction to Logic. Academic-Press, 1972.

67. P. Erdos and A. Renyi. Asymmetric graphs. Acta Mathematicae Academiac
Scientiarum Hungaricae, 14 (1963), 295 315.

68. K. Etessami. Counting quantifiers, successor relations, and logarithmic space.
Journal of Computer and System Sciences, 54 (1997), 400-411.

69. K. Etessami, M.Y. Vardi, and T. Wilke. First-order logic with two variables
and unary temporal logic. Information and Computation, 179 (2002), 279 -295.

70. R. Fagin. Generalized first-order spectra and polynomial-timP recognizable
sets. In Complexity of Computation, R. Karp, ed., SIAM-AMS Proceedings, 7
(1974), 43-73.

71. R. Fagin. Monadic generalized spectra. Zeitschrift fiir Mathcmatische Logik
und Grundlagen der Mathematik, 21 (1975), 89-96.

72. R. Fagin. A spectrum hierarchy. Zeitschrift fur Mathematische Logik und
Grundlagen der Mathematik, 21 (1975), 123-134.

73. R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41 (1976),
50--58.

74. R. Fagin. Finite-model theory-- a personal perspective. Theoretical Computer
Science, 116 (1993), 3-31.

75. R. Fagin. Easier ways to win logical games. In [134], pages 1-32.

76. R. Fagin, L. Stockmeyer, and M.Y. Vardi. On monadic NP vs monadic co-NP.
Information and Computation, 120 (1994), 78-92.

References 295

77. T. Feder and M.Y. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction: a study through datalog and group theory.
SIAM Journal on Computing, 28 (1998), 57-104.

78. T. Feder and M.Y. Vardi. Homomorphism closed vs. existential positive. IEEE
Symp. on Logic in Computer Science, 2003, pages 311-320.

79. S. Feferman and R. Vaught. The first order properties of products of algebraic
systems. Fundamenta Mathematicae, 47 (1959), 57-103.

80. J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions.
Journal of the ACM, 49 (2002), 716-752.

81. J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model
checking. SIAM Journal on Computing 31 (2001), 113-145.

82. J. Flum and M. Ziegler. Pseudo-finite homogeneity and saturation. Journal of
Symbolic Logic, 64 (1999), 1689-1699.

83. H. Fournier. Quantifier rank for parity of embedded finite models. Theoretical
Computer Science, 295 (2003), 153-169.

84. R. Frai"sse. Sur quelques classifications des systemes de relations. Universite
d'Alger, Publications Scientifiques, Serie A, 1 (1954), 35-182.

85. M. Frick and M. Grohe. The complexity of first-order and monadic second
order logic revisited. In IEEE Symp. on Logic in Computer Science, 2002,
pages 215-224.

86. M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17 (1984), 13-27.

87. H. Gaifman. Concerning measures in first-order calculi. Israel Journal of
Mathematics, 2 (1964), 1-17.

88. H. Gaifman. On local and non-local properties, Proc. Herbrand Symp., Logic
Colloquium '81, North-Holland, 1982.

89. H. Gaifman and M.Y. Vardi. A simple proof that connectivity is not first-order
definable. Bulletin of the EATCS, 26 (1985), 43-45.

90. F. Gecseg and M. Steinby. Tree languages. In Handbook of Formal Languages,
Vol. 3. Springer-Verlag, 1997, pages 1-68.

91. F. Gire and H. K. Hoang. A more expressive deterministic query language with
efficient symmetry-based choice construct. In Logic in Databases, Int. Work
shop LID'96, Springer-Verlag, 1996, pages 475-495.

92. Y.V. Glebskii, D.I. Kogan, M.A. Liogon'kii, and V.A. Talanov (IO. B.
rJie6CKIIll, .n:. II. KoraH, M. II. JIIIorOHbKIIll, B. A. TaJiaHOB). Range
and degree of realizability of formulas in predicate calculus (06beM
II ,ll;Omr BhHIOJIHIIMOCTII <Pop My JI IIC'IIICJieHIIH rrpe,ll;IIKaTOB). Kibernetika
(Ku6ep'ltemu1Ca), 2 (1969), 17-28.

93. G. Gottlob, E. Gradel, and H. Veith. Datalog LITE: a deductive query language
with linear time model checking. ACM Transactions on Computational Logic,
3 (2002), 42-79.

94. G. Gottlob and C. Koch. Monadic datalog and the expressive power of lan
guages for Web information extraction. Journal of the ACM, 51 (2004), 74-113.

95. G. Gottlob, Ph. Kolaitis, and T. Schwentick. Existential second-order logic
over graphs: charting the tractability frontier. In IEEE Symp. on Foundations

296 References

of Computer Science, 2000, pages 664-674.

96. G. Gottlob, N. Leone, and F. Scarcella. The complexity of acyclic conjunctive
queries. Journal of the ACM, 48 (2001), 431-498.

97. E. Gradel. Capturing complexity classes by fragments of second order logic.
Theoretical Computer Science, 101 (1992), 35-5 7.

98. E. Gradel andY. Gurevich. Metafinite model theory. Information and Com
putation, 140 (1998), 26-81.

99. E. Gradel, Ph. Kolaitis, L. Libkin, M. Marx, J. Spencer, M.Y. Vardi, Y. Ven
ema, S. Weinstein. Finite Model Theory and its Applications. Springer-Verlag,
2004.

100. E. Gradel, Ph. Kolaitis, and M.Y. Vardi. On the decision problem for two
variable first-order logic. Bulletin of Symbolic Logic, 3 (1997), 53 G9.

101. E. Gradel and G. McColm. On the power of deterministic transitive closures.
Information and Computation, 119 (1995), 129-135.

102. E. Gradel and M. Otto. Inductive definability with counting on finite struc
tures. Proc. Computer Science Logic, 1992, Springer-Verlag, pages 231-24 7.

103. R.L. Graham, B.L. Rothschild and J.H. Spencer. Ramsey Theory. John Wiley
& Sons, 1990.

104. E. Grandjean. Complexity of the first-order theory of almost all finite struc
tures. Information and Control, 57 (1983), 180-204.

105. E. Grandjean and F. Olive. Monadic logical definability of nondeterministic
linear time. Computational Complexity, 7 (1998), 54-97.

106. M. Grohe. The structure of fixed-point logics. PhD Thesis, University of
Freiburg, 1994.

107. M. Grohe. Fixed-point logics on planar graphs. In IEEE Symp. on Logic in
Computer Science, 1998, pages 6-15.

108. M. Grohe. Equivalence in finite-variable logics is complete for polynomial time.
Combinatorica, 19 (1999), 507--532.

109. M. Grohe. The parameterized complexity of database queries. In ACM Symp.
on Principles of Database Systems, 2001, ACM Press, pages 82 -92.

110. M. Grohe. Large finite structures with few Lk-types. Information and Com
putation, 179 (2002), 250-278.

111. M. Grohe. Parameterized complexity for the database theorist. SIGMOD
Record, 31 (2002), 86-96.

112. M. Grohe. The complexity of homomorphism and constraint satisfaction prob
lems seen from the other side. In IEEE Symp. on Foundations of Computer
Science, 2003, pages 552-561.

113. M. Grohe and T. Schwentick. Locality of order-invariant first-order formulas.
ACM Transactions on Computational Logic, 1 (2000), 112-130.

114. M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of conjunc
tive queries tractable? In ACM Symp. on Theory of Computing, 2001, pages
657-666.

115. S. Grumbach and J. Su. Queries with arithmetical constraints. Theoretical
Computer Science, 173 (1997), 151-181.

References 297

116. Y. Gurevich. Toward logic tailored for computational complexity. In Com
putation and Proof Theory, M. Richter et al., eds., Springer Lecture Notes in
Mathematics, Vol. 1104, 1984, pages 175-216.

117. Y. Gurevich. Logic and the challenge of computer science. In Cnrrcnt trends
in theoretical computer science, E. Borger, ed., Computer Science Press, 1988,
pages 1 57.

118. Y. Gurevich, N. Immerman, and S. Shelah. McColm's conjecture. In IEEE
Symp. on Logic in Computer Science, 1994, 10-19.

119. Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals
of Pure and Applied Logic, 32 (1986), 265-280.

120. W. Hanf. Model-theoretic methods in the study of elementary logic. In [7],
pages 132-145.

121. L. Rella. Logical hierarchies in PTIME. Information and Computation, 129
(1996), 1-19.

122. L. Rella, Ph. Kolaitis, and K. Luosto. Almost everywhere equivalence of logics
in finite model theory. Bulletin of Symbolic Logic, 2 (1996), 422-443.

123. L. Rella, L. Libkin, and J. Nurmonen. Notions of locality and their logical
characteri1:ations over finite models. Journal of Symbolic Logic, 64 (1999),
1751 1773.

124. L. Rella, L. Libkin, J. Nurmonen, and L. Wong. Logics with aggregate opera
tors. Journal of the ACM, 48 (2001), 880-907.

125. W. Hodges. Model Theory. Cambridge University Press, 1993.
126. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.

127. R. Hull and J. Su. Domain independence and the relational calculus. Acta
Informatica, 31 (1994), 513-524.

128. N. Immerman. Upper and lower bounds for first order expressibility. Journal
of Computer and Sy8tem Sciences, 25 (1982), 76-98.

129. N. Immerman. Relational queries computable in polynomial time (extended
abstract). In ACM Symp. on Theory of Computing, 1982, ACM Press, pages
147-152.

130. N. Immerman. Relational queries computable in polynomial time. Information
and Control, 68 (1986), 86-104.

131. N. Immerman. Languages that capture complexity classes. SIAM Journal on
Computing, 16 (1987), 760 778.

132. N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17 (1988), 935-938.

133. N. Immerman. Descriptive Complexity. Springer-Verlag, 1998.
134. N. Immerman and Ph. Kolaitis, eds. Descriptive Complexity and Finite Modds,

Proc. of a DIMACS workshop. AMS, 1997.
135. N. Immerman and E. Lander. Describing graphs: a first order approach

to graph canoni;r,ation. In Complexity Theory Retrospective, Springer-Verlag,
Berlin, 1990.

136. N. Immerman and M.Y. Vardi. Model checking and transitive-closure logic. In
Proc. Int. Conf. on Computer Aided Verification, Springer-Verlag LNCS 1254,

298 References

1997, pages 291-302.

137. D. Janin and J. Marcinkowski. A toolkit for first order extensions of monadic
games. Proc. of Symp. on Theoretical Aspects of Computer Science, Springer
Verlag LNCS vol. 2010, Springer Verlag, 2001, 353-364.

138. D. Janin and I. Walukiewicz. On the expressive completeness of the propo
sitional mu-calculus with respect to monadic second order logic. In Proc. of
CONCUR'96, Springer-Verlag LNCS 1119, 1996, pages 263-277.

139. D.S. Johnson. A catalog of complexity classes. In Handbook of Theoretical
Computer Science, Vol. A, North-Holland, 1990, pages 67-161.

140. N. Jones and A. Selman. Thring machines and the spectra of first-order for
mulas. Journal of Symbolic Logic, 39 (1974), 139-150.

141. H. Kamp. Tense logic and the theory of linear order. PhD Thesis, University
of California, Los Angeles, 1968.

142. P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. Journal
of Computer and System Sciences, 51 (1995), 26-52.

143. C. Karp. Finite quantifier equivalence. In [7], pages 407-412.

144. M. Kaufmann and S. Shelah. On random models of finite power and monadic
logic. Discrete Mathematics, 54 (1985), 285-293.

145. B. Khoussainov and A. Nerode. Automata Theory and its Applications.
Birkhiiuser, 2001.

146. S. Kleene. Arithmetical predicates and function quantifiers. Tran.~actions of
the American Mathematical Society, 79 (1955), 312-340.

147. Ph. Kolaitis. Languages for polynomial-time queries - an ongoing quest. In
Proc. 5th Int. Conf. on Database Theory, Springer-Verlag, 1995, pages 38 39.

148. Ph. Kolaitis. On the expressive power of logics on finite models. In [99].

149. Ph. Kolaitis and J. Viiiiniinen. Generalized quantifiers and pebble games on
finite structures. Annals of Pure and Applied Logic, 74 (1995), 23-75.

150. Ph. Kolaitis and M.Y. Vardi. The decision problem for the probabilities of
higher-order properties. In ACM Symp. on Theory of Computing, 1987, pages
425-435.

151. Ph. Kolaitis and M.Y. Vardi. 0-1 laws and decision problems for fragments of
second-order logic. Information and Computation, 87 (1990), 301-337.

152. Ph. Kolaitis and M.Y. Vardi. Infinitary logic and 0-1 laws. Information and
Computation, 98 (1992), 258-294.

153. Ph. Kolaitis and M.Y. Vardi. Fixpoint logic vs. infinitary logic in finite-model
theory. In IEEE Symp. on Logic in Computer Science, 1992, pages 46 57.

154. Ph. Kolaitis and M.Y. Vardi. On the expressive power of Datalog: tools and a
case study. Journal of Computer and System Sciences, 51 (1995), 110-134.

155. Ph. Kolaitis and M.Y. Vardi. 0-1 laws for fragments of existential second
order logic: a survey. In Proc. Mathematical Foundations of Computer Science,
Springer-Verlag LNCS 1893, 2000, pages 84-98.

156. Ph. Kolaitis and M.Y. Vardi. Conjunctive-query containment and constraint
satisfaction. Journal of Computer and System Sciences, 61 (2000), 302 332.

157. B. Kuijpers, J. Paredaens, and J. Van den Bussche. Topological elementary
equivalence of closed semi-algebraic sets in the real plane . .Journal of Symbolic

References 299

Logic, 65 (2000), 1530-1555.

158. G. Kuper, L. Libkin, and J. Paredaens, eds. Constraint Databases. Springer
Verlag, 2000.

159. R.E. Ladner. On the structure of polynomial time reducibility. Journal of the
ACM, 22 (1975), 155-171.

160. R.E. Ladner. Application of model theoretic games to discrete linear orders
and finite automata. Information and Control, 33 (1977), 281-303.

161. C. Lautemann, N. Schweikardt, and T. Schwentick. A logical characterisation of
linear time on nondeterministic Turing machines. In Proc. Symp. on Theoretical
Aspects of Computer Science, Springer-Verlag LNCS 1563, 1999, pages 143-
152.

162. C. Lautemann, T. Schwentick, and D. Therien. Logics for context-free lan
guages. In Proc. Computer Science Logic 1 gg4, Springer-Verlag, 1995, pages
205-216.

163. J.-M. Le Bars. Fragments of existential second-order logic without 0-1 laws.
In IEEE Symp. on Logic in Computer Science, 1998, pages 525-536.

164. J.-M. LeBars. The 0-1 law fails for monadic existential second-order logic on
undirected graphs. Information Processing Letters, 77 (2001), 43-48.

165. D. Leivant. Inductive definitions over finite structures. Information and Com
putation 89 (1990), 95 108.

166. L. Libkin. On counting logics and local properties. ACM Transactions on
Computational Logic, 1 (2000), 33-59.

167. L. Libkin. Logics capturing local properties. ACM Transactions on Computa
tional Logic, 2 (2001), 135-153.

168. L. Libkin. Embedded finite models and constraint databases. In [99].

169. L. Libkin and L. Wong. Query languages for bags and aggregate functions.
Journal of Computer and System Sciences, 55 (1997), 241-272.

170. L. Libkin and L. Wong. Lower bounds for invariant queries in logics with
counting. Theoretical Computer Science, 288 (2002), 153-180.

171. S. Lindell. An analysis of fixed-point queries on binary trees. Thmretical
Computer Science, 85 (1991), 75-95.

172. A.B. Livchak (A. B. JlnBLiaK). Languages for polynomial-time queries (5I3hiKH
,I\JUI rroJIHHOMHa.JihHhrx 3arrpocoB). In Computer-based Modeling and Optimiza
tion of Heat-power and Electrochemical Objects (Pac"lem u OnmuMuaau,uJ!,
TenAomex1W"lec-x;ux u EAe-x;mpoxuMU"lec-x;ux 06lle-x;mo6 c Jlo.MOW,'b10 9BM),
Sverdlovsk, 1982, page 41.

173. J. Lynch. Almost sure theories. Annals of Mathematical Logic, 18 (1980),
91-135.

174. J. Lynch. Complexity classes and theories of finite models. Mathematical
Systems Theory, 15 (1982), 127-144.

175. R.C. Lyndon. An interpolation theorem in the predicate calculus. Pacific
Journal of Mathematics, 9 (1959), 155-164.

176. J. Makowsky. Model theory and computer science: an appetizer. In Handbook
of Logic in Computer Science, Vol. 1, Oxford University Press, 1992.

300 References

177. J. Makowsky. Algorithmic aspects of the Feferman-Vaught Theorem. Annals
of Pure and Applied Logic, 126 (2004), 159-213.

178. J. Makowsky andY. Pnueli. Arity and alternation in second-order logic. Annals
of Pure and Applied Logic, 78 (1996), 189-202.

179. J. Marcinkowski. Achilles, turtle, and undecidable boundedness problems for
small datalog programs. SIAM Journal on Computing, 29 (1999), 231-257.

180. 0. Matz, N. Schweikardt, and W. Thomas. The monadic quantifier alternation
hierarchy over grids and graphs. Information and Computation, 179 (2002),
356-383.

181. G.L. McColm. When is arithmetic possible? Annals of Pure and Applied Logic,
50 (1990), 29-51.

182. R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.

183. F. Moller and A. Rabinovich. On the expressive power of CTL. In IEEE Symp.
on Logic in Computer Science, 1999, pages 360-369.

184. M. Mortimer. On language with two variables. Zeitschrift fiir Mathematische
Logik und Grundlagen der Mathematik, 21 (1975), 135-140.

185. Y. Moschovakis. Elementary Induction on Abstract Structures. North-Holland,
1974.

186. F. Neven. Automata theory for XML researchers. SIGMOD Record, 31 (2002),
39-46.

187. F. Neven and T. Schwentick. Query automata on finite trees. Theoretical
Computer Science, 275 (2002), 633-674.

188. J. Nurmonen. On winning strategies with unary quantifiers. Jom·nal of Logir
and Computation, 6 (1996), 779-798.

189. J. Nurmonen. Counting modulo quantifiers on finite structures. Information
and Computation, 160 (2000), 62-87.

190. M. Otto. A note on the number of monadic quantifiers in monadic Ei. Infor
mation Processing Letters, 53 (1995), 337-339.

191. M. Otto. Bounded Variable Logics and Counting: A Study in Finite Models.
Springer-Verlag, 1997.

192. M. Otto. Epsilon-logic is more expressive than first-order logic over finite
structures. Journal of Symbolic Logic, 65 (2000), 1749--1757.

193. M. Otto and J. Van den Bussche. First-order queries on databaf'es embedded
in an infinite structure. Information Processing Letters, 60 (1996), 37--41.

194. C. Papadimitriou. A note on the expressive power of Prolog. Bulletin of the
EATCS, 26 (1985), 21--23.

195. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

196. C. Papadimitriou and M. Yannakakis. On the complexity of database queries.
Journal of Computer and System Sciences, 58 (1999), 407 427.

197. J. Paredaens, J. Van den Bussche, and D. Van Gucht. First--order queries
on finite structures over the reals. SIAM Journal on Computing, 27 (1998),
1747-1763.

198. A. Pillay and C. Steinhorn. Definable sets in ordered structures. III. Transac
tions of the American Mathematical Society, 309 (1988), 469--476.

References 301

199. E. Pezzoli. Computational complexity of Ehrenfeucht-Fra!sse games on finite
structures. Computer Science Logic 1998, Springer-Verlag, LNCS 1584, pages
159 170.

200. B. Poizat. Deux ou trois choses que je sais de Ln. Journal of Symbolic Logic,
47 (1982), 641 658.

201. I3. Poizat. A Course in Model Theory: An Introduction to Contemporary Math
ematical Logic. Springer-Verlag, 2000.

202. M. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141 (1969), 1 35.

203. R. Rado. Universal graphs and universal functions. Acta Arithmetica, 9 (1964),
331 340.

204. N. Robertson and P. Seymour. Graph minors V. Excluding a planar graph.
Journal of Combinatorial Theory, Series B, 41 (1986), 92-114.

205. N. Robertson and P. Seymour. Graph minors XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63 (1995), 65-110.

206. J. Robinson. Definability and decision problems in arithmetic. Jour·nal of
Symbolic Logic, 14 (1949), 98-114.

207. E. Rosen. Some aspects of model theory and finite structures. Bulletin of
Symbolic Logic, 8 (2002), 380 403.

208. E. Rosen and S. 'Weinstein. Preservation theorems in finite model theory. In
Logic and Computational Complexity, Springer-Verlag LNCS 960, 1994, pages
480 502.

209. J. Rosenstein. Linear Orderings. Academic Press, 1982.

210. B. Rossman. Successor-invariance in the finite. In IEEE Symp. on Logic in
Computer Science, 2003, pages 148-157.

211. Y. Sagiv and M. Yannakakis. Equivalences among relational expressions with
the union and difference operators. Journal of the ACM, 27 (1980), 633 655.

212. V. Sazonov. Polynomial computability and recursivity in finite domains. Elck
tronische Informationsverarbeitung und Kybernetik, 16 (1980), 319- 323.

213. T. Schaefer. The complexity of satisfiability problems. In Proc. 1Oth Symp. on
Theory of Computing, 1978, pages 216-226.

214. K. Schneider. Verification of Reactive Systems. Springer-Verlag, 2004.

215. T. Schwentick. On winning Ehrenfencht games and monadic NP. Annals of
Pure and Applied Logic, 79 (1996), 61-92.

216. T. Schwentick. Descriptive complexity, lower hounds and linear tim<'. In Proc.
of Computer Science Logic, Springer-Verlag LNCS 1584, 1998, pages 9-28.

217. T. Schwentick and K. I3arthelmann. Local normal forms for first-order logic
with applications to games and automata. In Proc. 15th Symp. on Theoretical
Aspects of Computer Science {STAGS '98), Springer-Verlag, 1998, pages 444-
454.

218. D. Seese. The structure of models of decidable monadic theories of graphs.
Annals of Pure and Applied Logic, 53 (1991), 169-195.

219. D. Seese. Linear time computable problems and first-order descriptions. Math
ematical Structures in Computer Science, 6 (1996), 505 526.

302 Refermccs

220. 0. Shmucli. Decidability and expref'siveness of logic queries. In ACM Symp.
on Principles of Database Systems, 1987, ACM Press, pag<'S 237 -24!).

221. M. Sipser. Introduction to the Theory of Computation. PINS Publishing, 1997.

222. L. Stockmeyer. The complexity of decision problems in automata and logic.
PhD Thesis, MIT, 1974.

223. L. Stoc:kmeyer. The polynomial-time hierarchy. Theoretical Comput1T Science,
3 (1977), 1-22.

224. L. Stockmeyer and A. Meyer. Cosmological lower bound on the circuit com
plexity of a small problem in logic. Journal of the ACM, 49 (2002), 753 784.

225. H. Straubing. Finite Automata, Formal Logic, and Circuit Complr1:ity.
Birkhauser, 1994.

226. R. S:zelepc:senyi. The method of forced enumeration for nondeterministic au
tomata. Acta Informatica, 26 (1988), 279 284.

227. V.A. Talanov and V.V. Knya:zev (B. A. Ta.;Janon, B.B. Kmnen). The
asymptotic truth value of infinite formulas (06 aCIIl\IIITOTWH'CKmT :ma•Iemm
IICTIIHHOCTH 6ec:KOHe'IHhiX <l>opMy.ri). Proc. All- Union seminar on discrete
mathematics and its applir:ations (Mamepua.llibt Bcecmo:mozo Cc.,w,mwpa no
Jl,uc'K:permwil MameMamU'K:C 7t ee IJpuAO:JICC'HU.ft.M), 1\Ioscow State University,
Faculty of Mathematics and Mechanics, 1986, pages 56 61.

228. R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test dwrdalit.v
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypPr
graphs. SIAM Journal on Computing, 13 (1984), 566 -579.

229. A. Tarski. A Decision Method for Elementary Algebra and Geomdry. Univ.
of California Press, 1951. Reprinted in Quantifier Elimination and Cylindrical
Algebraic Decomposition, B. Caviness and J. Johnson, eds. Springer-Verlag,
1998, pages 24 84.

230. J. Thatcher and J. \\1right. Generali:zed finite automata theory with an ap
plication to a decision problem of second-order logic. Mathematical Systems
Theory, 2 (1968), 57-81.

231. W. Thomas. Classifying regular events in symbolic logic. Journal of Computer
and System Sciences, 25 (1982), 360 376.

232. W. Thomas. Logical aspects in the study of tree languages. In Pror. 9th
Int. Colloq. on Trees in Algebra and Programming (CAAP'84), Cambridge
University Press, 1984, pages 31 50.

233. \iV. Thomas. Languages, automata, and logic. In Handbook of Formal Lan
guage8, Vol. 3, Springer-Verlag, 1997, pages 389 455.

234. B. A. Trakhtenbrot (B.A. TpaxTeH6pOT). The impossibilty of an algorithm
for the decision problem for finite models (H<'B03MO)f(IIOCTb a.'!ropHTl\Ia ll,.JIB

rrpo6JieMbi pa"3pemnMOCTII na KOHC'fHhiX K"'!accax). Doklady Amdernii Nank
SSSR (Jl,o'K:AaBN A'K:aBeMuu Hay'K: CCCP), 70 (1950), 569-572.

235. E. Tsang. Foundations of Constraint Sati8faction. Academic PrPss, 1993.

236. G. Turan. On the definability of properties of finite graphs. Discn:tc Mathe
matics, 49 (1984), 291 -302.

237. J. Vaananen. Generalized quantifiers. Bulletin of the EATCS, 62 (1997), 1 Hi
136.

References 303

238 . .J. Vaananen. Unary quantifiers on finite models. Journal of Logic, Language

and Information, 6 (1997), 275 304.

239 . .J. Vaananen. A Short Course in Finite Model Theory. University of Helsinki.
44pp. Available at www .math. helsinki. fi/logic/people/ j ouko. vaananen.

240 . .J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, 1983.

241. D. Van Dalen. Logic and Structure. Springer-Verlag, 1994.

242 . .J. Van den Bussche. Constraint databases: a tutorial introduction. SIGMOD

Record, 29 (2000), 44-51.

243. L. van den Dries. Tame Topology and 0-Minimal Structures. Cambridge Uni
versity Press, 1998.

244. M.Y. Vardi. The complexity of relational query languages. In Proc. ACM

Symp. on Theory of Computing, 1982, 137 146.

245. M.Y. Vardi. On the complexity of bounded-variable queries. In ACM Symp.

on Principles of Database Systems, ACM Press, 19~5, pages 266 -276.

246. M.Y. Vardi. Why is modal logic so robustly decidable? In [134], pages 149 183.

247. H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.

248. A . .J. Wilkie. Model completeness results for expansions of the ordered field
of real numbers by restricted Pfaffian functions and the exponential function.
Journal of the American Mathematical Society, 9 (1996), 1051-1094.

249. M. Yannakakis. Algorithms for acyclic database schemes. In Proc. Conf. on

Very Large Databases, 1981, pages 82-94.

250. M. Yannakakis. Perspectives on database theory. In IEEE Symp. on Founda

tions of Computer Science, 1995, pages 224-246.

List of Notation

:J! 5

0" 13
2t 13
R 13
STRUCT[a] 14
FO 14
(2t, 2t') 15
O"n 16
~ 17
'P(2t) 17
'P(2t, a) 17
E* 17
E 17
DTIME 19
NTIME 19
PTIME 19
NP 19
PSPACE 20
NLOG 20
DLoG 20
PH 20

Ef 20
!If 20

EVEN 24

=n 28
min 29
max 29
qr 32

FO[k] 32

tpk(2t, a) 34
':':k 36
PARITY 41

B': 46
N,21 46
!::::; 47
hlr 47
lr 49
;:::; 50
degree 55
deg_set 55
STRUCTt[a] 55
!::::;~~;;, 61

(FO + C);uv 69

(£+ <)inv 69

s': 74

enc(2t) 88

ll2t II 88
c 89
c 90
All 91
FO(+, x) 95
BIT 95
~ 103
'H('P) 105
CQk 107

so 113
MSO 115
::ISO 115
:JMSO 115
\ISO 115
\iMSO 115
MSO[k] 116

306 List of Notation

mso-tpk 116 tpFO' 220
_MSO 117 A<k 222

(:I') 222
FO(Cnt) 142 ::::;FO' 225
=-Ji:r 142 -<Fo' 226
FO(Q) 144 Ck 229
Loc'" 145 ([k 229
v 145
1\ 145 GRn 235
L:xcw(Cnt) 146 Jln(P) 235
#i'.;p 146 JI(P) 235
rk 146 E.An.n1 238
£::___"'(Cnt) 147 EAk 238
~bl] 151 RQ 241
LagJ.!.r 159 EA 241

=JSO(r) 243
~) 178
lfp 178 ad om 250
ifp 179 F0(9J1. 0') 250
pfp 180 =-J.rE ariom 250
}', 180 'i.r: E admn. 250
IFP 180 FOact (9J1. 0') 251
PFP 180 'Jl 253
LFP 181 RQC 255
LFP'tmutt 185 FQgcn(9J1, 0') 2G6
I 'PI Qj 189 R 260
/r!/~ 189 R!in 267
=-JLFP 197
TRCL 199 .n 278
trcl 199 O;p 279
POSTRCL 200 D;p 279

LTL 280
FOk 212 X 280
£~w 212 u 280
£w

XJ'" 212 CTL 280
PG 215 E 280
dom 218 A 280
rng 218 CTL* 280
I:J 218 JL.r ·'P 283
J., 218 CSP 286

Index

Ackermann class 275
Active domain 250

formula 251
quantifier 251

Aggregate
logic 159

expressiveness of
operator 159

160

Almost everywhere equivalence 245
Arity hierarchy 176
Asymptotic probability 235

of connectivity 236
of EVEN and parity 237
of extension axioms 238

Automaton
and MSO 124
deterministic 17
nondeterministic 17
tree (ranked) 130
tree (unranked) 133

Back-and-forth 36
k 218

Ball 46
Bernays-Schonfinkel class 275
BNDP (bounded number of degrees

property) 55
Boolean combination 15

Capturing
complexity class 168
coNP 169
DLoG 208
NLOG 200, 208

NP 169
PH 173
PSPACE 194
PTIME 192,208

Circuit
Boolean 89
family of 90

uniform 95
majority, or threshold 155

Class of structures
MSO-inductive 140
of bounded treewidth 110, 135
of small degree 55

Collapse
active-generic 256, 257
natural-active 255
restricted quantifier 255

and VC dimension 273
fails over integers
for the real field

to MSO 265
Combined complexity

260
261

of conjunctive queries 104
of FO 99
of LFP 207
of MSO 139

Completeness
fails over finite models 166
of games for FO 35
of games for MSO 117

Complexity
combined 88
data 88

308 Index

expression 88
fixed-parameter linear 100
fixed-parameter tractable 100
parameterized 100

Complexity class
AC0 91
capturing of 168
coNP 20
DLoG 20
NEXPTIME 21
NLIN 139
NLoG 20
NP 19
PH 20
PTIME 19
TC0 155

Composition method
for FO 30-31, 42
for MSO 118, 140

Conjecture
Crane Beach 273
Gurevich's 204
McColm's 210, 234

Conjunctive query (CQ) 102
acyclic 105
combined complexity of 104
containment of 111
evaluation of 106, 107, 110, 111
union of 277

Connective
Boolean 15
infinitary 145

Connectivity 23
and .C:::C,w(Cnt) 153
and embedded finite models 254,

260,265
and FO 23,37
and Hanf-locality 48
and MSO 120
topological 268, 272

Constraint satisfaction 285-288
and bounded treewidth 288
and conjunctive queries 286
and homomorphism 286
dichotomy for 287

Data complexity
of FO 92
of FO(Cnt) 155

of LFP 194
of MSO 134

over strings and trees 135
of p.-calculus 284
of temporal logics 281
of TRCL 200-203

Database
constraint 267 270
relational 1-4

DATALOG 196
and existential least fixed point logic

197
and PTIME 199
monotonicity of 197
with negation 196

Duplicator 26

Encoding
of formulae 87
of structures 88

Extension axioms 238
and random graph 241
and zero-one law 240, 244
asymptotic probability of 238
using in collapse results 265

Extensional predicates 196

Failure in the finite
Beth's theorem 42
compactness theorem 24
completeness theorem 166
Craig's theorem 42
Lowenheim-Skolem theorem 166
Los-Tarski theorem 42

Finite variable logic (.C~"')
and fixed point logics 214
and pebble games 216
definition of 212

First-order logic (FO) 14
expressive power of 28-31, 37 40
games for 32

Fixed-parameter linearity
of acyclic conjunctive queries 106
of FO for small degrees 101
of MSO and bounded trecwidth 135
of MSO over strings and trees 135
of temporal logics 281

Fixed-parameter tractability
and bounded treewidth 110

of FO on planar graphs 102
Fixed point 178

inflationary 179
least 178
partial 180
simultaneous 184
stages of 184, 186, 188

FO with counting (FO(Cnt)) 142
Formula

atomic 14
C-invariant 68
Hintikka 40
quantifier-free 14

FPL 100
FPT 100

Gaifman graph 45
Gaifman-locality 48
Game

Ajtai-Fagin 123
and :3MSO 123

bijective 59, 151
and .C~w(Cnt) 151

Ehrenfeucht-Fralsse 26
for FO 26
for MSO 116

Fagin 122
pebble 215

and .C~w 216

Halting problem 19, 166
Hanf-locality 47
Hypergraph 105

tree decomposition of 105-108

Inexpressibility of
connectivity

in FO(AII) 94
in :3MSO 120
in .C~w(Cnt) 153
of arbitrary graphs in FO 23
of finite graphs in FO 37, 52
using Hanf-locality 48

EVEN

in fixed point logics 217
inFO 25
in L~w 217
in MSO 118
of ordered sets 28

Hamil tonicity
in MSO 126

Index 309

PARITY in FO(AII) 94
Inflationary fixed point logic (IFP)

180
Intensional predicates 196
Isomorphism 17

partial 27
with the k-back-and-forth property

218

Join 102

Kripke structure 278
bisimilarity of 284

Language 17
regular 18

and MSO 124
star-free 127

and FO 127
Least fixed point logic (LFP) 181
Linear order

affects expressive power 69, 119,
150,153,214

definability of 227
FO definability of 28-31

Locality
of aggregate logic 160
of FO 52
of .C~w(Cnt) 153
of order-invariant FO 73

Locality rank 49
bounds on 54, 64
Hanf 47

Logic
aggregate 159
CTL 280
CTL* 280
existential fixed point 197
finite variable 212
first-order 14
FO with counting 142
infinitary 145, 212
inflationary fixed point 180
least fixed point 181
L~w 212
L~w(Cnt) 147
LTL 280
monadic second-order 115

310 Index

JI-calculus 283
partial fixed point
propositional modal
sPcond-order 113

180
279

115
115

existential (=JSO)
universal ('v'SO)

SO-HoR:\' 208
SO-KROM 208
transitive closure 199

l\fodd 13
embedded finite 250
finite 13

Model-checking problem 87, 100, 281
Monadic second-order logic (MSO)

115
existential (=JMSO) 115

equals MSO over strings 126
universal ('v'MSO) 115

differmt from =JMSO 120
JI-calculus (CALC1,) 283

Neighborhood 46
Normal form

for LFP 192, 194
for SO 115
for TRCL 201

Occurrence
negative 181
positiw~ 181

Operator 178
based on a formula
inductive 178

180

Order invariancP 69
separation results for

fixed point logics 217
FO 69
FO(Cnt) 158
L~w 214
L~w(Cnt) 153
MSO 119

undecidability of 174
Ordered conjecture 210

Partial fixed point logic (PFP) 180
Polynomial hierarchy 20

and MSO 134
capturing of 173

Polynomial time 19
capturing of

in =JSO 208
over onkred structures 192
over unordered structurPs 204 205

Projecticm 103
Property

bisimulation-invariant 285
fiuite mo(kl 276

and satisfiahility 276-278
Ramsey 257

and collapse 259
Propositional modal logic (ML) 279

Quantifier
active domain 251
counting 1-11
existential 14
generalized

and PTir-.n: 20-1
Hartig 14-1
Rescher 144
unary 144

prefix
rank

173,175,243,275
32

second-order 114
universal 14
unrPstrictecl 251

Quantifier elimination
and collapse results 25:-J
for the random graph 2·±7
for the real field 261

Query 17
Boolean 17
complexity of 88
conjunctive 102
definable in a logic 17
Gaifman-local -18
Hanf-local 47
invariant 68
order-invariant 69
weakly local 73

L(~. see Recursively enumerahk
Random graph 241

and quantifier elimination 24 7
collapsP over 265
representations of 248
theory of 242

Rank
in L~w(Cnt) 146
quantifier 32

for unary quantifiers 144
inFO 32
in SO 115

Reachability 2, 122
and Gaifman-locality 49
for directed graphs in 3MSO 122
for undirected graphs in 3MSO 122

Recursive 19
Recursively enumerable 19
RQC (restricted quantifier collapse)

255

Satisfiability
for Ackermann class 277
for Bernays-Schonfinkel class 276
for F02 278

Second-order logic (SO) 113
Selection 103
Sentence 15

atomic 33
finitely satisfiable 165
finitely valid 165
quantifier rank of 32
satisfiable 16
valid 16

Simultaneous fixed point 184
elimination of 186

Sphere 74
Spoiler 26
Structure 13

canonical for FOk
Kripke 278
rigid 234
k-rigid 227

Symbol
constant 13
function 13
relation 13

Term 14
counting 146

Theorem

229

Abiteboul-Vianu 230
Ajtai's 94
Beth's 42
Biichi's 124

compactness 16
completeness 16
Cook's 173
Courcelle's 135
Craig's 42

Index 311

Ehrenfeucht-Fralsse 32
Fagin's 169
Furst-Saxe-Sipser 94
Gaifman's 60
Grohe-Schwentick 73
Gurevich's 69
Gurevich-Shelah 191
Immerman-Szelepcsenyi 200
Immerman-Vardi 192
Lowenheim-Skolem 16
Los-Tarski 42
Lyndon's 43
Ramsey's 257
Stage comparison 189
Tarski-Knaster 179
Trakhtenbrot's 165

Theory 16
complete 242
consistent 16
decidable 242
w-categorical 242

Threshold equivalence 61
Transitive closure 3, 17

expressible in DATALOG 196
expressible in fixed point logics 182
inexpressible in aggregate logic 160
inexpressible in FO 52
violates locality 49

Transitive closure logic (TRCL) 199
positive 200

Tree 129
automata 130
decomposition 105, 107
regular languages and MSO 131
unranked 132

automata 133
regular and MSO 133

Treewidth 107
bounded 108, 110, 135, 140

Turing machine 18
and logic 166-168, 170-172,

193-194, 201
deterministic 18
time and space bounds 19

312 Index

Type Variable
atomic 226
FOk 220

Pxpressibility of 221 225
ordering of 227-229

in L:~w(Cnt) 152
rank-k, FO 34

cxpressibility of 35
finite number of 35

rank-k, MSO 116
and automata
expressibility of

125 126
116

bound 15
free 14

Vocabulary 13
purely relational 14
relational 14

Zero-one law 2:37
and extension axioms 240
failure for 1\180 24 7
for c:;__w 237
for FO and fixed point logics 237
for fragments of SO 243 245

Name Index

Abiteboul, S. VIII, 206, 207, 229, 230,
232,246,288

Afrati, F. 207
Aho, A. VII
Ajtai, M. 94, 108, 123, 136, 174, 206
Asser, G. 174

Barrington, D. A. M. 108, 161, 271
Barthelmann, K. 63
Barwise, .J. 232
Benedikt, M. 137, 270
Blass, A. 246, 247
Blumensath, A. 137
Bodlaender, H. 137
Borger, E. 288
Bruyere, V. 137
Biichi, .J. VIII, 11, 124, 136
Bulatov, A. 289
Buss, S. 108

Cai, .J. 206
Cameron, .J.
Chandra, A.
Chang, C.C.

246
VII, 108, 109, 206
21

Chapuis, 0. 271
Clarke, E. 288
Compton, K. 246
Cook, S. A. 40, 108, 174
Cosmadakis, S. 137, 207
Courcelle, B. 135, 137

Dalmau, V. 289
Dawar, A. 109, 206, 207, 232, 233
Denenberg, L. 108

de Rougemont, M. 136, 233
Dong, G. 63
Downey, R. 108

Ebbinghaus, H.-D. VIII, 21, 40, 83,
136, 206

Ehrenfeucht, A. 26, 32, 40
Eiter, T. 174
Emerson, E. A. 288
Enderton, H. 21
Erdos, P. 246
Etessami, K. 161, 288

Fagin, R. VII, 6, 62, 120, 122, 123, 136,
165,168-174, 193-195,200,204,
246

Feder, T. 40, 289
Feferman, S. 137, 232
Fellows, M. 108
Flum, .J. VIII, 21, 40, 83, 108-110, 136,

206,271
271

26,32,40
108, 109, 137
206

Fournier, H.
Frai"sse, R.
Frick, M.
Fiirer, M.
Furst, M. 94, 108

40,45,48,63,246

246

Gaifman, H.
Gire, F. 206
Glebskii, Y.
Gottlob, G.
Gradel, E.
Graham, R.
Grandjean, E.

108,109,174,207,288
137,161,174,206,288

270
137, 246

314 Name Index

Grohc, M. 73, 83, 108-110, 137, 206,
207, 233, 289

Grumbach, S. 270
Grumberg, 0. 288
Gurevich, Yu. 40, 69, 73, 83, 108, 161,

174,191,192,204,206,228,246,
247,288

Hanf, IN. 47, 62
Hard, D. VII, 206
Rella, L. 63, 161, 206, 207, 246
Herr, L. 288
Hoang, H. 206
Hodges, W. 21, 246
Hopcroft, J. 11, 21
Hull, R. VIII, 206, 271

Immerman, N. VII, 108, 109, 161, 192,
195,200,206,226,232,271,288

Janin, D. 136, 289
Johnson, D. 21
.Jones, N. 174

Kamp, H. 288
Kanellakis, P. 136, 270
Karp, C. 246
Kaufmann, M. 246
Keisler, H. J. 21
Khoussainov, B. 21
Kleene, S. 174
Knaster, B. 179
Knyazev, V. 246
Koch, C. 207
Koiran, P. 271
Kolaitis, Ph. 161, 174, 206, 210, 232,

233,246,247,288,289
Ko7,en, D. 246, 247
Kuijpers, B. 271
Kuper, G. 270

Ladner, R. 136, 289
Lander, E. 161
Lautemann, C. 174,271
Le Bars, .J.-l\!1. 246, 247
Leivant, D. 206
Leone, N. 108, 109
Libkin, L. 63,83, 137,161,270
Lindell, S. 207,232,233

Livchak, A. B. 206
Luosto, K. 246
Lynch, J. 137, 246
Lyndon, R. 43, 207

Makowsky, .J. 40, 136, 137, 174
Marcinkowski, .J. 136, 207
Matz, 0. 137
McColm, G. 206, 210, 233
McNaughton, R. 136
MPrlin, P. 108, 109
Meyer, A. 137
Moller, F. 289
!'viortimer, l\L 288
Moschovakis, Y. 206

Nerode, A. 21
Neven, F. 136, 137
Nurmonen, J. 63. 161

Olive, F. 137
Otto, l\!1. 83, 137, 206, 207, 232, 270

Papadimitriou, C. 21, 108, 1()!), 206
PaperL S. 136
Paredaens, J. 270, 271
Pekd, D. 288

40
272

Pezzoli. E.
Pillay, A.
Pnndi, Y.
Poizat, B.

174
21,232

Rabin, l\!1. 140
Rabinovich, A. 289
Rado, R. 246
Renyi, A. 246
Reves7,, P. 270
Robertson, N. 110, 140
Robinson, J. 271
Rosen, E. 40
Rosenstein, .J. 40
Rossman, B. 83
Rothschild, B. 270

Sagiv, Y. 288
Saxe, J. 94, 108
Sazonov, V. 206
Scarcello, F. 108, 109
Schaefer, T. 289
Schweikardt, N. 137, 271

Schwentick, T. 63, 73, 83, 108, 109,
136,137,174

Seese, D. 108, 137
Segoufin, L. 108, 109
Selman, A. 17 4
Seymour, P. 110, 140
Shelah, S. 108, 191, 192, 206, 207, 228,

246
Shmueli, 0. 207
Sipser, M. 21, 94, 108
Spencer, J. 270
Steinhorn, C. 272
Stockmeyer, L. 62,108,136,137,174
Straubing, H. 108, 161
Su, J. 270
Szelepcsenyi, R. 200, 206

Talanov, V. 246
Tarjan, R. 108
Tarski, A. 179, 271
Thatcher, J. 137
Therien, D. 174, 271
Thomas, W. VIII, 21, 136, 137
Trakhtenbrot, B. VII, 165, 166, 170,

171,174,193,195
Tunin, G. 136

Name Index 315

Ullman, J. D. VII, 11, 21

Vaiinanen, J. VIII, 161
van Benthem, J. 288
van Dalen, D. 21
Van den Bussche, J. 270, 271, 288
Van Gucht, D. 270
Vardi, M. Y. VII, 40, 62, 108, 136, 192,

195,200,206,210,226,232,233,
246,247,288,289

Vaught, R. 137
Veith, H. 288
Vianu, V. VIII, 206, 207, 229, 230, 232,

246
Vollmer, H. 109, 161

Walukiewicz, I. 289
Weinstein, S. 40, 207, 232, 233
Wilke, T. 288
Wilkie, A. 272
Wong, L. 63, 83
Wright, J. 137

Yannakakis, M. 108, 109, 206, 207, 288

Ziegler, M. 271

Monographs in Theoretical Computer Science · An EA TCS Series

K. Jensen
Coloured Petri Nets
Basic Concepts, Analysis Methods
and Practical Use, Vol. 1
2nded.

K. Jensen
Coloured Petri Nets
Basic Concepts, Analysis Methods
and Practical Use, Vol. 2

K. Jensen
Coloured Petri Nets
Basic Concepts, Analysis Methods
and Practical Use, Vol. 3

A. Nait Abdallah
The Logic of Partial Information

z. Fiilop, H. Vogler
Syntax-Directed Semantics
Formal Models Based
on Tree Transducers

A. de Luca, S. Varricchio
Finiteness and Regularity
in Semigroups and Formal Languages

E. Best, R. Devillers, M. Koutny
Petri Net Algebra

S.P. Demri, E. S. Orlowska
Incomplete Information:
Structure, Inference, Complexity

J .C.M. Baeten, C.A. Middelburg
Process Algebra with Timing

L.A. Hemaspaandra, L.Torenvliet
Theory of Semi-Feasible Algorithms

E. Fink, D. Wood
Restricted-Orientation Convexity

Zhou Chaochen, M. R. Hansen
Duration Calculus
A Formal Approach to Real-Time
Systems

M. GroBe-Rhode
Semantic Integration
of Heterogeneous Software
Specifications

Texts in Theoretical Computer Science · An EA TCS Series

J. L. Balcazar, J. Diaz, J. Gabarr6
Structural Complexity I

M. Garzon
Models of Massive Parallelism
Analysis of Cellular Automata
and Neural Networks

J. Hromkovic
Communication Complexity
and Parallel Computing

A. Leitsch
The Resolution Calculus

G. Paun, G. Rozenberg, A. Salomaa
DNA Computing
New Computing Paradigms

A. Salomaa
Public-Key Cryptography
2nded.

K. Sikkel
Parsing Schemata
A Framework for Specification
and Analysis of Parsing Algorithms

H. Vollmer
Introduction to Circuit Complexity
A Uniform Approach

W. Fokkink
Introduction to Process Algebra

K. W eihrauch
Computable Analysis
An Introduction

J. Hromkovic
Algorithmics for Hard Problems
Introduction to Combinatorial
Optimization, Randomization,
Approximation, and Heuristics
2nd ed.

S. Jukna
Extremal Combinatorics
With Applications
in Computer Science

P. Clote, E. Kranakis
Boolean Functions
and Computation Models

L. A. Hemaspaandra, M. Ogihara
The Complexity Theory Companion

C.S. Calude
Information and Randomness.
An Algorithmic Perspective
2nd ed.

J. Hromkovic
Theoretical Computer Science
Introduction to Automata,
Computability, Complexity,
Algorithmics, Randomization,
Communication and Cryptography

A. Schneider
Verification of Reactive Systems
Formal Methods and Algorithms

S. Ronchi Della Rocca, L. Paolini
The Parametric Lambda Calculus
A Metamodel for Computation

Y. Bertot, P. Casteran
Interactive Theorem Proving
and Program Development
Coq' Art: The Calculus
of Inductive Constructions

L. Libkin
Elements of Finite Model Theory

