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Preface 

Finite model theory is an area of mathematical logic that grew out of computer 
science applications. 

The main sources of motivational examples for finite model theory are 
found in database theory, computational complexity, and formal languages, 
although in recent years connections with other areas, such as formal methods 
and verification, and artificial intelligence, have been discovered. 

The birth of finite model theory is often identified with Trakhtenbrot's 
result from 1950 stating that validity over finite models is not recursively 
enumerable; in other words, completeness fails over finite models. The tech
nique of the proof, based on encoding Turing machine computations as finite 
structures, was reused by Fagin almost a quarter century later to prove his cel
ebrated result that put the equality sign between the class NP and existential 
second-order logic, thereby providing a machine-independent characterization 
of an important complexity class. In 1982, Immerman and Vardi showed that 
over ordered structures, a fixed point extension of first-order logic captures 
the complexity class PTIME of polynomial time computable propertiE~s. Shortly 
thereafter, logical characterizations of other important complexity classes were 
obtained. This line of work is often referred to as descriptive complexity. 

A different line of finite model theory research is associated with the de
velopment of relational databases. By the late 1970s, the relational database 
model had replaced others, and all the basic query languages for it were es
sentially first-order predicate calculus or its minor extensions. In 197 4, Fagin 
showed that first-order logic cannot express the transitive closure query over 
finite relations. In 1979, Aho and Ullman rediscovered this result and brought 
it to the attention of the computer science community. Following this, Chan
dra and Harel proposed a fixed-point extension of first-order logic Oil finite 
relational structures as a query language capable of expressing queries such 
as the transitive closure. Logics over finite models have become the standard 
starting point for developing database query languages, and finite model the
ory techniques an~ used for proving results about their expressiveness and 
complexity. 
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Yet another line of work on logics over finite models originated with Biichi's 
work from the early 1960s: he showed that regular languages an~ pn~cisf'ly 
those definable in monadic second-order logic over strings. This line of work 
is the automata-theoretic counterpart of descriptive complexity: instead of 
logical characterizations of time/space restrictions of Turing machines, one 
provides such characterizations for weaker devices, such as automat a. More 
recently, connections between databasE~ qw~ry languages and automata have 
been explored too, as the field of databases started moving away from rdations 
to more complex data models. 

In general, finite model theory studies the behavior of logics 011 finite struc
tures. The reason this is a separate subject, and not a tiny chapter in classical 
model theory, is that most standard model-theon~tic tools (most notably, com
pactness) fail over finite models. Over the past 25 -30 y<~ars, many tools haw 
been developed to study logics over finite structur<'s, and these tools helped 
answer many questions about complexity theory, databas<~s, formal languages. 
etc. 

This book is an introduction to finite model theory, gean~d towards the
oretical computer scientists. It grew out of my finite model theory course, 
taught to computer science graduate students at tlw University of Toronto. 
While teaching that course, I realized that there is no single source that cov
ers all the main areas of finite model theory, and yet is suitable for computer 
science students. There are a number of excellent books on th<' subject. Finite 
Model Theory by Ebbinghaus and Flum was the first standard reference and 
heavily influenced the development of the field, but it is a book written for 
mathematicians, not computer scientists. There is also a nice sPt of notes by 
Vaiinanen, available on the web. Immerman's Descr-iptive Complexity lkals 
extensively with complexity-theoretic aspects of finite model theory, hut does 
not address other applications. Foundations of Databases hy Abiteboul, Hull, 
and Vianu covers many database applications, and Thomas's chaptPr ''Lan
guages, automata, and logic" in the Handbook of Formal Languages describes 
connections between logic and formal languages. Given the absence of a single 
source for all the subjects, I decided to write course not<~s, which eventually 
became this book. 

The reader is assumed to have only the most basic computer scienc<~ and 
logic background: some discrete mathematics. theory of computation, com
plexity, propositional and predicate logic. The book also includes a background 
chapter, covering logic, computability theory, and computational complexity. 
In general, the book should be accessible to senior undergraduate stude11ts in 
computer science. 

A note on exercises: there are three kinds of these. SomP are the usual 
exercises that the reader should be able to do easily after reading each chapter. 
If I indicatf~ that an exercise conws from a paper, it means that its level could 
range from moderately to extremely difficult: depending on the <~xact kwl, 
such an "exercise" could be a question on a take-homP exam, or even a cours<> 



Preface IX 

project, whose main goal is to understand the paper where the result is proven. 
Such exercises also gave me the opportunity to mention a number of interesting 
results that otherwise could not have been included in the book. There are 
also exercises marked with an asterisk: for these, I do not know solutions. 

It gives me the great pleasure to thank my colleagues and students for 
their help. I received many comments from Marcelo Arenas, Pablo Barcelo, 
Michael Benedikt, Ari Brodsky, Anuj Dawar, Ron Fagin, Arthur Fischer, Lauri 
Hella, Christoph Koch, Janos Makowsky, Frank Neven, Juha Nurmonen, Ben 
Rossman, Luc Segoufin, Thomas Schwentick, Jan Van den Bussche, Victor 
Vianu, and Igor Walukiewicz. Ron Fagin, as well as Yuri Gurevich, Alexander 
Livchak, Michael Taitslin, and Vladimir Sazonov, were also very helpful with 
historical comments. I taught two courses based on this book, and students 
in both classes provided very useful feedback; in addition to those I already 
thanked, I would like to acknowledge Antonina Kolokolova, Shiva Nejati, Ken 
Pu, Joseph Rideout, Mehrdad Sabetzadeh, Ramona Truta, and Zheng Zhang. 
Despite their great effort, mistakes undoubtedly remain in the book; if you 
find one, please let me know. My email is libkin«lcs. toronto. edu. 

Many people in the finite model theory community influenced my view 
of the field; it is impossible to thank them all, but I want to mention Scott 
Weinstein, from whom I learned finite model theory, and immediately became 
fascinated with the subject. 

Finally, I thank Ingeborg Mayer, Alfred Hofmann, and Frank Hol:.~warth 
at Springer-Verlag for editorial assistance, and Denis Therien for providing 
ideal conditions for the final proofreading of the book. 

This book is dedicated to my wife, Helen, and my son, Daniel. Daniel 
was born one week after I finished teaching a finite model theory course in 
Toronto, and after several sleepless nights I decided that perhaps writing a 
book is the type of activity that goes well with the lack of sleep. By the time 
I was writing Chap. 6, Daniel had started sleeping through the night, but at 
that point it was too late to turn back. And without Helen's help and support 
I certainly would not have finished this book in only two years. 

Toronto, Ontario, Canada 
May 2004 Leonid Libkin 
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1 

Introduction 

Finite model theory studies the expressive power of logics on finite models. 
Classical model theory, on the other hand, concentrates on infinite structures: 
its origins are in mathematics, and most objects of interest in mathematics 
are infinite, e.g., the sets of natural numbers, real numbers, etc. Typical exam
ples of interest to a model-theorist would be algebraically closed fields (e.g., 
(IC, +, ·) ), real closed fields (e.g., (JR.,+,·,<)), various models of arithmetic 
(e.g., (N, +, ·) or (N, +)), and other structures such as Boolean algebras or 
random graphs. 

The origins of finite model theory are in computer science where most ob
jects of interest are finite. One is interested in the expressiveness of logics over 
finite graphs, or finite strings, other finite relational structures, and sometimes 
restrictions of arithmetic structures to an initial segment of natural numbers. 

The areas of computer science that served as a primary source of examples, 
as well as the main consumers of techniques from finite model theory, are 
databases, complexity theory, and formal languages (although finite model 
theory found applications in other areas such as AI and verification). In this 
chapter, we give three examples that illustrate the need for studying logics 
over finite structures. 

1.1 A Database Example 

While early database systems used rather ad hoc data models, from the early 
1970s the world switched to the relational model. In that model, a database 
stores tables, or relations, and is queried by a logic-based declarative lan
guage. The most standard such language, relational calculus, has precisely 
the power of first-order predicate calculus. In real life, it comes equipped with 
a specialized programming syntax (e.g., the select-from-where statement of 
SQL). 

Suppose that we have a company database, and one of its relations is the 
Reports_To relation: it stores pairs (x, y), where x is an employee, and y is 
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his/her immediate manager. Organizational hierarchies tend to be quitP com
plicated and often result in many lay<~rs of rnanag<~ment, so one may want to 
skip the immediate manager levd and instead look for the manager's manager. 

In SQL, this would be done by the following query: 

select R1.employee, R2.manager 
from Reports_To R1, Reports_To R2 
where R1.manager=R2.employee 

This is simply a different way of writing the following first-onkr logic 
formula: 

"jz (Reports_To(.r,z) i\Reports_To(z.yJ). 

Continuing, w<~ may ask for someone's manager's manager's manager: 

and so or1. 
But what if we want to find everyone who is higlwr in tlw hierarchy than 

a given employee? Speaking graph-theoretically, if we associat<' a pair ( ,r, y) 
in the Reports_To relation with a directed edge from J' to y in a graph, then 
we want to find, for a given node, all the nodes n~achabl<~ from it. This do<'s 
not seem possible in first-order logic, but how can one prove this'? 

There are other queries naturally related to this reachability propnty. 
Suppose that once in a while, the company wants to make sure that its man
agement hierarchy is logically consistent; that is, we cannot haY<' cydes in tlw 
Reports_To relation. In graph-tlworetic terms, it means that Reports_To is 
acyclic. Again, if one thinks about it for a while, it seems that first-order logic 
does not have enough power to express this query. 

We now consider a different kind of query. Suppose we have two rmmag<'rs, 
.randy, and let X be the set of all the employees directly managed hy .r (i.<•., 
all .r' such that ( J.l, ;r:) is iu Report s_To), and likewise let Y be t lw s<'l of all 
the employees directly managed by y. Can W(' write a query asking wlwtlwr 
I X I = I Y I; that is, a query asking whether .1' aud y haw the sam<> numl><'r of 
people reporting to them'? 

It turns out that first-order logic is again not sufficiently expressive for 
this kind of query, hut since queries like those described above an· so common 
in practice, SQL adds special features to the language to perform tlwm. That 
is, SQL can count: it can apply the cardinality function (and more complex 
functions as well) to entire columns in relations. For example, in SQL orw can 
write a query that finds all pairs of managers J" and y who have tlw sam<' 
number of people reporting to them: 
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select R1.manager, R2.manager 
from Reports_To R1, Reports_To R2 
where (select count(Reports_To.employee) 

from Reports_To 
where Reports_To.manager = R1.manager) 

(select count(Reports_To.employee) 
from Reports_To 
where Reports_To.manager = R2.manager) 

Since this cannot be done in first-order logic, but can be done in SQL (and, 
in fact, in some rather simple extensions of first-order logic with counting), it 
is natural to ask whether counting provides enough expressiveness to define 
queries such as reachability (can node x be reached from node y in a given 
graph?) and acyclicity. 

Typical applications of finite model theory in databases have to deal with 
questions of this sort: what can, and, more importantly, what cannot, be 
expressed in various query languages. 

Let us now give intuitive reasons why reachability queries are not express
ible in first-order logic. Consider a different example. Suppose that we have 
an airline database, with a binary relation R (for routes), such that an entry 
(A, B) in R indicates that there is a flight from A to B. Now suppose we want 
to find all pairs of cities A, B such that there is a direct flight between them; 
this is done by the following query: 

qo(:r, y) R(x, y), 

which is simply a first-order formula with two free variables. Next, suppose 
we want to know if one can get from x toy with exactly one change of plane; 
then we write 

3z R(x, z) 1\ R(z, y). 

Doing "with at most one change" means having a disjunction 

Clearly, for each fixed k we can write a formula stating that one can get from 
.1: to y with exactly k stops: 

q,(:r, y) 

as well as Qk = V j~k qj testing if at most k stops suffice. 
But what about the reachability query: can we get from x to y? That is, 

one wants to compute the transitive closure of R. The problem with this is 
that we do not know in advance what k is supposed to be. So the query that 
we need to write is 
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but this is not a first-order formula! Of course this is not a formal proof that 
reachability is not expressible in first-order logic (we shall see a proof of this 
fact in Chap. 3), hut at least it gives a hint as to what tlw limitations of 
first-order logic are. 

The inability of first-order logic to express some important queries moti
vated a lot of research on extensions of first-order logic that can do queries 
such as transitive closure or cardinality comparisons. 'Vc shall s<>e a nurnber 
of extensions of these kinds - fixed point logics, (fragments of) s\'cond-ordm· 
logic, counting logics - that are important for databas<' theory, and we shall 
study properties of thesE~ extensions as well. 

1.2 An Example from Complexity Theory 

We now turn to a different area, and to more expressive logics. Suppose that 
we have a graph, this time undirected, given to us as a pair (V, E), when• V 
is the set of vertices, or nodes, and E is the edge relation. Assume that now 
we can specify graph properties in second-order· logic; that is, W<' can quantify 
over sets (or relations) of nodes. 

Consider a well-known property of Hamiltonicity. A simple cirr:uit in a 
graph G is a sequence (a 1, ... , a71 ) of distinct nodes such that there arT 
edges ( a 1 , a 2 ), ( a 2 , a3 ), ... , (an-t. a71 ), ( a11 , a r). A simple circuit is Hamiltonian 
if V = {a 1, ... , an}. A graph is Hamiltonian if it has a Hamil toni an circuit. 

We now consider the following formula: 

( 
linear order( L) ) 

31 38 1\ S is the successor re.la.·tion of], 
J 1\ \fx3y (L(:r:, y) V L(y, .r)) 

1\ \f:rHy (S(:c, y) _,. E(:r·, y)) 

( 1.1) 

The quantifiers ?JL CJS state the existence of two binary relations, Land S', 
that satisfy the formula in parentheses. That formula uses some abbreviations. 
The subformula linear order(L) in (1.1) states that the relation Lis a linear 
ordering; it can be defined as 

(V:r:•L(x,x:)) 1\ (V:c\fy\fz (L(:r:,y) 1\L(y,z) _,.J~(:T,z))) 

1\ \f.rc\fy ((:c i- y) _,. (L(x,y) V L(y,:1:)) ). 

The subformula S is the successor relation of L states that ,'-,' is the successor 
relation associated with the linear ordering L; it can be d<~fiw·cl as 

\fx\fy S(x,y) +--> ( (L(:c,y)l\•3z(L(:r:,z)I\I.~(:,y)))) 
V (•3z L(x,z) 1\ ·3z L(z,y)) 
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Note that Sis the circular successor relation, as it also includes the pair (x, y) 
where x is the maximal and y the minimal element with respect to L. 

Then ( 1.1) says that L and S are defined on all nodes of the graph, and 
that Sis a subset of E. Hence, Sis a Hamiltonian circuit, and thus (1.1) tests 
if a graph is Hamiltonian. 

It it well known that testing Hamiltonicity is an NP-complete problem. Is 
this a coincidence, or is there a natural connection between NP and second
order logic? Let us turn our attention to two other well-known NP-complete 
problems: 3-colorability and clique. 

To test if a graph is 3-colorable, we have to check that there exist three 
disjoint sets A, B, C covering the nodes of the graph such that for every edge 
(a, b) E E, the nodes a and b cannot belong to the same set. The sentence 
below does precisely that: 

[ 
(A(x)/\•B(x)/\•C(x))l 

\lx V (•A(x) 1\ B(x) 1\ ·C(x)) 
V (•A(x) 1\ ·B(x) 1\ C(x)) 

3A3B3C 1\ (1.2) 

[ 
(A(x) 1\ A(y)) l 

\lx,y E(x,y)-+..., V (B(x) 1\ B(y)) 
v (C(x) 1\ C(y)) 

For clique, typically one has a parameter k, and the problem is to check 
whether a clique of size k exists. Here, to stay purely within the formalism of 
second-order logic, we assume that the input is a graph E and a set of nodes 
(a unary relation) U, and we ask if E has a clique of size I U 1- We do it by 
testing if there is a set C (nodes of the clique) and a binary relation F that is 
a one-to-one correspondence between C and U. Testing that the restriction of 
E to C is a clique, and that F is one-to-one, can be done in first-order logic. 
Thus, the test is done by the following second-order sentence: 

( 
\lx\ly (F(x, y)-+ (C(x) 1\ U(y))) ) 

:3C:3F 1\ \lx (C(x) -+ 3!y(F(x,y) 1\ U(y))) 
1\ Vy (U(y)-+ 3!x(F(x,y) 1\ C(x))) 
1\ \lx\ly (C(x) 1\ C(y)-+ E(x,y)) 

(1.3) 

Here 3!xcp(x) means "there exists exactly one x such that cp(x)"; this is 
an abbreviation for 3x(cp(x) 1\ \ly (cp(y)-+ x = y)). 

Notice that (1.1), (1.2), and (1.3) all follow the same pattern: they start 
with existential second-order quantifiers, followed by a first-order formula. 
Such formulas form what is called existential second-order logic, abbreviated 
as 380. The connection to NP can easily be seen: existential second-order 
quantifiers correspond to the guessing stage of an NP algorithm, and the 
remaining first-order formula corresponds to the polynomial time verification 
stage of an NP algorithm. 
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It turns out that the connection between NP and ::JSO is exact, as was 
shown by Fagin in his celebrated 1974 theorem, stating that NP = ::JSO. 
This connection opened up a new area, called descriptive complexity. The 
goals of descriptive complexity are to describe complexity classes by means 
of logical formalisms, and then use tools from mathematical logic to analyze 
those classes. We shall prove Fagin's theorem later, and we shall also sec logical 
characterizations of a number of other familiar complexity classes. 

1.3 An Example from Formal Language Theory 

Now we turn our attention to strings over a finite alphabet, say E = {a, b}. 
We want to represent a string as a structure, much like a graph. 

Given a string s = s 1 s2 ... s,, we create a structure 11{, as follows: the 
universe is { 1, ... , n} (corresponding to positions in the string), we have one 
binary relation < whose meaning of course is the usual order on the natural 
numbers, and two unary relations A and B. Then A(i) is true if s; =a, and 
B( i) is true if si = b. For example, 111a.bba has universe { 1, 2, :). 4}, with A 
interpreted as {1, 4} and Bas {2, 3}. 

Let us look at the following second-order sentence in which quantifiers 
range over sets of positions in a string: 

( 
Vx (X(x) +--+ ·Y(x)) ) 

P ::JX::JY 1\ Vx \:ly (X(x) 1\ Y(y)---+ :r < y) 

1\ Vx (X(x)---+ A(x) 1\ Y(x)---+ B(:1·)) 

When is 1\1[8 a model of P? This happens iff there exists two sets of posi
tions, X andY, such that X andY form a partition of the universe (this is 
what the first conjunct says), that all positions in X precede the positions in 
Y (that is what the second conjunct says), and that for each position i in X, 
the ith symbol of s is a., for each position j in Y, the jth symbol is b (this 
is stated in the third conjunct). That is, the string starts with some a.'s, and 
then switches to all b's. Using the language of regular expressions, we can say 
that 

M 8 pP iff sEa*b*. 

Is quantification over sets really necessary in this example? It turns out 
that the answer is no: one can express the fact that s is in a* b* by saying that 
there are no two positions i < j such that the ith symbol is b and the jth 
symbol is a. This, of course, can be done in first-order logic: 

-,::Ji::Jj ( ( i < j) 1\ B( i) 1\ A(j)). 

A natural question that arises then is the following: are second-order quan
tifiers of no use if one wants to describe regular languages by logical means? 
The answer is no, as we shall see later. For now, we can give an example. 
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First, consider the sentence <Pa. = \/i A(i), which is true in lvf8 iff 8 E a*. 

Next, define a relation i -< j saying that j is the successor of 'i. It can be 
defined by the formula ((i < j) 1\ \/k ((k :::; i) V (k ~ j))). Now consider the 
sentence 

( 

\/i (X(i) .__, ,y(i)) ) 
1\ \/i ( ,=jj (j < i) ---+ X ( i)) 

<Pt =jX=jY 1\ \/i (,=jj(j > i)---+ Y(i)) 
1\ \/i\/j ((i-< j) 1\ X(i)---+ Y(j)) 
1\ \/i\/j ((i-< j) 1\ Y(i)---+ X(j)) 

This sentence says that the universe { 1, ... , n} can be partitioned into two 
sets X and Y such that 1 E X, n E Y, and the successor of an element of X 

is in Y and vice versa; that is, the size of the universe is even. 
Now what is <J/1 1\ <Pa? It says that the string is of even length, and has 

only a's in it -hence, 1\18 f= <P1 1\ <Pa iff s E ( aa )*. It turns out that one cannot 
define ( aa )* using first-order logic alone: one needs second-order quantifiers. 
Moreover, with second-order quantifiers ranging over sets of positions, one 
defines precisely the regular languages. We shall deal with both expressibility 
and inexpressibility results related to logics over strings later in this book. 

There are a number of common themes in the examples presented above. 
In all the cases, we are talking about the expressive power of logics over finite 

objects: relational databases, graphs, and strings. There is a close connection 
between logical formalisms and familiar concepts from computer science: first
order logic corresponds to relational calculus, existential second-order logic to 
the complexity class NP, and second-order logic with quantifiers ranging over 
sets describes regular languages. 

Of equal importance is the fact that in all the examples we want to show 
some inexpr·essibility results. In the database example, we want to show that 
the transitive closure is not expressible in first-order logic. In the complexity 
example, it would be nice to show that certain problems cannot be expressed 
in =jSO -- any such result would give us bounds on the class NP, and this would 
hopefully lead to separation results for complexity classes. In the example from 
formal languages, we want to show that certain regular languages (e.g., (aa)*) 
cannot be expressed in first-order logic. 

Inexpressibility results have traditionally been a core theme of finite model 

theory. The main explanation for that is the source of motivating examples 
for finite model theory. Most of them come from computer science, where one 
is dealing not with natural phenomena, but rather with artificial creations. 
Thus, we often want to know the limitations of these creations. In general, 
this explains the popularity of impossibility results in computer science. After 
all, the most famous open problem of computer science, the PTIME vs NP 

problem, is so fascinating because the expected answer would tell us that a 
large number of important problems cannot he solved efficiently. 
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Concentrating on inexpressibility n~sults highlights anotlwr important fea
ture of finite model theory: since we are often interested in countE'r<'xarnplr~s, 
many constructions and techniques of interest apply only to a ''small" frac
tion of structures. In fact, we shall see that some techniques (e.g., locality) 
degenerate to trivial statements on almost all structures, and yet it is that 
small fraction of structures on which they behave interestingly that gives us 
important techniques for analy:.~ing expressiveness of logics, query languages, 
etc. Towards the end of the book, we shall also see that on most typical struc
tun~s, some very exprPssive logics collapse to rather weak OtH's: how<'ver, all 
interesting separation examples occur outside the class of "typical'' strudun~s. 

1.4 An Overview of the Book 

In Chap. 2, we review the background material from mathematical logic, com
putability theory, and cornph~xity theory. 

In Chap. 3 we introduce the fundamental tool of Ehrenfeucht-Fntiss0 
games, and prove their completeness for Pxpressibility in first-orch~r logic (FO). 
The game is played by two players, tlw spoiler and the duplicator, on two 
structun~s. The spoiler tries to show that the structun~s are different, whil<' 
the duplicator tries to show that they are the same. If tlw duplicator can 
succeed for k rounds of such a game, it means that the structun·s cannot 
be distinguished by FO sentences whose depth of quantifier nesting does not 
exceed k. \Ve also defirw types, which play a very important role in many 
aspects of finite model theory. In tlw sam<' chapter, W<' see some bounds 011 

the expressive power of FO, proved via Ehrenfeucht-Fralss0 games. 

Finding winning strategies in Ehrenfeucht-Fralss(• games beconws quit<' 
hard for nontrivial structures. Thus, in Chap. 4, we introduce some sufficient 
conditions that guarantee a win for the duplicator. Tlwse conditions are based 
on the idea of locality. Intuitively, local formulae cannot see very far from their 
free variables. \VP show several different ways of formalizing this intuition. 
and explain how each of those ways gives us easy proofs of bounds on th<' 
expressiveness of FO. 

In Chap. 5 we continue to study first-order logic, but this time OV<'r stmc
tures whose univ<~rse is ordered. Hm·e w<~ see the phenomenon that is very 
common for logics over finite structures. \Ve call a property of structures 
order-invariant if it can be defined with a linear order, but is indep<mdent 
of a particular linear order used. It turns out that then' an' order-invariant 
FO-definable properties that an~ not definable in FO alorw. \Ve also show that 
such order-invariant properties continue to lw local. 

Chap. 6 deals with the complexity of FO. We distinguish two kinds of 
complexity: data complexity, meaning that a formula is fixed and the structure 
on which it is evaluated varies, and combined compkxit y, meaning that both 
the formula and thP structure are part of the input. \Ve show hmv to <'valuat<· 
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FO formulae by Boolean circuits, and use this to derive drastically different 
bounds for the complexity of FO: AC0 for data complexity, and PSPACE for 
combined complexity. We also consider the parametric complexity of FO: in 
this case, the formula is viewed as a parameter of the input. Finally, we study 
a subclass of FO queries, called conjunctive queries, which is very important 
in database theory, and prove complexity bounds for it. 

In Chap. 7, we move away from FO, and consider its extension with 
monadic second-order quantifiers: such quantifiers can range over subsets of 
the universe. The resulting logic is called monadic second-order logic, or MSO. 
We also consider two restrictions of MSO: an ::IMSO formula starts with a se
quence of existential second-order quantifiers, which is followed by an FO 
formula, and an 'v'MSO formula starts with a sequence of universal second
order quantifiers, followed by an FO formula. We first study ::IMSO and 'v'MSO 
on graphs, where they are shown to be different. We then move to strings, 
where MSO collapses to ::IMSO and captures precisely the regular languages. 
Further restricting our attention to FO over strings, we prove that it captures 
the star-free languages. We also cover MSO over trees, and tree automata. 

In Chap. 8 we study a different extension of FO: this time, we add mech
anisms for counting, such as counting terms, counting quantifiers, or certain 
generalized unary quantifiers. We also introduce a logic that has a lot of 
counting power, and prove that it remains local, much as FO. We apply these 
results in the database setting, considering a standard feature of many query 
languages - aggregate functions - and proving bounds on the expressiveness 
of languages with aggregation. 

In Chap. 9 we present the technique of coding Turing machines as finite 
structures, and use it to prove two results: Trakhtenbrot's theorem, which 
says that the set of finitely satisfiable sentences is not recursive, and Fagin's 
theorem, which says that NP problems are precisely those expressible in ex
istential second-order logic. 

Chapter 10 deals with extensions of FO for expressing properties that, 
algorithmically, require recursion. Such extensions have fixed point operators. 
There are three flavors of them: least, inflationary, and partial fixed point 
operators. We study properties of resulting fixed point logics, and prove that 
in the presence of a linear order, they capture complexity classes PTIME (for 
least and inflationary fixed points) and PSPACE (for partial fixed points). We 
also deal with a well-known database query language that adds fixed points to 
FO: DATALOG. In the same chapter, we consider a closely related logic based 
on adding the transitive closure operator to FO, and prove that over order 
structures it captures nondeterministic logarithmic space. 

Fixed point logics are not very easy to analyze. Nevertheless, they can be 
embedded into a logic which uses infinitary connectives, but has a restriction 
that every formula only mentions finitely many variables. This logic, and 
its fragments, are studied in Chap. 11. We introduce the logic c~W' define 
games for it, and prove that fixed point logics are embeddable into it. We 
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study definability of types for finite variable logics, and use them to provide 
a purely logical counterpart of the PTIME vs. PSPACE question. 

In Chap. 12 we study the asymptotic behavior of FO and prove that every 
FO sentence is either true in almost all structures, or false in almost all struc
tures. This phenomenon is known as the zero-one law. We also prove that 
£~w' and hence fixed point logics, have the zero-one law. In the same chapter 
we define an infinite structure whose theory consists precisely of FO sentences 
that hold in almost all structures. We also prove that almost everywhere, fixed 
point logics collapse to FO. 

In Chap. 13, we show how finite and infinite model theory mix: we look 
at finite structures that live in an infinite one, and study the power of FO 
over such hybrid structures. We prove that for some underlying infinite struc
tures, like (N, +, ·), every computable property of finite structures embedd0d 
into them can be defined, but for others, like (JR'., +, ·), one can only define 
properties which are already expressible inFO over the finite structure alonP. 
We also explain connections between such mixed logics and database query 
languages. 

Finally, in Chap. 14, we outline other applications of finite model theory: 
in decision problems in mathematical logic, in formal verification of properties 
of finite state systems, and in constraint satisfaction. 

1.5 Exercises 

Exercise 1.1. Show how to express the following properties of graphs in first-ordPr 
logic: 

• A graph is complete. 
• A graph has an isolated vertex. 
• A graph has at least two vertices of out-degree a. 
• Every vertex is connected by an edge to a vertex of out-degree :3. 

Exercise 1.2. Show how to express the following properties of graphs in existential 
second-order logic: 

• A graph has a kernel, i.e., a set of vertices X such that there is no edge between 
any two vertices in X, and every vertex outside of X is connected by an edge 
to a vertex of X. 

• A graph on n vertices has an independent set X (i.e., no two nodes in X are 
connected by an edge) of size at least n/2. 

• A graph has an even number of vertices. 
• A graph has an even number of edges. 
• A graph with m edges has a bipartite subgraph with at least m/2 edges. 

Exercise 1.3. (a) Show how to define the following regular languages in monadic 
second-order logic: 

• a* (b +c)* aa*; 
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• (a. a. a)* ( bb) +; 

• (((a+b)*cc*)*(aa)*)*a. 

For the first language, provide a first-order definition as well. 

(b) Let 1> be a monadic second-order logic sentence over strings. Show how to 
construct a sentence tJr such that Ms f= tJr iff there is a string s' such that Is 1=\s'\ 
and J!,fs·s' f= 1>. Here Is I refers to the length of s, and s · s' is the concatenation of 
sands'. 

Remark: once we prove Biichi's theorem in Chap. 7, you will see that the above 
statement says that if L is a regular language, then the language 

~L = {s\forsomes', \s\=\s'\ ands·s'EL} 

is regular too (see, e.g., Exercise 3.16 in Hopcroft and Ullman [126]). 



2 

Preliminaries 

The goal of this chapter is to provide the necessary background from mathe
matical logic, formal languages, and complexity th~ory. 

2.1 Background from Mathematical Logic 

We now briefly review some standard definitions from mathematical logic. 

Definition 2.1. A vocabulary CJ" is a collection of constant symbols (denoted 
c1 , ..• , c,, ... ), relation, or predicate, symbols (P1 , ... , Pn, ... ) and funrtion 

symbols ( h, ... , fn, ... ) . Each relation and function symbol has an associated 
arity. 

A CJ"-structure (also called a model) 

consists of a universe A together with an interpretation of 

• each constant symbol ci fmm CJ" as an element c~ E A; 

• each k-ary relation symbol Pi fmm CJ" as a k-ary relation on A; that is, a 
set P?" c;;; Ak; and 

• each k-ary function symbol J; from (} as a function J;21 : A k ---> A. 

A structure 2t is called finite if its universe A is a finite set. The universe of 

a str·ucture is typically denoted by a Roman letter corresponding to the name 

of the structure; that is, the univer-se of 2t is A, the univer-se of 'B is B, and 
so on. We shall also occasionally write x E 2t in8tead of x E A. 

For example, if(} has constant symbols 0, 1, a binary relation symbol <, 
and two binary function symbols · and +, then one possible structure for (} 
is the real field R = \JR(., oR, lR. <R, +R, .R;, where oR, lR, <R, +R, ,R have 



14 2 Pn~liminaries 

the expected meaning. Quite often in fact, typically we shall omit the 
superscript with the name of the structure, using the same symbol for both a 
symbol in the vocabulary, and its interpwtation in a structun:. For <'xample, 
we shall writeR= (][{, 0, 1, <, +. ·) for the real field. 

A few notes on restrictions on vocabularies are in order. Constants can lw 
treated as functions of arity 1\ero; however, we often rwed them :-,eparatdy, as 
in the finite case, we typically restrict vocabularies to relational on<:s: such vo
cabularies contain only relation symbols and constants. This is not a serious 
restriction, as first-order logic defines, for each k-ary function .f, its graph. 
which is a ( k + 1)-ary relation { ( :r, .f (.f)) I .r E A I.}. A vocabulary that con
sists exclusively of relation symbols (i.e., does not have constant awl function 
symbols) is called purely relational. 

Unless stat<~d explicitly otherwise, we shall assume that: 

• any vocabulary CJ is at most countable; 

• when we deal with finite structures, vocabularies CJ an• finite and rela
tional. 

If CJ is a relational vocabulary, tlwn STRUCT[CJ] denotes the class of all finite 
CJ-structures. 

Next, we define first-order (FO) formulae, free and bound variables, and 
the semantics of FO formulae. 

Definition 2.2. We assume a countably infinite set of var·iables. Variables 
will be typically denoted by :r, y, :.:, ... , with subscripts and .mperscripts. We 
inductively define terms and formulae of the first-order predicate calculus 
over vocabulary CJ a.s follows: 

• Each variable :r: is a tenn. 

• Each con.~tant symbol c is a term. 

• If t 1 , ... , t, are ter7ns and f is a k-ary function symbol, !.hen f ( !1 • .•.• I h) 
is a ter·m. 

• If t 1, t2 are terms, then t1 = f2 is an (atomic) forrnnla. 

• If t 1 , ... , t, ar-e terms and P is a k-ary n~lation symbol, then P( I 1, ...• I k) 

is an (atomic) fommla. 

• If i.p 1, i.p2 ar-e formulae, then 1P1 1\ i.p2. i.p 1 V i.p'2, and ---,lp 1 an~ fonnnlrw. 

• If 1.p i.s a formula, then =:J:r:~.p and V xcp an~ formulae. 

A formula that does not use existential (::3) and universal (V) quantifiers 
is called quantifier-free. 

We shall use the standard shorthand 1.p --+ 1/, for ---,IP V If' and lp ,__, c· for 
(cp ,__, lj;) 1\ (1/J ___, cp). 

Free variables of a formula or a term are defirwd as follows: 
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• The only free variable of a term x is x; a constant term c does not have 
free variables. 

• Free variables of h = t2 are the free variables of h and t2; free variables 
of P(t1, ... , tk) or f(h, ... , tk) are the free variables of t1, ... , tk. 

• Negation ( •) does not change the list of free variables; the free variables 
of cp1 V 'P2 (and of 'Pl 1\ 'P2) are the free variables of 'Pl and 'P2· 

• Free variables of 'c/xcp and 3xcp are the free variables of cp except x. 

Variables that are not free are called bound. 
If xis the tuple of all the free variables of cp, we write cp(x). A sentence 

is a formula without free variables. We often use capital Greek letters for 
sentences. 

Given a set of formulae S, formulae constructed from formulae inS using 
only the Boolean connectives V, 1\, and -, are called Boolean combinations of 
formulae in S. 

Given a <T-structure 2.1., we define inductively for each term t with free 
variables (x 1 , ... ,xn) the value t'21(a), where a E An, and for each formula 
cp( Xl' ... ' Xn)' the notion of 2.1. F cp( a) (i.e.' cp( a) is true in 2.1.). 

• If t is a constant symbol c, then the value of t in 2.1. is c'2J.. 

• If tis a variable xi, then the value of t'21(a) is ai. 

• If t = f(t 1 , ... , tk), then the value of t'21(a) is J'21(t~(a), ... , t~(a)). 

• If cp = (t1 = t2), then 2.1. f= cp(a) iff t~(a) = t~(a). 

• If cp = P(t1, ... , tk), then 2.1. f= cp(a) iff (t~(a), ... , t~(a)) E P'21.. 

• 2.1. F= •cp( a) iff 2.1. F= cp( a) does not hold. 

• 2.1. F= 'Pl(a) A 'P2Ca) iff 2.1. F= cpl(a) and 2.1. F= 'P2Ca). 

• 2.1. F= 'Pl C a) v 'P2 C a) iff 2.1. F= 'Pl (a) or 2.1. F= 'P2 (a) . 
• If 'lj;(x) = 3ycp(y, x), then 2.1. F 'lj;(a) iff 2.1. F cp(a'' a) for some a' E A . 

• If 'lj;(x) = 'c/ycp(y, x), then 2.1. F 'lj;(a) iff 2.1. F cp(a', a) for all a' EA. 

If 2.1. E STRUCT[<T] and Ao <;;;A, the substructure of A generated by A0 is 
a <T-structure 113 whose universe is B = Ao U { c'21 I c a constant symbol in <T}, 
with c23 = c'21 for every c, and with each k-ary relation R interpreted as the 
restriction of R'21. to B: that is, R 23 = R'21. n Bk. 

Let <T1 be a vocabulary disjoint from <T. Let 2.1. be a <T-structure, and let 2.1.' 
be a <T1 -structure with the same universe A. We then write (2.1., 2.1.') for a <T U <T1-

structure on A in which all constant and relation symbols in <T are interpreted 
as in 2.1., and all constant and relation symbols in <T1 are interpreted as in 2.1.'. 

One of the most common instances of such an expansion is when <T1 only 
contains constant symbols; in this case, the expansion allows us to go back and 
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forth between formulae and sentm1ces, which will be very conveni(~nt when WP 
talk about games and expressiveness of formulas as well as sentencrs. 

From now on, we shall use the notation rTn for thP expansion of vocabulary 
rT with n new constant symbols c1 , ... , en. 

Let ip(x1 , ... , .r,) be a formula in vocabulary cr. Consider a rT 11 sPnt<'ncc <J> 
obtained from ip by replacing each J"; with c, i ::; n. Lt't (a 1 , ... , on) E A". 
Then one can easily show (the proof is left as an (~xercise) thP following: 

Lemma2.3.2tpip(o.l,····o..,) iff (2t,ILJ ..... n,) f=<J>. D 

This correspondence is rather convenient: wP oftpn do not nePd separatP 
treatment for sentencrs and formula<' with frPe variables. 

Most classical theorrrns from model theory fail iu the finite case, as will lw 
seen later. However, two fundamental facts- compactness and the LowPnheim
Skolem theorem - will he used to prove results about fiuit<~ models. To stat<' 
them, we need the following definition. 

Definition 2.4. A theory (over CJ) is a .set of sentences. A rT-stnu:tun~ 2t is a 
model of a theor·y T iff for every sentence <P ofT, the structmr 2t is a model 
of <P; that i.s, 2t f= <P. A theory T is called consistent if it has a model. 

Theorem 2.5 (Compactness). A theory T is wmistent iff ever-y finite .mb
set ofT is consi.stent. D 

Theorem 2.6 (Lowenheim-Skolem). If T has an infinite model. then it 
has a countable model. D 

In general, Theorem 2.1 allows one to construct a model of cardinality 
max{w, lrTI}, but we shall never deal with uncountable vocabulari(~S her<'. 

Compactness follows from the completeness theor-em, stating that T f= cp 
iff T f-- ip, where f-- refers to a derivation in a formal proof system. \\1<' shall 
see some other important corollariPs of this rPsult. 

We say that a sentence <P is sati8jiable if it has a model, and it is valid if it 
is true in every structure. These notions are closely wlated: </> is not valid iff 
--.<P is satisfiahk. It follows from completeness that tlw set of valid scntencPs is 
recursively enumerable (if you forgot th<' definition of recursivPly enunwrablP. 
it is given in the rwxt section). This is tru(' when one considers validity \Yith 
respect to arbitrary models; wP shall see later that validity owr finite modds 
in not recursively enumerable. 

Given two structures 2! and 23 of a rdational vocabulary CJ, a homouwr-
phi.sm between them is a mapping h : A ____, I3 such that for each constant 
symbol c in CJ, we hav(~ h ( c2l) = c~H, and for each k-ary rdation symbol R and 
a tuple (a 1 , ••• ,ak) E R 2t, the tuple (h(ot), .... h(ok)) is in J?'B. A hijectiV(' 
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homomorphism h whose inverse is also a homomorphism is called an isomor·
phisrn. If there is an isomorphism between two structures 21 and 23, we say 
that they are isomorphic, and we write 21 ~ 23. 

Next, we need the following basic definition of m-ary queries. 

Definition 2.7 (Queries). An m-ary query, m ;::: 0, on a-structures, is a 
mapping Q that associates with each structure 21 a subset of Am, such that 
Q is closed under isomorphism: if 21 ~ 23 via isomorphism h : A --+ B, then 

Q(23) = h(Q(21)). 
We say that Q is definable in a logic £ if there is a formula (f?(Xl, ... , x,) 

of £ in vocabulary a such that for every 21, 

If Q is definable by (f?, we shall also write (f?(21) instead of Q(21). Fur·ther

more, for a formula (f?(X, if)' we write (f?(21, b) for {a E Alai I 21 I= (f?( a, b)}. 

A very important special case is that of m = 0. We assume that A0 is a 
one-element set, and there are only two subsets of A0 . Hence, a 0-ary query is 
just a mapping from a-structures to a two-element set, which can be assumed 
to contain true and false. Such queries will be called Boolean. A Boolean query 
can be associated with a subset C ~ STRUCT[a] closed under isomorphism: 

21 E C iff Q(21) = true. 

Such a query Q is definable in a logic £ if there is an £-sentencE~ tJ> such that 
Q(21) = true iff 211= tJ>. 

An example of a binary (m = 2) query is the transitive closure of a graph. 
An example of a unary (m = 1) query is the set of all isolated nodes in a 
graph. An example of a Boolean (m = 0) query on graphs is planarity. 

2.2 Background from Automata and Computability 
Theory 

In this section we briefly review some basic concepts of finite automata and 
computability theory. 

Let E be a finite nonempty alphabet; that is, a finite set of symbols. The 
set of all finite strings over E will be denoted by E*. ~Te shall use s · s' to 
denote concatenation of two strings s and s'. The empty string is denoted by 
E. One commonly refers to subsets of E* as languages. 

A nondeterministic finite automaton is a tuple A= (Q, E, qo, F, 5) whew 
Q is a finite set of states, E is a finite alphabet, q0 E Q is the initial state, 
F ~ Q is the set of final states, and 5 : Q x E --+ 2Q is the transition function. 
An automaton is deterministic if l5(q, a)l = 1 for every q and a; that is, if 5 
can be viewed as a function Q x E --+ Q. 
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Let s = a 1 a2 ... a 71 be a string in E*. Define a run of A on s as a mapping 
r: {1, .... n} --+ Q such that 

• r(l) E r5(qo, at) (or r(l) = 6(q0 , at) if A is deterministic), and 

• r(i + 1) E r5(r(i), a;+I) (or r(i + 1) = 6(r'(i). ai+l) if A is determinist.ic). 

We say that a run is accepting if r(n) E F, and that A accepts s if there is 
an accepting run (for the case of a d<~terrninistic automaton, there is exactly 
one run for Pach string). The set of all strings accepted b~· A is dmtoted by 
L(A). 

A language L is called regular if there is a nondeterministic finit<~ autmna
ton A such that L = L(A). It is well known that for any n·gular languag<' L, 
one can find a deterministic finite automaton A such that L '-" L(A). 

Turing machines are the most gem~ral computing dPvices. Formally. a Tur
ing machine AI is a tuple (Q. E. Ll, 6, q0 , Qu., Q,), where 

• Q is a finite set of states; 

• E is a finit<~ input alphabet; 

• Ll is a finite tape alphabet; it contains E and a designated blank symbol 
'. _, 

• J: Q x .:1--+ 2Qx..:lx{f.,} is the transition function; 

• q0 E Q is the initial state; 

• Qa and Q,. are the sets of accepting and rejecting stat<~s rPSp<'ct.ively; \Ve 
require that Q" n Q, = 0. We rder to states in Q" U Q, as tlw halting 
states. 

A Turing machine is called deterministic if jr5(q. a) I= L for E'Y<'ry <f. a; that is, 
if 5 can be viewed as a function Q x Ll --+ Q x Ll x {f. r}. 

\Ve assume that Turing machin<~s han~ a one-way infinit<' tap<', and one 
head. A config'Uration of a Turing machine "U sp~:cifies tlH' contents of the 
tape, the state, and the position of tlw head as follows. Let the tapc contain 
symbols w 1 • w 2 , •. . , where w 1 E Ll is the symbol in tlH' ith position of thC' 
tape. Assume that the head is in position j, and n 2 j is such that for 
all n' > n, W 11 , = _ (the blank symbol). If M is in state q. W<' d(']lotc· this 
configuration by w1 Wz ... lL'j-1 rru·.J ... Wn. \Ve ddine the rdation (' f-- ~ C' as 
follows. If C = s · q ·a· s', where s. s' ELl*, nELl, and q if. C2u U Q,. th<•n 

• if (q'.b,f) E 5(q, a), then C f--11 s0 · q' · c · IJ. s', where s == ·'o · c (that is. o is 
replaced by b, tlw new state is q', and th<' !wad mow~s ldt: if s = ', tlwn 
C h q' · b · s'), and 

• if (q'. b. r·) E 6(q, a), then C f--~ .'i · b · q' · s' (that is. a is rcplac<'d by b. the 
new state is q', and the head mon~s right). 
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A configuration s · q · s' is accepting if q E Qa, and rejecting if q E Qr. 
Suppose we have a string s E E*. The initial configuration C(s) corre

sponding to this string is q0 · s; that is, the state is q0 , the head points to the 
first position of s, and the tape contains s followed by blanks. We say that s 
is accepted by !vi if there is a sequence of configurations Co, C 1 , ... , Cn such 
that Co= C(s), Ci f-- 0 Ci+1 ,i < n, and Cn is an accepting configuration. The 
set of all strings accepted by M is denoted by L(M). 

We call a subset L of E* recursively enumerable, or r. e. for short, if there 
is a Turing machine M such that L = L(M). 

Notice that in general, there are three possibilities for computations by a 
Turing machine !vi on input s: M accepts s, or M eventually enters a rejecting 
state, or M loops; that is, it never enters a halting state. We call a Turing 
machine halting if the last outcome is impossible. In other words, on every 
input, !vi eventually enters a halting state. 

We call a subset L of E* recursive if there is a halting Thring machine 
M such that L = L(M). Halting Thring machines can be seen as deciders for 
some sets L: for every string s, M eventually enters either an accepting or a 
rejecting state, which decides whether s E L. For that reason, one sometimes 
uses decidable instead of recursive. When we speak of decidable problems, we 
mean that a suitable encoding of the problem as a subset of E* for some finite 
E is decidable. 

A canonical example of an undecidable problem is the halting problem: 
given a Thring machine M and an input w, does M halt on w (i.e., eventu
ally enters a halting state)? In general, any nontrivial property of recursively 
enumerable sets is undecidable. One result we shall use later is that it is 
undecidable whether a given Turing machine halts on the empty input. 

2.3 Background from Complexity Theory 

Let L be a language accepted by a halting Turing machine !vf. Assume that 
for some function f : N---> N, it is the case that the number of transitions 1\;f 
makes before accepting or rejecting a string s is at most f (I s I), where l.sl is 
the length of .s. If M is deterministic, then we write L E DTIME(J); if M is 
nondeterministic, then we write L E NTIME(J). 

We define the class PTIME of polynomial-time computable problems as 

PTIME = U DTIME(nk), 
kEN 

and the class NP of problems computable by nondeterministic polynomial
time Turing machines as 

NP U NTIME(nk). 
kEN 
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The class coNP is defim~d as the class of languages whose complements an' 
in NP. Notice that PTIME is closed under complementation, but this is no1 
clear in the case of NP. We have PTIME c;;; NP n c:o~P, hut it is not known 
whE~ther the containment is proper, and whether ~p equals coNP. 

Now assume that f(n) 2 n for all n EN. Defin<~ DSPACE(f) as the class 
of languages L that are accepted by deterministic halting Turing machines 
AI such that for every string s, the length of the longest configuration of M 
that occurs during the computation on s is at most f( l.sl ). In other words. J\1 
does not use mow than f (Is I) cells of the tape. Similarly, \V(' define tlw class 
NSPACE(f) by using nondeterministic machines. We tlwn l<'t 

PSPACE U DSPACE(nk). 
~·E f\1 

In the case of space complexity, tlw nondeterministic case collaps<>s to tlw 
deterministic one: by Savitch's theorem, PSPACE = UAEN l\SPACE(n~ ). 

To define space complexity for sublinear functions f, we use a modd of 
Turing machin<~s with a work tape. In such a modPI, a machine AI has two 
tapes, and two heads. The first tape is the input tape: it stores the input, awl 
the machine cannot write on it (hut can move the head). The second tape is tlw 
work tape, which operates as the normal tap<~ of a Turing machine. \V<~ dPfinP 
the class NLoc: as the class of languages acc:eptPcl by such nondeterministic 
machines where the size of the work tape does not exceed O(log Is I). on tlw 
inputs. Likewise, we define the class DLOG as the c:lass of language accepted 
by deterministic: machines with the work tape, whPre at most O(log js I) cells 

of the work tape are used. 

Finally, we defiw~ the polynomial hiemrchy PH. Ld .2;(; == II(; = PTll\lE. 
E'' Define inductively Ef' = NP , _,, for i 2': 1. That is, languages in I-';' an' those 

accepted by a nondeterministic Turing machirw running in polynomial tim<' 
such that this machine can make "calls'' to another machine that computes 
a language in Df'_ 1 . Such a call is assumed to have unit cost. \"'e definp t lw 
class Ilf' as the class of languages whose c:omplenwnts are in Ef'. 

Notice that Ej = NP and Ifj' = coNP. \Ve define the polynomial hierar
chy as 

PH 

This will be suffici<mt for our purposes, but th<TC is another int<Testing dPfi
nition of PH in terms of alternating Turing machines. 

The relationship between the complexity classes we introduced is as fol
lows: 

DLoc C NLoc C PT1l\1E C { :r'JP } C PH 
coNP 

PSPACE. 
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None of the containments of any two consecutive classes in this sequence is 
known to be proper, although it is known that NLOG ~ PSPACE. 

We shall also refer to two classes based on exponential running time. These 
are 

EXPTIME = u DTIME(2nk) and NEXPTIME 
kEN 

Both of these contain PsPACE. 

U NTIME(2n\ 
kEN 

Later in the book we shall see a number of other complexity classes, in 
particular circuit-based classes AC0 and TC0 (which are both contained in 
DLoc). 

2.4 Bibliographic Notes 

Standard mathematical logic texts are Enderton (66], Ebbinghaus, Flum, and 
Thomas (61], and van Dalen [241]; infinite model theory is the subject of 
Chang and Keisler [35], Hodges [125], and Poizat [201]. Good references on 
complexity theory are Papadimitriou [195], Johnson [139], and Du and Ko 
(59]. For the basics on automata and computability, see Hopcroft and Ullman 
[126], Khoussainov and Nerode [145], and Sipser [221]. 
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Ehrenfeucht-Fra"isse Games 

We start this chapter by g1vmg a few examples of inexpressibility proofs, 
using the standard model-theoretic machinery (compactness, the Lowenheim
Skolern theorem). We then show that this machinery is not generally ap
plicable in the finite model theory context, and introduce the notion of 
Ehrenfeucht-Frai"sse games for first-order logic. We prove the Ehrenfeucht
Frai"sse theorem, characteri11ing the expressive power of FO via games, and 
introduce the notion of types, which will be central throughout the book. 

3.1 First Inexpressibility Proofs 

How can one prove that a certain property is inexpressible in FO? Certainly 
logicians must have invented tools for proving such results, and we shall now 
see a few examples. The problem is that these tools are not partirularly well 
suited to the finite context, so in the next section, we introduce a different 
technique that will be used for FO and other logics over finite models. 

In the first example, we deal with connectivity: given a graph C, is it 
connected? Recall that a graph with an edge relation E is connected if for 
every two nodes a, b one can find a number n and nodes c1 , ... , c~~. E V such 
that (a, c1 ), ( c1, c2 ), ... , ( C71 , b) are all edges in the graph. A standard model
theoretic argument below shows that connectivity is not FO-definable. 

Proposition 3.1. Connectivity of arbitrary graphs is not FO-definable. 

Proof. Assume that connectivity is definable by a sentence <P, over vocabulary 
(J = { E}. Let (J2 expand O" with two constant symbols, c1 and c2. For every 
n, let tf/n be the sentenre 

saying that then~ is no path of length n + 1 from c:1 to c2 . 

Let T be the theory 
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We claim that T is consistent. By compactrwss, we have to shmv that <'ver.v 

finite subset T' c:;; T is consistent. Indeed, let N be such that for all !f/, E T', 
n < N. Then a comwcted graph in which the shortest path from c 1 to c2 has 

length N + 1 is a model of T'. 
Since T is consistent, it has a model. Let l5 be a modd ofT. Then l5 is 

connected, but there is no path from c1 to c2 of l<~ngth 11, for an~· 11. This 

contradiction shows that connectivity is not FO-definahk D 

Does the proof above tdl us that FO, or relational calculus, cannot expn'ss 

the comwctivity test over finite graphs? l:nfortunatdy, it dol's not. \Vhile 

connectivity is not definable in FO over arbitm1·y graphs, the proof ahov<' 

leaves open the possibility that there is a first-order sentence' that COIT<'ctly 

tests connectivity only for finite graphs. But to prove the dC'sin'd r<'sult for 
relational <:alculus, one has to show irwxpressibility of cmmectivity over finitr 

graphs. 
Can one modify the proof above for finite models? An obvious way to do 

so would be to use compactness over finite graphs (i.e., if <'very finit<' subset 

of T has a finite model. then T has a finite rnodd), assuming this holds. 

Unfortunately, this turns out not to lw the casC'. 

Proposition 3.2. Compactness fails over .finite models: then~ is a them·y T 

snch that 

1. T has no finite models, and 

2. every finite .mbset ofT has a finite model. 

Pr-oof. \Ve assume that a = 0, and define A, as a sentPIH"C' stating that the 
universe has at least n distinct clements: 

3:r 1 ••• 3.r, 1\ --{r, = .ri). ( 3.]) 
ifJ 

Now T = {An In ~ 0}. Clearly, T has no finite model, hut for each finite subs<'t 
{ A711 , ••. , A, k } of T, a set whose cardinality excPeds all til<' n, · s is a mod d. [] 

However, sometimes a compactness argument works nicely in th<' finite 
contf~xt. We now consider a very important property, which will bP se<~n man;.· 

times in this book. We want to test if tlw cardinality of the univcrs(' is PV('Jl. 

That is, we arC' interested in query EVEN defined as 

I A I mod 2 = 0. 

Note that this only makes sense over finite' models; for infinit<' 12l the vahw of 
EVEN could be arbitrary. 
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Proposition 3.3. Assume that (J = 0. Then EVEN is not FO-dejinable. 

Proof. Suppose EVEN is definable by a sentence l]). Consider sentences 1\, (3.1) 
from the proof of Proposition 3.2 and two theories: 

By compactness, both are consistent. These theories only have infinite 
models, so by the Lowenheim-Skolem theorem, both have countable models, 
Qi1 and 2i2. Since (J = 0, the structures 2i1 and 2i2 are just countable sets, and 
hence isomorphic. Thus, we have two isomorphic models, 2i1 and 2i2, with 
2i1 f= l]) and 2i2 f= ,q>_ This contradiction proves the result. 0 

This is nice, but there is a small problem: we assumed that the vocabulary 
is empty. But what if we have, for example, (J = { <}, and we want to prove 
that evenness of ordered sets is not definable? In this case we would expand T1 

and T2 with axioms of ordered sets, and we would obtain, by compactness and 
Lowenheim-Skolem, two countable linear orderings 2i1 and 2i2 , one a model of 
l]), the other a model of ,q>_ This is a dead end, since two arbitrary countable 
linear orders need not be isomorphic (in fact, some can be distinguished by 
first-order sentences: think, for example, of a discrete order like (N, </ and a 
dense one like (Q, <) ). 

Thus, while traditional tools from model theory may help us prove some 
results, they are often not sufficient for proving results about finite models. We 
shall examine, in subsequent chapters, tools designed for proving expressivity 
bounds in the finite case. 

As an introduction to these tools, let us revisit the proof of Proposition 
3.3. In the proof, we constructed two models, 2i1 and 2i2, that agree on all 
FO sentences (since they are isomorphic), and yet compactness tells us that 
they disagree on l]), which was assumed to define EVEN - hence EVEN is not 
first-order. 

Can we extend this technique to prove inexpressibility results over finite 
models? The most straightforward attempt to do so fails due to the following. 

Lemma 3.4. For ever·y finite structure 2i, there is a sentence l])'2l such that 
23 F= q52t iff 23 ~ 2t. 

Proof. Assume without loss of generality that 2i is a graph: (J 

2i = ({a.1 •... , a.,}, E). Define l])'<t as 

Then 23 f= l])2l iff 23 ~ 2{. 

{E}. Ld 

0 
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In particular, every two finite structures that agree on all FO sentences 
are isomorphic, and hence agree on any Boolean query (as Boolean queries 
are closed under isomorphism). 

The idea that is prevalent in inexpressibility proofs in finite model the
ory is, nevertheless, very dose to the original idea of finding structures 2l 
and 'B that agree on all FO sentences but disagree on a given query. But 
instead of two structures, 2l and 'B, we consider two families of structures, 
{2lk I kEN} and {'Bk I kEN}, and instead of all FO sentences, WP consider 
a certain partition of FO sentences into infinitely many classes. 

In general, the methodology is as follows. Suppose we want to provP that 
a property P is not expressible in a logic .C. We then partition the set of all 
sentences of .C into countably many classes, .C[O], .C[l] ..... .C[kj .... (we shall 
see in Sect. 3.3 how to do it), and find two families of structures, {2lk I kEN} 
and {'Bk I k E N}, such that 

• 2lk f= <I> iff 'Bk f= <I> for every .C[k] sentence <I>; and 

• 2lk has property P, but 'Bk does not. 

Clearly, this would show P tf_ .C; it "only" remains to show what .C[k] is, 
and give techniques that help us prove that two structures agree on .C[k]. \V<> 
shall do precisely that in the rest of the chapter, for the case of .C = FO. and 
later for other logics. 

3.2 Definition and Examples of Ehrenfeucht-Fra"isse 
Games 

Ehrenfeucht-Frai"sse games give us a nice tool for describing <~xpressiveness of 
logics over finite models. In general, games are applicable for both finite and 
infinite models (at least for FO), but we have seen that in the infinite rase we 
have a number of more powerful tools. In fact, in some model theory texts. 
Ehrenfeucht-Frai"ssc games are only briefly mentioned (or even appear only 
as exercises), but in the finite case, their applicability makes them a rPntral 
notion. 

The idea of the game · for FO and other logics as well is almost invariably 
the same. There are two players, called the spoileT and the duplicator' (or, less 
imaginatively, player I and player II). The board of the game consists of two 
structures, say 2l and 'B. The goal of the spoiler is to show that thes<> two 
structures are different; the goal of the duplicator is to show that they are thP 
same. 

In the classical Ehrenfeucht-Frai:sse game, the players play a certain mun
ber of rounds. Each round consists of the following steps: 

1. The spoiler picks a structure (2l or 'B). 
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2. The spoiler makes a move by picking an element of that structure: either 
a E Qt or b E 23. 

3. The duplicator responds by picking an element in the other structure. 

An illustration is given in Fig. 3.1. The spoiler's moves are shown as filled 
circles, and the duplicator's moves as empty circles. In the first round, the 
spoiler picks 23 and selects b1 E 23; the duplicator responds by a 1 E Qt. In the 
next round, the spoiler changes structures and picks a 2 E Qt; the duplicator 
responds by b2 E 23. In the third round the spoiler plays b:3 E 23; the response 
of the duplicator is a3 E Qt. 

Since there is a game, someone must win it. To define the winning condition 
we need a crucial definition of a partial isomorphism. Recall that all finite 
structures have a relational vocabulary (no function symbols). 

Definition 3.5 (Partial isomorphism). Let Qt, 23 be two a-structur·es, 

wher·e (J is relational, and a = (a 1 ' ... ' an) and b = ( bl' ... ' bn) two tuples 
in Qt and 23 respectively. Then (a, b) defines a partial isomorphism between Qt 

and 23 if the following conditions hold: 

• For every i, j ~ n, 
iff b; = bj. 

• For every constant symbol c from a, and every i ~ n, 

a; = c21 iff b; = c'll. 

• For every k-ary relation symbol P from a and every sequence (i 1, ••• , ih-) 
of (not necessarily distinct) numbers from [1, n], 

( a; 1 , ... , a.;, ) E P 21 iff (b;" .. . , b;,) E p'll. 

In the absence of constant symbols, this definition says that the mapping 
a; f---+ b;, i ~ n, is an isomorphism between the substructures of Qt and 23 
generated by { 0.1, ... , 0.11 } and { b1, ... , bn}, respectively. 

After n rounds of an Ehrenfeucht-Fra"isse game, we have moves (a1 , ... , a 11 ) 

and (bl, ... 'b,). Let C}' ... 'Cz be the constant symbols in a; then c21 denotes 
( c~, ... , c~) and likewise for c'll. We say that (a, b) is a winning position for 
the duplicator if 

is a partial isomorphism between Qt and 23. In other words, the map that 
sends each a., into b; and each c~ into c'f is an isomorphism b<~tween 
the substructures of Qt and 23 generated by { a. 1 , ... , an, r~, ... , c~} and 
{ b1 , ... , b,, c~, ... , r('} respectively. 

We say that the duplicator has an n-round winning stmtegy in the 
Ehrenfeucht-Frai:sse game on Qt and 23 if the duplicator can play in a way 
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0]0 • hi 

a'2 • 0 b'2 

O:Jo •h:l 

(1'2t= =c'E 

Fig. 3.1. Ehrenfeucht-Frai'sse game 

that guarantees a winning position after n rounds, no rnatt<~r how the spoiler 
plays. Otherwise, the spoiler has ann-round winning strategy. If the <luplica
tor has an n-round winning strategy. we write 1.2{ =" 23. 

Observe that 2t =n 23 implies 2t =k 23 for CV<'ry J.· S:: n. 
Before we connect Ehrenfeucht-Frai"sse games and FO-ddinability, \Ve give 

some exampk~s of vv-inning strat<~gi<~s. 

Garnes on Sets 

In this example, the vocabulary rr is <~rnpty. That is, a structure is just a set. 
Let IAI, IBI ~ n. Then A =n n. 

The strategy for the duplicator works as follows. Suppose i rounds have 
been played, and the position is ( ( o 1 , .... a;). ( b 1 1 ••• 1 b;)). Assume the spoiler 
picks an element ai+J E A. If lli+l = a.J for j :S i, th<m the duplicator 
responds with bi+ 1 = bJ; othenvise, the duplicator responds w·ith any b.J+I E 
B- { b11 •••• b;} (which exists sine<~ I B I~ n ). 

Garnes on Linear· 0Tders 

Our next example is a bit more cornplicat<·cl, as \V<' add a binar~· rdation < 
to rr, to be interpreted as a linear ord<~r. Now suppose L 1 . L 2 arc two lin<'ar 
orders of size at least n (i.e., structures of tlw form ( { 1 ..... m} 1 <), m ~ n.). 
Is it true that L 1 =o L 2 ? 

It is very easy to sec that the answer is negative ewn for tlw case of n = 2. 
Let L 1 contain three elements (say { 11 2. 3}) 1 and L 2 two d<'ments ( { 1. 2}). In 
the first move, the spoiler plays 2 in L 1. The duplicator has to respond with 
Pither 1 or 2 in L 2 . Suppos<~ the duplicator responds wit b I E L 2 ; tlwn the 
spoiler plays 1 E L 1 and the duplicator is lost, since he has to r<'spond with 
an element less than 1 in L 1, and there is no such element. If the duplicator 
selects 2 E L 2 as his first-round move, the spoiler plays ;:; E L 1 • and the 
duplicator is lost again. Henc<', L 1 =j2 L 2 • 

However, a winning strategy for the duplicator can be guaranh'<'d if L 1 • L 2 

are much larger than the number of rounds. 
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> 2k-i 

d > 2k-(i+I) 

£1 
aj ai+l az aj 

£2 
bj bi+l bz 

d ) 2k-(L+J) 

) 2k-i 

(a) d < 2k-(i+l) (b) 

Fig. 3.2. Illustration for the proof of Theorem 3.6 

Theorem 3.6. Let k > 0, and let £ 1 , £ 2 be linear order·s of length at least 2'. 
Then L1 =k £2. 

We shall give two different proofs of this result that illustrate two different 
techniques often used in game proofs. 

Theorem 3. 6, Pmof # 1. The idea of the first proof is as follows. We use 
induction on the number of rounds of the game, and our induction hypothesis 
is stronger than just the partial isomorphism claim. The reason is that if we 
simply state that after 'i rounds we have a partial isomorphism, the induction 
step will not get off the ground as there are too few assumptions. Hence, we 
have to make additional assumptions. But if we try to impose too many con
ditions, there is no guarantee that a game can proceed in a way that preserves 
them. The main challenge in proofs of this type is to find the right induction 
hypothesis: the one that is strong enough to imply partial isomorphism, and 
that has enough conditions to make the inductive proof possible. 

We now illustrate this general principle by proving Theorem 3.6. We ex
pand the vocabulary with two new constant symbols min and max, to be 
interpreted as the minimum and the maximum element of a linear ordering, 
and we prove a stronger fact that £1 =k £2 in the expanded vocabulary. 

Let £ 1 have the universe { 1, ... , n} and £ 2 have the universe { 1, .... m}. 
Assume that the lengths of L 1 and £ 2 are at least 2''; that is, n, m :::> 2k + 1. The 
distance between two elements x, y of the universe, d( :r, y), is simply I x - .tJ I· 
We claim that the duplicator can play in such a way that the following holds 
after each round i. Let r1 = ( a_l, oo, o1, ... , a;) consist of o-1 = min£ 1 , oo = 
max£ 1 and the 'i moves a 1 •...• Oi in £ 1 , and likewise let b = (b_ 1 , bo, b1 .... , /1;) 

consist of b_ 1 = minL", b11 = max£2 and the i moves in £ 2 • Then, for -I <::; 
j, l s; i: 
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1. ifrl(o1 ,at) <2'-i· thend(hJ"ht)=d(o1 Jlt). 
2. if d(ai, a1) 2: 2'-'. then d(b1 • 1!1) 2: 21. ;_ 
3. a1 S: o, {===? bi S: bt. 

We prove (3.2) by induction; notice that the third condition ensures partial 
isomorphism, so we do prove an induction statement that says more than just. 
maintaining partial isomorphism. 

And now a simple proof: the base case of i = 0 is immediate since 
d(a_ 1 , a 0 ), d(b __ 1 , b0 ) 2: 2" by assumption. For the induction step, suppose 
the spoiler is making his (i + l)st move in L 1 (the case of L 2 is s.vmmdric). 
If tlw spoiler plays one of a1 ,j S: i, the n~sponse is bJ, and all thc conditions 
are trivially preserved. Otherwise, t hc spoiler's move falls into an int PnaL say 
a.J < a;+ 1 < u 1, such that no other pn~viously played rnov<·s ar<' in the same 
interval. By mndition 3 of (3.2), this means that the interval hPtw<'<'n h 1 and 
bt contains no other clements of b. Th<•re are t\YO cases: . 

• d( a1 , at) < 2'-;. Then d(b1 , ht) = d( o 1 , at), and the int<·nals [u1. u 1] and 
[111 , l1,] are isomorphic. Then we simply find b;+ 1 so that rf,: u 1 • u, + 1) = 
d(b1 ,h;+l) and d(ai+l,at) = d(h, 1 1 ,bt). Clearly, this ensm<•s that all the 
conditions in (3.2) hold. 

• d( a1 , o 1) 2: '2k-i. In this cas<' d( b1 , 1!1) 2: 2'-;. \Ve have thre<' possihilitiPs: 

1. d(a1 ,a;+t) < 2'·-(i+l)_ Th<m d(a;+ 1 .az) 2: 2"-(,+ll, and w<' can choose 
b;+J so that d(bj,bi+l) = d(a.~,a;+I) and d(b;+ 1.b1)? :zk--(,+l) This 
is illustrated in Fig. 3.2 (a), where d stands for d(aJ" u,+ 1 ). 

2. d(a;+ 1 ,a1) < 2k-(i+l)_ This case is similar to the pn•vious one. 
3. d(a1 , a;+ I) 2: 21.-(,+IJ, d(ai+l, at) 2: 21.-(,+IJ. Since d(h.~.IJt) 2: 2k-i, 

by choosing b;+ 1 to be the middle of the interval [bi. bt] W<' ensur<' 
that d(bi.b+J) 2: 2k-(i+l) and d(b,~ 1 .h1 ) ? 21.-(i+IJ_ This cas<' is 
illustrated in Fig. 3.2 (b). 

Thus, in all the cases, (3.2) is preserved. 
This completes the inductive proof; henc<~ W<' havr' shown that the dupli-

cator can win a !.:-round EhrPnfeucht-Frai:sse gam<' on L 1 and L 2 . D 

Theorem 8.6, Pmof # 2. The second proof n~li<'S on the composition 
method: a way of composing simpler games into mon• complicated ones. 

Before we proceed, we make the following observation. Suppose L 1 '=1. /, 2 . 

Then we can assunH~, without loss of generality, that the duplicator has a 
\vinning strategy in which lw responds to the minimal dement of one ordering 
by the minimal e!Prnent of the other ordering (and likewise for the maximal 
dements). 

Indeed, suppose the spoikr plays min L,, the minimal dement of L 1 . If t hP 
duplicator responds hy b > min L 2 and then• is at kast one round lPft. tlH'n 
in the next round the spoiler plays mir/' 2 and the duplicator loses. If this is 
the last round of the game, then the duplicator can respond by any Plenl<'nt 
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that does not exceed those previously played in L 2 , in particular, minL2 • The 
proof for other cases is similar. 

Let L be a linear ordering, and a E L. By LS,a we mean the substructure 
of L that consists of all the elements b ~ a, and by L?.a the substructure of L 
that consists of all the elements b ;::: a. The composition result we shall need 
says the following. 

Lemma 3.7. Let L1, L2, a E L1, and bE L2 be such that 

L S,a L<b 
1 =k 2 

Proof of Lemma 3. 7. The strategy for the duplicator is very simple: if the 
·1 1 . L<a h d 1· h . . c L<a L<b spm er p ays m 1 , t e up 1cator uses t e wmnmg strategy 10r 1 =k 2 , 

and if the spoiler plays in Lr, the duplicator uses the winning strategy for 
L'fa =k L~b (the case when the spoiler plays in L 2 is symmetric). By the 
remark preceding the lemma, the duplicator always responds to a by b and 
to b by a, which implies that the strategy allows him to win in the k-round 
game on (L1, a) and (L 2 , b). 0 

And now we prove Theorem 3.6. The proof again is by induction on k, and 
the base case is easily verified. For the induction step, assume we have two 
linear orderings, L1 and L 2 , of length at least 2k. Suppose the spoiler plays 
a E L 1 (the case when the spoiler plays in L 2 is symmetric). We will show 
how to find bE L2 so that (L1 , a) =k-1 (L2, b). There are three cases: 

• The length of L(a is less than 2k- 1 . Then let b be an element of L 2 
such that d(minL 1 ,a) = d(minL 2 ,b); in other words, L(a ~ L'i§:b. Since 
the length of each of L'fa and L~b is at least 2k- 1 , by the induction 
hypothesis, Lr =k-1 L~b· Hence, by Lemma 3.7, (L1 , a) =k- 1 (L2 , b). 

• The length of L'fa is less than 2k- 1 . This case is symmetric to the previous 
case. 

• The lengths of both L(a and L'fa are at least 2k- 1 . Since the length of L 2 
is at least 2k, we can find b E L 2 such that the lengths of both L~b and 
L~b are at least 2k-l. Then, by the induction hypothesis, L(a =k-l L~b 
and L'fa =k-1 L~b' and by Lemma 3.7, (L1, a) =k-1 (L2, b). 

Thus, for every a E L 1 , we can find bE L 2 such that (L1 , a) =k- 1 (L 2 , b) (and 
symmetrically with the roles of L1 and L 2 reversed). This proves L1 =k L 2 , 

and completes the proof of the theorem. 0 
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3.3 Games and the Expressive Power of FO 

And now it is time to sec why games are important.. For this, we neC'd a nurial 
definition of quantifier rank. 

Definition 3.8 (Quantifier rank). The quantifier rank of a formula qr(cp) 
is its depth of quantifier· nesting. That is: 

• If cp is atomic, then qr(cp) = 0. 

• qr(rp, Vcp2) = qr(cp, 1\ c,?2) = max(qr(rp,).qr(cp2)). 

• qr(•rp) = qr(cp). 

• qr(:..J:rcp) = qr('li:rcp) = qr(cp) + 1. 

We usc the notation FO[k] for- all FO for-mulae of quantifier- mnk np to k. 

In general, quantifier rank of a formula is different from the total of mim
her of quantifiers used. For cxampk, we can define a family of formula<' hy 
induction: do(x, y) = E(x. y), and <h = :..Jz d,_, (.1:. z) 1\ <h- 1 (z. y). The quall
tifier rank of dk is k, but tlw total number of quantifiers used in d, is 2" - I. 
For formulae in th<' prenex form (i.e .. all quantifiers ar!' in front. follmvcd by 
a quantifier-free formula), quantifi<~r rank is the' same as the total numlH'r of 
quantifiers. 

Given a set S of FO sentences (over vocabulary IT), we say that t\vo IT
structures 2l and 'B agr-ee on S if for every s<~nt<mee <P of S'. it is tll<' rase that 
2l F= <P <=? 'B F= $. 

Theorem 3.9 (Ehrenfeucht-Fralsse). Let 2l and 'B be two str·v.ctun:s in a 
r-elational vocabular-y. Then the following ar·e equivalent: 

1. 2l and 'B agr-ee on FO[k]. 

2. 2( =k 'B. 

\Vc will prove this theorem shortly, but first w<~ discuss how this is useful 
for proving irwxpressibility results. 

Characterizing the Pxpressivc power of FO via games gives ris<' to the 
following methodology for proving inexpn~ssibility rPsults. 

Corollary 3.10. A pmper-ty P of finite IT-str-uctnn;s is not expressihl<' inFO 
if for· ever-y k E N, then: exist two finite IT-str-uctnn;s, 21,. and 'B~c, snch that: 

• 21,. =k 'B,, and 

• 2lk has pmper-t:IJ P. and 'B, does not. 



3.4 Rank-k Types 33 

Proof. Assume to the contrary that P is definable by a sentence <P. Let k = 

qr( <P), and pick Qlk and IBk as above. Then Qlk =k lEA, and thus if Qlk has 
property P, then so does IBk, which contradicts the assumptions. D 

We shall see in the next section that the if of Corollary 3.10 can be re
placed by iff; that is, Ehrenfeucht-Fra!sse games are complete for first-order 
definability. 

The methodology above extends from sentences to formulas with free vari
ables. 

Corollary 3.11. An m-ary query Q on a-structures is not expressible inFO 
iff for every k E N, there exist two finite a-structures, Qlk and IBk, and two 

m-tuples a and b in them such that: 

• (Qlk, a) =~.: (IBk, b), and 

• a E Q(Qli.) and b tf. Q(IBk)· D 

We next see some simple examples of using games; more examples will 
be given in Sect. 3.6. An immediate application of the Ehrenfeucht-Fra!sse 
theorem is that EVEN is not FO-expressible when a is empty: we take Qll .. 

to contain k elements, and IBk to contain k + 1 elements. However, we have 
already proved this by a simple compactness argument in Sect. 3.1. But we 
could not prove, by the same argument, that EVEN is not expressible over 
finite linear orders. Now we get this for free: 

Corollary 3.12. EVEN is not FO-expressible over linear orders. 

Proof. Pick Qlk to be a linear order of length 2k, and IB~.: to be a linear order 
of length 2"· + 1. By Theorem 3.6, Qll.: =A- IBk· The statement now follows from 
Corollary 3.10. D 

3.4 Rank-k Types 

We now further analyze FO[k] and introduce the concept of types (more pre
cisely, rank-k types). 

First, what is FO[O]? It contains Boolean combinations of atomic fornm
las. If we arc interested in sentences in FO[O], these are precisely atomic 
sentences: that is, sentences without quantifiers. In a relational vocabulary, 
such sentences are Boolean combinations of formulae of the form c = c' and 
R( c1, ... , ck), where c, c', ci, ... , ck are constant symbols from a. 

Next, assume that 'P is an FO[k + 1] formula. If 'P = 'PI V zp2 , then both 
'PI, zp2 are FO[k + 1] formulae, and likewise for /\; if 'P = ''PI, then zp 1 E 

FO[k + 1]. However, if 'P = 3x1j; or 'P = \lx'lj;, then 1j; is an FO[k] formula. 
Hence, every formula from FO[k + 1] is equivalent to a Boolean combination 
of formulae of the form 3x'lj;, where 1j; E FO[k]. Using this, we show: 



34 3 Ehrenfeucht-Fralsse Games 

Lemma 3.13. If CJ is finite, then up to logical equivalence, FO[k] over· CJ con
tains only finitely many formulae in m free var·iables J: l· ..... r, 11 • 

Proof. The proof is by induction on k. The base case is FO[O]; then' an' 
only finitely many atomic formulae, and hence only finitely many Boolean 
combinations of those, up to logical equivalence. Going from k to /,: + 1, recall 
that each formula <P(x1 , •.• , :r711 ) from FO[k + 1] is a Boolean combination of 
::lxm+l '!j;(xl, ... , x 111 , Xm+t), where 7/) E FO[k]. By the hypothesis, the numlwr 
of FO[k] formulae in rn + 1 free variables :r1 .... , :rw+ 1 is finite (up to logical 
equivalence) and hence the same can be concluded about FO[k + 1] formulas 
in rn free variables. D 

In model theory, a type (or rn-type) of an rn-tuple a over a CJ structure Ql 
is the set of all FO formulae <Pin m free variables such that Ql f= cp(a). This 
notion is too general in our setting, as the type of a over a finite Ql describes 
(Ql, ii) up to isomorphism. 

Definition 3.14 (Types). Fix a relational vocabulary (J. Let Ql be a (]"
structure, and ii an m-tuple over· A. Then the rank-k m-type of a over Ql 
is defined as 

tpk(m, a) = { 'P E FO[kJI m F= <P(a)}. 

A rank-k rn-type is any set of formulae of the form tp~,:(Ql, a)' wher·e I a I= m. 
When rn is clear from the context, we speak of rank-/; types. 

In the special case of rn = 0 we deal with tph: (Ql), defined as tlw set of 
FO[k] sentences that hold in Ql. Also note that rank-k types arP maximally 
consistent sets of formulae: that is, each rank-k type S is consistent, and for 
every <P(x1 , ... , X 111 ) E FO[k], either <P E S or ''? E S. 

At this point, it seems that rank-k types arc inherently infinite objects, hut 
they are not, because of Lemma 3.13. We know that up to logical ~~qui valence, 
FO[k] is finite, for a fixed number m of free variables. Let <P 1 (Y) . ... , <P J\1 (.7) 
enumerate all the nonequivalent formulae in FO[k] with free variables .F = 
(x1 , ... , xm)· Then a rank-k type is uniquely determined by a subset K of 
{1, ... , 1\-1} specifying which of the <P;'s belong to it. Moreover, testing that :r 
satisfies all the <Pi's with i E K and does not satisfy all the Pi's with j t/ 1\ 
can be done by a single formula 

1\ <Pi 1\ 1\ '<PJ. (3.3) 
iEK jt/cX 

Note that ax (x) itself is an FO[k] formula, since no new quantifiers were 
introduced. 

Furthermore, all the aK's are mutually exclusive: for J( -I- K', if Ql f= 
ax(ii), then Ql f= 'ax,(ii). Every FO[k] formula is a disjunction of some of 
the ax's: indeed, every FO[k] formula is equivalent to some <Pi in the above 
enumeration, which is the disjunction of all a K 's with i E K. 

Summing up, we have the following. 
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Theorem 3.15. a) For· a finite r-elational vocabulary O", the number of differ·
ent mnk-k m-types is finite. 

b) Let T 1, ••• , Tr enumemte all the mnk-k m-types. There exist FO[k:] for
mulae a 1 (x), ... , a,.(x) .mch that: 

• for every Qt and a E A 111 , it is the case that Qt f= ai(a) iff tpdl.2t, 17) = T;, 
and 

• every FO[k] formula ip(x) in m free variables is equivalent to a disjunction 
of some a;. 's. 

Thus, in what follows we normally associate types with their defining for
mulae a/s (3.3). It is important to remember that these defining formulae for 
rank-k types have the same quantifier rank, k. 

From the Ehrenfeucht-Frai:sse theorem and Theorem 3.15, we obtain: 

Corollary 3.16. The equivalence relation =k is of finite index {that is, has 
finitely many equivalence classes). 

As promised in the last section, we now show that games are complete for 
characterizing the expressive power of FO: that is, the if of Corollary 3.10 can 
be replaced by iff. 

Corollary 3.17. A proper·ty P is expressible inFO iff there exists a number· 
k such that for every two structures Qt, 23, if Qt E P and Qt = k 23, then 23 E P. 

Proof. If Pis expressible by an FO sentence if>, let k = qr(tf>). If Qt E P, 
then Qt f= if>, and hence for 23 with Qt =k 23, we have 23 f= if>. Thus, 23 E P. 

Conversely, if Qt E P and Qt ="' 23 imply 23 E P, then any two structures 
with the same rank-k type agree on P, and hence Pis a union of types, and 
thus definable by a disjunction of some of the ai 's defined by (3.3). D 

Thus, a property P is not expressible in FO iff for every k, one can find 
two structures, Qtk =" 23"' such that Qtk has P and 23k does not. 

3.5 Proof of the Ehrenfeucht-Fralsse Theorem 

We shall prove the equivalence of 1 and 2 in the Ehrenfeucht-Frai:sse theorem, 
as well as a new important condition, the back-and-forth equivalence. Before 
stating this condition, we briefly analyze the equivalence relation =o. 

When does the duplicator win the game without even starting? This hap
pens iff (0, 0) is a partial isomorphism between two structures Qt and 23. That 
is, if cis the tuple of constant symbols, then c~ = c~ iff c'f" = c'f for evf~ry 

i, j, and for each relation symbol R, the tuple ( c~, ... , c~) is in R 21 iff the 

tuple (c~, ... , r:'f;J is in R'B. In other words, (0, 0) is a partial isomorphism 
between Qt and 23 iff Qt and 23 satisfy the same atomic sentences. 
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We now usc this as the basis for the inductive definition of hack-and-forth 

relations on 21 and 23. More precisely, we define a family of relations r::::~, on 

pairs of structures of the same vocabulary as follows: 

• 21 r::::o 23 iff 21 =o 23; that is, 21 and 23 satisfy the same atomic scntPnccs. 

• 21 ':'::'k+J 23 iff the following two conditions hold: 

forth: for every a E A, there exists bE B such that (21. a) ':'::'1, ('B, IJ); 

back: for every bE JJ, there exists a E A such that (21, a) ':'::',. (23. b). 

'Ve now prow the following extension of Theorem 3.9. 

Theorem 3.18. Let 21 and 23 be two structures in a r-elational '/J{)(:abu,lar-;tJ (J. 

The-n the following are equ.ivalent: 

1. 21 and 23 agree on FO[k]. 

2. 21 =k 23. 

s. 21 ':'::'~; 23. 

Proof. By induction on k. The case of k = 0 is obvious. W(• first show the 

equivalence of 2 and 3. Going from k to k + 1, assunH' 21 ':'::'k-1-l 23; we must 

show 21 =h+ 1 23. Assume for the first move the spoiler plays a E A: we find 

b E 23 with (21, a) ':'::'1, (23, b), and thus by the hypotlwsis (21, a) =~, (23, b). 

Hence the duplicator can continue to play for k moves, and thus wins the 

k + 1-rnove game. The other direction is similar. 

With games replaced by the back-and-forth relation, we show the equiva

lence of 1 and 3. Assume 21 and 23 agree on all quantifier-rank J.: + 1 scntPnces: 

we must show 21 '::'A:+ 1 23. w(~ prove the for·th case; the back case is identical. 

Pick a E A, and let ni define its rank-k 1-type. Then 21 ~ 3.ux.;(.I:). Sim:P 

qr( ai) = k, this is a sentence of quantifier-rank k + 1; hence 23 ~ =j:ro; (.1:). L<'t 

h be the witness for the Pxistential quantifier; that is, tpk(21, a) = ipA_(23, h). 

Hence for every (Jl sentence l]J of qr(tJ!) = k, we have (21, a) ~if/ iff (23, b) ~ ![t, 

and thus (21, a) and (23, b) agree on quantifi<>r-rank k sentences. By the hy

pothesis, this implies (21, a) r::::~;: (23, b). 
For the implication 3 ____, 1, we need to prove that 21 ':'::''+ L 23 impli<~s that 21 

and 23 agree on FO[k + 1]. Every FO[k + 1] sentencP is a Boolean combination 

of 3x<p(x), where <p E FO[k], so it suffices to prove the result for sentences of 

the form 3x<p(x). Assume that 21 ~ 3;r;y(:r), so 21 ~ cp(a) for some a EA. By 

forth, find bE B such that (21,a) ':'::'' (23,b); hence (21,a) and (23.b) agr<'<' 

on FO[k] by the hypothesis. Hence, 23 ~ <p(IJ), and thus 23 ~ :=J:rcp(.1·). Th<' 

converse (that 23 ~ 3:rcp(:r) implies 21 ~ 3J:<p(:r)) is identical, which complPt<~s 

the proof. 0 



3.6 More Inexpressibility Results 37 

Fig. 3.3. Reduction of parity to connectivity 

3.6 More Inexpressibility Results 

So far we have used games to prove that EVEN is not expressible in FO, in 
both ordered and unordered settings. Next, we show inexpressibility of graph 
connectivity over finite graphs. In Sect. 3.1 we used compactness to show that 
connectivity of arbitrary graphs is inexpressible, leaving open the possibility 
that it may be FO-definable over finite graphs. We now show that this cannot 
happen. It turns out that no new game argument is needed, as the proof uses 
a reduction from EVEN over linear orders. 

Assume that connectivity of finite graphs is definable by an FO sentence 
tf>, in the vocabulary that consists of one binary relation symbol E. Next , 
given a linear ordering, we define a directed graph from it as described below. 
First, from a linear ordering < we define the successor relation 

succ(x,y) = (x < y) 1\ Vz((z::; .1:) V (z;::: y)). 

Using this, we define an FO formula !' (x , y) such that !' (x , y) is true iff one of 
the following holds: 

• y is the successor of the successor of x: 3z ( succ( x, z) 1\ succ( z, y)), or 

• x is the predecessor of the last element, and y is the first element: 
(3z (succ(x,z ) 1\ \lu(u::; z ))) 1\ \lu(y::; u), or 

• x is the last element and y is the successor of the first element (the FO 
formula is similar to the one above). 

Thus, !' (x , y) defines a new graph on the elements of the linear ordering; the 
construction is illustrated in Fig. 3.3. 

Now observe that the graph defined by /' is connected iff the size of the 
underlying linear ordering is odd. Hence, taking ---.1> , and substituting /' for 
every occurrence of the predicate E, we get a sentence that tests EVEN for 
linear orderings. Since this is impossible, we obtain the following. 

Corollary 3.19. Connectivity of finite graphs is not FO-definable. 
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Fig. 3.4. Graphs GL and G{ 

So far all the examples of inexpressibility results proved via EhtTufeuc:ht
Frai:sse games were fairly simple. Unfortunatcly, this is a rather mmsuai situa
tion; typically game proofs are hard, and often some nontrivial combinatorial 
arguments arc required. We uow present a11 additional example of a gam e 
proof, as well as a few mow problems that could possibl.Y be handled by 
games, but are bettE~r left until we have sccu rnore powerful techniqtws. TlH~s<' 
show how the difficulty of game proofs can rapidly im:reas<· as tlw probl<'II1S 
become more complex. 

Suppose that we want to test if a graph is a tree. By trees we nwa.n dircct<•d 
rooted trees. This s<,ems to be impossible inFO. To prove this, we follow th<' 
general methodology: that is, for each k we must find two graphs. r:L = ~.- c:f. 
such that one of them is a tree, and the ot.lwr one is not. 

We choose t.Jwse graphs as follows: CL is tlw graph of a successor r<'lation 
of length 2·m., aud Gf. has two connected components: one is the graph of a 
successor relation of length m, and the other o11e is a cycle of length 111. Vvc 
did not say what m. is, and it will be ch'ar fro1n the proof what it should he: 
at this point we just say that rn. depends only 011 A: , and is sufficientJ.Y la.rg<'. 

Clearly Gl is a. tree (of degree 1), and Gx is not , so wP must. show UL =., 
Gf,. In each of these two graphs there an~ two special points: t he start. and 
the endpoint of the successor relation. Clearly these must be preserved in tlw 
game, so we may just assume t hat the game starts in a positio11 when· these 
points were played. That is, we let a _ 1. a0 be the start and t.lw endpoint of 
Gl, and b_ 1, b0 lw the start and the endpoint of the successor part of Gf.. \V<· 
let a; 's stand for the points played in G L, and b.;'s for tlH' points played in Gf. 

What do we put in the inductive hypothesis'? The approach we take is 
very similar to the first proof of Theorem 3.6. We define t.lw dist.ance bN.ween 
two clements as the length of tlw shortest path betwPen tlwm. Notice that in 
the case of Gi, the distanc<~ muld be infinity, as the graph has two comwcted 
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components. We then show that the duplicator can play in a way that ensures 
the following conditions after each round i: 

1. if d(a1 ,at):::; 2k-i, then d(b1 ,bt) = d(a1 ,at). 
2. if d( a1, at) > 2k-i, then d(b1, bt) > 2k-i. 

(3.4) 

These are very similar to conditions (3.2) used in the proof of Theorem 
3.6. 

How do we prove that the duplicator can maintain these conditions? Sup
pose i rounds have been played, and the spoiler makes his move in round i + 1. 
If the spoiler plays close (at a distance at most 2k-(i+l)) to a previously played 
point, we can apply the proof of Theorem 3.6 to show that the duplicator has 
a response. 

But what if the spoiler plays at a distance greater than 2k-(i+l) from all 
the previously played points? In the proof of Theorem 3.6 we were able to place 
that move into some interval on a linear ordering and use some knowledge of 
that interval to find the response - but this does not work any more, since our 
graphs now have a different structure. Nevertheless, there is a way to ensure 
that the duplicator can maintain the winning conditions: simply by choosing 
m "very large", we can always be sure that if fewer than k rounds of the 
game have been played, there is a point at a distance greater than 2k-(i+l) 

from all the previously played points in the graph. We leave it to the reader 
to calculate m for a given k (it is not that much different from the bound we 
had in Theorem 3.6). 

Thus, the duplicator can maintain all the conditions (3.4). In the proof of 
Theorem 3.6, one of the conditions of (3.2) stated that the moves in the game 
define a partial isomorphism. Here, we do not have this property, but we can 
still derive that after k rounds, the duplicator achieves a partial isomorphism. 
Indeed, suppose all k rounds have been played, and we have two elements ai, a1 
such that there is an edge between ai and a1. This means that d( ai, a1) = 1, 
and, by (3.4), d(bi,bJ) = 1. Therefore, there is an edge between bi and bi. 
Conversely, let there be an edge between bi and bj. If there is no edge between 
ai and aj, then d(ai,aj) > 1, and, by (3.4), d(bi,bj) > 1, which contradicts 
our assumption that there is an edge between them. 

Thus, we have shown that Gl =kG%, which proves the following. 

Proposition 3.20. It is impossible to test, by an FO sentence, if a finite 
graph is a tree. D 

This proof is combinatorially slightly more involved than other game proofs 
we have seen, and yet it uses trees with only unary branching. So it does not 
tell us whether testing the property of being an n-ary tree, for n > 1, is 
expressible. Moreover, one can easily imagine that the combinatorics in a 
game argument even for binary trees will be much harder. And what if we are 
interested in more complex properties? For example, testing if a graph is: 
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• a balanced binary tree (the branching factor is 2, and all the maximal 
branches arc of the same length); 

• a binary tree with all the maximal branches of different length; 

• or even a bit different: assuming that we know that the input is a binary 
tree, can we check, in FO, if it is balanced? 

It would thus be nice to have some easily verifiable criteria that guarantee 
a winning strategy for the duplicator, and that is exactly what we shall do in 
the next chapter. 

3. 7 Bibliographic Notes 

Examples of using compactness for proving some very easy inexpressibility 
results over finite models are taken from Viiiiniinen [239] and Gaifman and 
Vardi [89]. 

Characterization of the expressive power of FO in terms of the bark-and
forth equivalence is due to Frai"ssc [84]; the game description of the bark-and
forth equivalence is due to Ehrenfeucht [62]. 

Theorem 3.6 is a classical application of Ehrenfeucht-Frai"sse games, and 
was rediscovered many times, cf. Gurevich [117] and Rosenstein [209]. The 
composition method, used in the second proof of Theorem 3.6, will be dis
cussed elsewhere in the book (e.g., exercise 3.15 in this chaptPr, as well as 
Chap. 7). For a recent survey, see Makowsky [177]. 

The proof of inexpressibility of connectivity is standard, see, e.g., [60, 133]. 
Types are a central concept of model theory, see [35, 125, 201]. The proof 

of the Ehrenfeucht-Frai"sse theorem given here is slightly different from the 
proof one finds in most texts (e.g., [60, 125]); an alternative proof using what 
is called Hintikka formulae is presented in Exercise 3.11. 

Some of the exercises for this chapter show that several classical theorems 
in model theory (not only compactness) fail over finite models. For this line of 
work, see Gurevich [116], Rosen [207], Rosen and Weinstein [208], Feder and 
Vardi [78]. 

Sources for exercises: 
Exercise 3.11: Ebbinghaus and Flum [60] 
Exercises 3.12 and 3.13: Gurevich [116] 
Exercise 3.14: Ebbinghaus and Flum [60] 
Exercise 3.17: Cook and Lin [41] 
Exercise 3.18: Pezzoli [199] 
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3. 8 Exercises 

Exercise 3.1. Use compactness to show that the following is not FO-expressible 
over finite structures in the vocabulary of one unary relation symbol U: for a struc

ture Ql, both I um I and I A - U~1 I are even. 

Exercise 3.2. Prove Lemma 3.4 for an arbitrary vocabulary. 

Exercise 3.3. Prove Corollary 3.11. 

Exercise 3.4. Using Ehrenfeucht-Fra.lsse games, show that acyclicity of finite 
graphs is not FO-definable. 

Exercise 3.5. Same as in the previous exercise, for the following properties of finite 

graphs: 

1. Planarity. 
2. Hamiltonicity. 
3. 2-colorability. 
4. k-colorability for any k > 2. 
5. Existence of a clique of size at least n/2, where n is the number of nodes. 

Exercise 3.6. We now consider a query closely related to EVEN. Let rr be a vo
cabulary that includes a unary relation symbol U. We then define a Boolean query 
PARITYu as follows: a finite rr-structure Ql satisfies PARITYu iff 

1 u~~ I= o (mod 2). 

Prove that if rr = { <, U}, where< is interpreted as a linear ordering on the universe, 
then PARITYu is not FO-definable. 

Exercise 3.7. Theorem 3.6 tells us that £1 =k £2 for two linear orders of length 
at least 2k. Is the bound 2k tight? If it is not, what is the tight bound? 

Exercise 3.8 . .Just as for linear orders, the following can be proved for <B.,, the 
graph of successor relation on { 1, ... , n}. There is a function f : N -> N such that 
<Bn =k <Brn whenever n,m 2 f(k). Calculate f(k). 

Exercise 3.9. Consider sets of the form Xq, = {n EN I Ln p <P}, where <Pis an 
FO sentence, and Ln is a linear order with n elements. Describe these sets. 

Exercise 3.10. Find an upper bound, in terms of k, on the number of rank-k types. 

Exercise 3.11. The goal of this exercise is to give another proof of the Ehrenfeucht

Fralsse theorem. In this proof, one constructs formulae defining rank-k types explic
itly, by specifying inductively a winning condition for the duplicator. 

Assume that rr is relational. For any rr-structure Ql and a E A rn, we define 

inductively formulae a~.a:(XI, .... :r,) as follows: 

• a~.a:(x) = A x(x) where the conjunction is taken over all atomic or negated 
atomic x such that Ql p x(a). Note that the conjunction is finite. 



42 3 Ehrenfeucht-Pra!ssc Games 

• Assuming nk'~ an~ defined, we ddine 

( 1\ 3z o;~.,Ic(.r.zl) !\ (vz v Cl~(.;;,(:r. ::)). 
~~t:= :1 cE:- A. 

Prove that the following are equivalent: 

L (2l, 0:) =k (SB. h); 
2. (2l, a) "-'k (SB. h); 
3. for every y(:r) with qr(y) <::: k, we have 2l f= i;?(O:) iff SB f= i;?(h); 

4. SB f= a~ 5 (b). 

U~ing this, prove the following statement. Let Q he a query definable in FO by 

a formula of quantifier rank k. Then Q is definable by the following formula: 

V o;t,,(.?). 
iiHJ(Qt) 

Note that the disjunction is finite, by Lemma 3.13. 

Exercise 3.12. Beth's definability theorem is a das~ical n'sult in mathematical 

logic: it says that a property is definable implicitly iff it is d<'finable explicitly. Ex

plicit definability of a A:-ary query CJ ou IT-structures means that tlwre is a formula 

cp(:r:1, ... , Xk) such that cp(2l) = Q(2l). Implicit dcfinability nwans that there is a 

sentence if> in the language of O" expanded with a single k-ary relation J> such that 

for every IT-structure 2l, there exists a unique set P c;; A k such that (2L P) f= <[> and 

p = Q(2l). 
Prove that Beth's theorem fails over finite mockls. 
Hint: P is a unary query that returns the ~et of even denH'nts in a linear order. 

Exercise 3.13. Craig's interpolation is another classical result from mathematical 

logic. Let 1T 1 • IT 2 be two vocabularies, and IT = IT 1 n IT 1 . Let if>' he a S<'utencc ov<'r IT;, 

i = L 2. Assume that </> 1 f- 1'>2 Craig's th<'orem ~ays that then~ exists a sentenc<' if> 

over O" such that 1'> 1 f- <1> and </> f- 1'>2 . 

Using techniques similar to those in the previous ex<~rcis<', prow that Craig's 

interpolation fails over finite models. 

Exercise 3.14. This exercise demonstrates another example of a result from math

ematical logic that fails over finite models. The Los-Tar~ki th<1on'm ~ays that a 
sentence which is preserved under extensions (that is, 2( c;; SB and 2( I= </> impliPs 

SB f= if>) is equivalent to an existential sentence: a sentence built ti'Oltl atomic and 

negated atomic formulae by using V, !\, and 3. 
Prove that the Lo~-Tarski theorem fails over finite modds. 

Exercise 3.15. vVinning strategies for complex structure~ can h<' cmnJ)()sed from 

winning strategies for simpler structures. Two commonly used <1xamph~s of such 

compositions are the ~ubject of this exercise. 
Given two structures 2l, SB of the same vocabulary IT, their Carte~ian product 2l x 

SB is defined as a IT-structure whose universe is Ax B, each constant. 1· i~ intPrprded a~ 

a pair ( cQl, c'1'), and Pach m-ary relation P is intPrpreted as { ( (a 1 • h 1 ) • • • • (a"' . b,,)) I 

(a I' ' ' . 'Orn) E p'?t' ( IJ]' ' ' ' 'bm) E p'B}' 
If the vocabulary contains only rdation symbols, the disjoint union 2l USB for 

two structures with A n B = 0 has the universe A u n, and each r<'lation P i~ 

interpreted as pm U p'l3. 
Assume 2l1 =' 2l2 and SB 1 =k SB2. Show that: 
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• 2l1 X I.B1 '=k 2l2 X I.B2; 
• 2ll ll s.B 1 '=k 2l2ll s.B2. 

Exercise 3.16. Then x m grid is a graph whose set of nodes is { ( i, j) I i :::; n, j :::; m} 
for some n, mEN, and whose edges go from (i,j) to (i + 1, j) and to (i,j + 1). Use 
composition of Ehrenfeucht-Fralsse games to show that there are no FO sentences 
testing if n = m (n > m) for then x m grid. 

Exercise 3.17. Consider finite structures which are disjoint unions of finite linear 
orderings. Such structures occur in AI applications under the name of blocks world. 
Use Ehrenfeucht-Fralsse games to show that the theory of such structures is decid
able, and finitely axiomatizable. 

Exercise 3.18. Fix a relational vocabulary a that has at least one unary and one 
ternary relation. Prove that the following is PSPACE-complete. Given k, and two 
a-structures 2l and s.B, is 2l '=k s.B? 

What happens if k is fixed? 

Exercise 3.19:' A sentence iP of vocabulary a is called positive if no symbol from a 
occurs under the scope of an odd number of negations in iP. We say that a sentence 
iP is preserved under surjective homomorphisms if 2l f= (/> and h(2l) = s.B implies 
s.B f= iP, where h : A ---+ B is a homomorphism such that h(A) = B. Lyndon's 
theorem says that if iP is preserved under surjective homomorphisms (where 2l, s.B 
could be arbitrary structures), then iP is equivalent to a positive sentence. 

Does Lyndon's theorem hold in the finite? That is, if(]> is preserved under surjec
tive homomorphisms over finite structures, is it the case that, over finite structures, 
iP is equivalent to a positive sentence? 
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Locality and Winning Games 

Winning games becomes nontrivial even for fairly simple examples. But often 
we can avoid complicated combinatorial arguments, by using rather simple 
sufficient conditions that guarantee a winning strategy for the duplicator. For 
first-order logic, most such conditions are based on the idea of locality, best 
illustrated by the example in Fig. 4.1. 

Suppose we want to show that the transitive closure query is not express
ible in FO. We assume, to the contrary, that it is definable by a formula 
cp(x, y), and then use the locality of FO to conclude that such a formula can 
only see up to some distance r from its free variables, where r is determined 
by cp. Then we take a successor relation l.2t long enough so that the distance 
from a and b to each other and the endpoints is bigger than 2r - in that 
case, cp cannot see the difference between (a, b) and (b, a), but our assumption 
implies that l.2t f= cp( a, b) 1\ --,cp(b, a) since a precedes b. 

The goal of this chapter is to formalize this type of reasoning, and use it 
to provide winning strategies for the duplicator. Such strategies will help us 
find easy criteria for FO-definability. 

Throughout the chapter, we assume that the vocabulary cr is purely re
lational; that is, contains only relation symbols. All the results extend easily 
to the case of vocabularies that have constant symbols (see Exercise 4.1), but 
restricting to purely relational vocabularies often makes notations simpler. 

4.1 Neighborhoods, Hanf-locality, and Gaifman-locality 

We start by defining neighborhoods that formalize the concept of "seeing up 
to distance r from the free variables" . 

Definition 4.1. Given a cr-structure l.2t, its Gaifman graph, denoted by Q(l.2t), 
is defined as follows. The set of nodes of G(l.2t) is A, the universe of l.2t. There 
is an edge (a1, a2) in Q(l.2t) iff a1 = a2, or there is a relation R in cr such that 
for some tuple t E R')!, both a1, a2 occur in t. 
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,,. 
<- - - - - - - - - - - -> 

~--·----~ 

r 
<- - - - - - - - - - - -> 

~--·~ 

Fig. 4.1. A local formula cannot distinguish (a. h) from (/1.a) 

Note that Q(2l) is an undirected graph. If 2l is an undirectPd graph to start 
with, then Q (2l) is simply 2l together with the diagonal { (a. a) / a E A}. If 2l 
is a directed graph, then Q (2l) simply forgets about the orientation (and adds 
the diagonal as well). 

By the distanced~ (x, y) we mean the distance in the Gaifman graph: that 
is, the length of the shortest path from :I' to y in Q (2l). If there is no such 
path, then d~ ( x, a) = oo. It is easy to verify that the distance satisfies all tlw 
usual properties of a metric: d~(x.y) = 0 iff .r = y, d~(:r,y) = d~(y .. r), and 
d~(x, z):::; d~(x, y) + d~(y, z), for all :1:, y, z. 

If we are given two tuples, a= (aJ .... ,an) and b = (bJ ..... bm). and an 
element c, then 

d~(a,c) = min d'<l(a 1.e). 
l<::;i<::;11 

Furthermore, ac stands for the n + 1-tuple (a 1 ..... a 11 , c), and i!b stands for 
then+ rn-tuple (a1, ... , an, bt, ... , bm)· 

Recall that we usc the notation a 11 for a expanded with n constant symbols. 

Definition 4.2. Let a contain only relation symbols, and let 2l be a a
structure, and a = (a l' ... 'an) E A 11 • The radius r hall around i! is the 
set 

The r·-neighborhood of a in 2l is the an -structure N,'J. ( i!). where: 

• the universe is B~ (a); 
• each k-ar·y r·elation R is inteTpr·eted as R'J. restr·icted to B~ (i"i): that iH. 
R~ n ( B~ (a)) k ; 

• n additional constants are interpreted as a 1 , ... , a11 • 

Note that since we define a neighborhood around an n-tuple as a a 11 -

structure, for any isomorphism h between two isomorphic neighborhoods 
N,'?-(a 1, ... , an) and N,'B(bt, .... b,), it must be the case that h(ai) = b;. 1 :::; 
i < n. 
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Definition 4.3. Let~' 113 be a-structures, where a only contains r·elation sym
bols. Let a E A" and bE B'". We write 

(~,a) ::::;d (113, b) 

if there exists a bijection f : A ---+ B such that for every c E A, 

We shall often deal with the case of n = 0; then ~::::;c1113 means that for 
some bijection f : A ---+ B, 

N:f(c) ~ N'f(f(c)) for all c EA. 

The ::::;d relation says, in a sense, that locally two structures look the 
same, with respect to a certain bijection J; that is, f sends each element 
c into f(c) that has the same neighborhood. The lemma below summarizes 
some properties of this relation: 

Lemma 4.4. 1. (~,a)::::;d(113,b) '*IAI=IBI. 
2. (~,a)::::;r~(113,b) =} (~,a)::::;d,(113,b), ford':::::; d. 

3. (~,a)::::;d(113,b) '* N:f(a) ~ N'f(b). 

Recall that a neighborhood of an n-tuple is a an-structure. By an iso
morphism type of such structures we mean an equivalence class of ~ on 
STRUCT[an]· We shall use the letter T (with sub- and superscripts) to denote 
isomorphism types. Instead of saying that a structure belongs to T, we shall 
say that it is of the isomorphism type T. 

If Tis an isomorphism type of an-structures, and a E An, we say that a 
d-realizes Tin ~if N,T(a) is of type T. If dis understood from the context, 
We say that a realizes T. 

The following is now easily proved from the definition of the :::::; c1 relation. 

Lemma 4.5. Let~' 113 E STRUCT[a]. Then~ ::::;d 113 iff for each isomor
phism type T of a 1 -structures, the number of elements of ~ and 113 that d
realize T is the same. D 

We now formulate the first locality criterion. 

Definition 4.6 (Hanf-locality). An m-ary query Q on a-structures is Hanf
local if there exists a number d :::: 0 such that for every ~' 113 E STRUCT[a], 
aE Am bE Bm 

' ' 
(~,a) ::::,d (113, b) implies (a E Q(~) {::} bE Q(113) ) . 

The smallest d for which the above condition holds is called the Hanf-locality 
rank of Q and is denoted by hlr(Q). 
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two cycles of length m 

one cycle of lPngt.h 2m 

Fig. 4.2. Conrwctivity is not Hanf-local 

Most commonly Hanf-locality is used for Boolean queri<~s; then the defi
nition says that for some d :2: 0, for every 2t, 23 E STRUCT[IT], the condition 
2t '=> d 23 implies that 2t and 23 agree on Q. 

Using Hanf-locality for proving that a query (J is not definable in a logic 
£ then amounts to showing: 

• that every £-definable query is Hanf-local, and 

• that Q is not Hanf-local. 

\Ve now give the canonical example of using Hanf-locality. \Ve show, by a 
very simple argument, that graph C:OIUH'ctivity is not Hanf-local: it will then 
follow that graph connectivity is not expressible in any logic that only defines 
Hanf-local Bool<~an queries. 

Assume to tlw contrary that the graph c:omwctivity query CJ is Hanf-local, 
and hlr(CJ) = d. Let rn > 2d + 1, and choose t.\vo graphs G~" and c:;" as 
shown in Fig. 4.2. Their sets of nod<~s have tlw sanw cardinalit.v. Let .f be an 
arbitrary bijection between the nodes of c;, and c;;n. Since each cycl<' is of 
length > 2d + 1, the d-neighborhood of any node a is the same: it is a chain 
of length 2d with a in the rniddll'. HPnC<', G~, '=,d c;n, and they must agr<'(' 
on Q, but. c;, is connected, and G~" is not. Thus, graph coll!H'ctivit.y is not 
Hanf-local. 

While Hanf-locality works well for Boolean queries, a different notion is 
often helpful for m-ary qlH~rics, m > 0. 

Definition 4.7 (Gaifman-locality). An rn-ar·y q'll.ery Q, m > 0, on IT

structures, is called Gaifrnan-local if there exists a nwnber· d :2: 0 sw:h that for· 
every O"-stntctnre 2t and ever·y ii1, n2 E A'", 
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The minimum d for which the above condition holds is called the locality rank 

of Q, and is denoted by lr(Q). 

Note the difference between Hanf- and Gaifman-locality: the former relates 
two different structures, while the latter is talking about definability in one 
structure. 

The methodology for proving inexpressibility of queries using Gaifman
locality is then as follows: 

• first we show that all m-ary queries, m > 0, definable in a logic L are 
Gaifman-local, 

• then we show that a given query Q is not Gaifrnan-local. 

We shall see many examples of logics that define only Gaifman-local 
queries. At this point, we give a typical example of a query that is not 

Gaifrnan-local. The query is transitive closure, and we already saw that it is 
not Gaifman-local. Recall Fig. 4.1. Assume that the transitive closure query Q 
is Gaifman-local, and let I r( Q) = r. If a, b are at a distance > 2r + 1 from each 
other and the start and the endpoints, then the r-neighborhoods of (a, b) and 
(b, a) are isomorphic, since each is a disjoint union of two chains of length 2r. 
We know that (a, b) belongs to the output of Q; hence by Gaifman-locality, 

( b, a) is in the output as well, which contradicts the assumption that Q defines 
transitive closure. 

These examples demonstrate that locality tools are rather easy to use to 

obtain inexpressibility results. Our goal now is to show that FO-definable 
queries are both Hanf-local and Gaifrnan-local. 

4.2 Combinatorics of Neighborhoods 

The main technical tool for proving locality is combinatorial reasoning about 
neighborhoods. We start by presenting simple properties of neighborhoods; 
proofs are left as an exercise for the reader. 

Lemma 4.8. • Assume that 2l, 23 E STRUCT[u] and h: N:;r(ii) ---" N,'B(b) 

is an isomorphism. Let d S r. Then h restr·icted to B~ ( ii) is an isomor

phism between N,T ( ii) and N'J' (b). 

• Assume that 2l, 23 E STRUCT[u] and h: N'jl(ii) ---" Nr'B(b) is an isomor·

phisrn. Let d + l s r and x be a tuple from BF(a). Then h(B~(x)) = 

B,'"f ( h( i)), and NJ ( x) and N'f ( h( x)) are isomorphic. 

• Let 2l, 23 E STRUCT[a] and let i11 E A", b1 E B" for n 2: 1, and i12 E 

Am,b2 E Bm form 2: 1. Assume that N'jl(iil) ~ Nr'B(bl), N,0.(ii2) ~ 
'B~ ~ ~ 0. 'B~~ 

N,. ( b2), and d0. ( ii,, ii2), d'B (b1, b2) > 2r+ 1. Then Nr ( i1 1 i12) ~ N, (b 1 b2). 
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From now on, we shall usc the notation 

for N'/:'-(a) ~ N,'13(b), omitting Ql and 23 when they arp undcrstood. \Vp shall 
also write d( ·, ·) instead of d21 ( ·, ·) when Ql is understood. 

The main technical result of this section is the lemma below. 

Lemma 4.9. If Ql!=;d23 and a ~~d~l b. then (Qt. a)!=;d('B. b). 
Pmof. We need to define a bijection f : A ----+ B such that iic ~~l.'H bf(e) 

for every c E A. Since a ~~d~l b, there is an isomorphism h : N:~l+ 1 (a) ~ 
N:~+ 1 (b). Then the restriction of h to B~d+ 1 (a) is an isomorphism hetwePn 

N~1+ 1 (a) and N~+ 1 (b). Since IAI=IBI, we obtain 

2l ~ '13 ~ I A - B2d+ 1 (a) I = I B - B2rl+ 1 (b) I · 
Now consider an arbitrary isomorphism type T of a d-neighhorhood of a 

single point. Assume that c E B~l+ 1 (a) realizes T in Qt. Sincf' h is an isomor-

phism of 3d+ !-neighborhoods, BJ(c) t;;; B:~J+l (a) and thus h(c) E B1~1+ 1 (b) 

realizes T. Similarly, if c E B:};l+ 1 (b) realizes T, then so does h- 1 ( (") E B~~l +I (a). 

Hence, the number of elements in B~1+ 1 (a) and B:};l+ 1 (b) that reali;:c Tis thP 
same. 

Since Ql!=;d'B, the number of elements of A and of B that realizP T is thP 
same. Therefore, 

I { (L E A - B~l+ 1 (a) I a d-realizes T} I 
= I {bE B- B:};I+ 1 (b) I b d-rcalizes T} I 

for every T. Using (4.1), we ean find a bijection g : A- BJ,1+1 (a) 

B:};l+l (b) such that c ~d g(c) for every c E A- B'fcl+ 1 (r7). 
We now define .f by 

.f( c) { h(c) ~fcEB~d+ 1 (~) 
g(c) IfctjB2rl+l(o). 

It is clear that .f is a bijection A ----+ B. 

(4.1) 

----+ B-

We claim that ac ~d b.f(c) for every c EA. This is illustratPd in Fig. 4.3. 

If c E B~l+l (a), then BJ(c) t;;; B~l+l (a), and ac ~d bh(c) hecausp h is an 

isomorphism. If c t/c B~i+l (a), then .f(c) = y(c) t/c R:};1+1 (b), and (" ~d y(c). 

Since d(c, a). d(g(c), b) > 2d + 1, by Lemma 4.8, ac ~rl ~q(c). D 

The following corollary is VPry useful in establishing localit.v of logics. 

Corollary 4.10. Ij(Ql,a)!=;:~d+J(23,b), then there exists a bijection .f: A _ _., 
B such that 

Vc E A (Qt. ac) =>" (23. b.f(c)). 
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h 

g 

3d+ 1 

Fig. 4.3. Illustration of the proof of Lemma 4.9 

Proof. By the definition of the!:::; relation, there exists a bijection f: A----> B, 
such that for any c E A, iic ~~cl! 1 b f (c). Since 2l!:::;:ld+ 123, we have 2l!:::; d 23. 

By Lemma 4.9, (2l, iic)!:::;11 (23, bf(c)). 0 

4.3 Locality of FO 

We now show that FO-definable queries are both Hanf-local and Gaifman
local. In fact , it suffices to prove the former, due to the following result. 

Theorem 4.11. If Q is a Hanf-local non-Boolean query, then Q is Gaifrnan
local, and lr(Q) ~ 3 · hlr(Q) + 1. 

Proof. Suppose Q is an m-ary query on STRUCT[a], m > 0, and hlr(Q) =d. 
Let 2l be a a-structure, and let ii1 ~~d+J ii2. Since 2l!:::;d2l, by Lemma 4.9, 
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(2l, a1) ~d (2l, iJ:2), and hence a1 E Q(2l) iff a2 E Q(2l), which proves lr(CJ) S 
:3d+ 1. D 

Theorem 4.12. Every FO-definable qner·y Q 'is Hanf-local. Mon~over·, 'if Q 'is 
defined by an FO[k] formula {that 'is, an FO fonnula whose quantifier· rank is 

at must k}, then 

hlr(Q) < 

Pr·oof. By induction on the quantifier rank. If A:= 0, tlwn (2l.c7)':::::0 (1E.b) 

means that (a, b) defines a partial isomorphism lwtv.:een 2l and IE, and thus i7 

and b satisfy the same atomic formulas. Hence hlr(Q) = 0, if Q is defined by 

an FO[O] formula. 
Suppose Q is defined by a formula of quantifier rank A:+ 1. Such a formula 

is a Boolean combination of formulae of the form ::bp(x .. ~) where qr(!fl)::; k. 

Note that it follows immediately from the definition of Hanf-locality that if 

i/' is a Boolean combination of , ... , ~1't, and for all i::; I, hlr(~·rl ::; d, then 

hlr( ~) ::; d. Thus, it suffices to prow that the Hanf-locality rank of the cpH'ry 

defined by 3zip is at most :1d + 1, where d is the Hanf-locality rank of thC' 

query defined by if'· 
To see this, let (2l,i1) '::::::1<1+ 1 (IE, b). By Corollary 4.10, we find a bijection 

f: A---+ B such that (2l, ric) '::::;d (IE, bf(c)) for <~very c E A. Since hlr(cp) =d. 

we have 2l f= ip(ii, r) iff IE f= ip(b, .f(c)). Hence, 

2l f= 3.~ ip(c7,z) 
=? 2l f= ip(a. r) for some c E: A 
=?IE f= ip(b,f(c)) 
=? IE F 3,:; ip(b, 

The same proof shows IE f= 3z cp( b, z) implies 2l f= 3:; cp( c7. ;; ) . Thus. 1! and 

b agree on the qm~ry defined by :=lzip(.f, z), which completes thc• proof. D 

Combining Theorems 4.11 and 4.12, we obtain: 

Corollary 4.13. EvrTy FO-definable m-ar·:tl query Q, m > 0, is Gaifrrwn

lucal. Moreover·, if Q is definable by an FO[k] formula, then 

lr(Q) < 
:1'+ 1 - 1 

2 

Since we know that graph comwctivity is not Hanf-local and transitive 

closure is not Gaifman-local, we immediately obtain, \vithout using games, 
that these qw~ries are not FO-definable. 

\Ve can give rather easy inexpressibility proofs for man.\· qneri<'S. Bdow, 

we provide two examples. 
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Fig. 4.4. Balanced binary trees are not FO-definable 

Balanced Binary Trees 

This example was mentioned at the end of Chap. 3. Suppose we are given a 
graph, and we want to test if it is a balanced binary tree. We now sketch the 
proof of inexpressibility of this query in FO; details are left as an exercise for 
the reader. 

Suppose a test for being a balanced binary tree is definable in FO, say by 
a sentence iP of quantifier rank k. Then we know that it is a Hanf-local query, 
with Hanf-locality rank at most r = (3k - 1)/2. Choose d to be much larger 
than r, and consider two trees shown in Fig. 4.4. 

In the first tree, denoted by T1 , the subtrees hanging at all four nodes 
on the second level are balanced binary trees of depth d; in the second tree, 
denoted by T2 , they are balanced binary trees of depths d- 1, d- 1, d, and 
d + 1. We claim that T1 t:::tr T2 holds. 

First, notice that the number of nodes and the number of leaves in T1 

and T2 is the same. If d is sufficiently large, these trees realize the following 
isomorphism types of neighborhoods: 

• isomorphism types of r-neighborhoods of nodes a at a distance m from 
the root, m ~ r; 

• isomorphism types of r-neighborhoods of nodes a at a distance m from a 
leaf, m ~ r; 

• the isomorphism type of the r-neighborhood of a node a at a distance > r
from both the root and all the leaves. 

Since the number of leaves and the number of nodes are the same, it 
is easy to see that each type of an r--neighborhood has the same number of 
nodes realizing it in both T1 and T2 , and hence T1 t::;r T2 . But this contradicts 
Hanf-locality of the balanced binary tree test, since T1 is balanced, and T2 is 
not. 

Same Generation 

The query we consider now is same generation: given a graph, two nodes a 
and b are in the same generation if there is a node c (common ancestor) such 
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... ----.-
bd+I b2dtJ 

Fig. 4.5. Inexpressibility of same generation 

that the shortest paths from c to a and from c to b have the same length. This 
query is most commonly computed on trees; in this case a. I! arc in the sarw' 
generation if they are at the same distance from th<' root. 

We now give a very simple proof that the same-generation query q"Y 
is not FO-definable. Assume to the contrary that it is FO-dcfiuahle, and 
I r( Q89 ) = d. Consider a tree T with root r and two branches, one with nodPs 
a 0 , a 1 , ... , ad (where a;+l is the successor of a;) and the other one with nodPs 
bo, b1, ... , bd, ... , b2d+I, sec Fig. 4.5. 

It is clear that (ad. bd) ~r (ad, bd+l), while ad, bd are in the sam<' genera
tion, and ad, b,z+ 1 are not. 

In most examples seen so far, locality ranks (for either Hanf- or Gaifman
locality) were exponential in the quantifier rank. We now show a simple Px

ponential lower bound for the locality rank; precise bounds will be givm in 
Exercise 4.11. 

Suppose that a is the vocabulary of undirected graphs: that is, a = { E} 
where E is binary. Define the following formulae: 

• do(:r, y) = E(x, y), 

• d1(x,y) = 3z (do(x.z) 1\do(y,z)), ... , 

• dk+l(x,y) = 3z(d~.,(:r,z)l\dk(y.z)). 

For an undirected graph, d1.: (a, b) holds iff there is a path of length 2" hPtwPen 
a and b; that is, if the distance between a and b is at most 2". Hence, I r( rh) 2': 
21.:-l. However, qr(di.:) = k, which shows that locality rank can he exponential 
in the quantifier rank. 

4.4 Structures of Small Degree 

In this section, we shall sec a large class of structures for which very simple 
criteria for FO-dcfinability can be obtained. These are structures in which all 
the degrees are bounded by a constant. If we deal with undirected graphs. 
degrees are the usual degrees of nodes; if we deal with din~ctecl graphs, tlwy 
are in- and out-degrees. In general, we use the following definition. 
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Definition 4.14. Let CJ be a relational vocabulary, R an m-ary symbol in CJ, 
and 2t E STRUCT[CY]. For a E A and i :::; m, define degree~)a) as the 
cardinality of the set 

That is, degree~,i(a) is the number of tuples in R'li that have a in the ith 
position. 

Define deg_set(2t) to be the set of all the numbers of the form degree~,i(a), 
where a E A, R E CJ, and i is at most the arity of R. That is, 

deg_set(2t) = {degree~i(a) I aEA, RECJ, i:s; arity(R)}. 

Finally, STRUCTt[CY] stands for 

{2t E STRUCT[CY] I deg_set(2t) ~ {0, ... , l} }. 

In other words, STRUCTz [CY] consists of CJ-structures in which all degr·ees do 
not exceed l. 

We shall also be applying deg_set to outputs of queries: by deg_set(Q(2t)), 
for an m-ary query Q, we mean the set of all degrees realized in the structure 
whose only m-ary relation is Q(2t); that is, deg_set( (A, Q(2t)) ). 

When we talk of structures of small degree, we mean STRUCTz [CY] for some 
fixed l E .N. 

There is another way of defining structures of small degree, essentially 
equivalent to the way we use here. Instead of defining degrees for m-ary 
relations, one can use only the definition of degrees for nodes of an undi
rected graph, and define structures of small degrees as structures 2t where 
deg_set(Q(2t)) ~ {0, ... , l} for some l E .N. Recall that Q(2t) is the Gaifman 
graph of 2t, so in this case we are talking about the usual degrees in a graph. 
However, this is essentially the same as the definition of STRUCTt[CY]. 

Lemma 4.15. For every relational vocabulary CJ, there exist two functions 
fa, 9a : .N ---> .N such that 

1. deg_set(Q(2t)) ~ {0, ... , fa(l)} for every 2t E STRUCTt[CJ], and 

2. 2t E STRUCT9"(l)[CY] for every 2t with deg_set(Q(2t)) ~ {0, ... ,l}. 

One reason to study structures of small degrees is that many queries behave 
particularly nicely on them. We capture this notion of nice behavior by the 
following definition. 

Definition 4.16. Let CJ be relational. An m-ary query Q on CJ-structures, m > 
0, has the bounded number of degrees property (BNDP) if there exists a 
function !Q : .N---> .N such that for every l ~ 0 and every 2t E STRUCTt[CJ], 

I deg_set(Q(2t)) I :::; !Q(l). 
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Notice a certain asymmetry of this definition: our assumptio11 is that all 

the numbers in deg_.set(21) are small, but the conclusion is that tlw mnli

nality of deg_set( Q(21)) is smalL \Ye cannot possibly ask for all the num

bers in dcg_set(Q(21)) to be small and still say anything interesti11g about 

FO-definable queri<~s: ('Onsider, for cxampk, the query defined by ;;(y. ::) = 
3.r(x = .r). On every structure 21 with I A I= n > 0, it defines the complet<' 

graph on n nodes, where every nod<' has the same d<~grc<' 11. Hence, sonw de

grees in dcg_sct(Q(21)) do depend 011 21, but the number· of dzffcrent deqn~es is 

determined by deg_set(21) and tlH~ query. 

It is usually very easy to show that a query do<~s 11ot han' the Bl\DP. 

Consider, for example, th<' transitive closur<' query. Assunw that its input is a 

successor relation G n on n nodes. Then deg_.sct( G,) = { 0. l}. Th<' transit.iw 

closure of G 11 is a linear order Ln on n nodes, and deg_set ( L 11 ) = { 0 ..... n- I } . 

showing that the transitivP closurP query docs not. haw the B:'-JDP. 

\Ve next show that thP BNDP is closely related to localit~· <·oncepts. 

Theorem 4.17. Let Q be a Gaifmo.n-local m-ary query. 111 > 0. Then CJ has 

the BNDP. 

Pmof. Let Q lw Gaifrnan-local with lr( Q) = d. \\'e assum<'. without loss of 

generality, that m :::;> 2, since unary queries clearly have the BNDP. 

!\'ext, we need the following claim. Let nr~(k) be ddi1wd inductively by 

nd(O) =d. nr~(k + 1) = :~ · nd(k) + 1. That is, nr~(k) = 3" · rl + (;~' l )/'2 for 

k:::,. 0. 

Claim 4.18. Let a ~~c~(hJ b. Then there is a b·zjer:tion J : A' __, A" snr:h that 

ric~~ bf(() for· ever-y cE A'. 

The proof of Claim 4.18 is by induction on k. For k = 0 th<'n' is nothing to 

prove. Assunw that it holds fork, and prove it fork+ 1. LPt ,. = nr~(k): then 

nr1(k+l) = 3r+ I. Ld fi~~;-'-l b. Then. hy Lemma 1.9, (21.5) -=:,(~.b). That 

is, there exists a bijection y: 11-+ A such that for ewry 1· E .L fie ~;1 by(!'). 

By the induction hypothesis, \Ve then knmv that for each c C: /1. there <'xists 

a bijection g, : A" __, A' such that for every r E A". 

21 
~d 

\Ve thus define a bijection .f : A'·+ 1 -+ A"+ 1 as follmYs: if 1-: '""' n", \dwrc 

cE A'. then f(C) = g(c)g,(i} Clearly, a?~~ bj'(?} This ]ll'OH'S the claim. 

Now we prove the BNDP. First, note that for <'Y<'ry vocabulary (J, tlwre 

exists a function GIJ : N x N-+ N such that for ev<'ry 21 E STRUCT![(JL th<' 

size of JJ~(a) is at most GrT(I. d). Thus, then~ exists a function 1~~ : N x N --4 

N such that every structure 21 in STHUCT![(J] can realize at most FIT(!. d) 

isomorphism typc~s of d-neighborhoods of a point.. 

Now ('Onsider Q(21), for 21 E STRUCT,[(JL and note that for an~- t\m 

a, b E A with a ~21 ( l) b, 
'fld I;/-
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I {cE Am- 1 I acE Q(2l)} I l{cE Am- 1 I beE Q(2l)}l, (4.2) 

by Claim 4.18. In particular, (4.2) implies that the degrees of a and b in 
Q(2l) (in the first position of an m-tuple) are the same. This is because 
degr·ee ~(~) (c), the degree of an element c, corresponding to the first po
sition of the m-ary relation Q(2l), is precisely the cardinality of the set 
{c E Am- 1 I cc E Q(2l)}. Thus, the number of different degrees in Q(2l) 
corresponding to the first position in them-tuple is at most Fa(l, nd(m- 1)), 
and hence 

ldeg_set(Q(2l))l ~ m·Fa(l,nd(m-1)). (4.3) 

Since the upper bound in (4.3) depends on l, m, d, and u only, this proves the 
BNDP. D 

Corollary 4.19. Every FO-definable query has the BNDP. D 

Balanced Binary Trees Revisited 

We now revisit the balanced binary tree test, and give a simple proof of its 
inexpressibility in FO. In fact, we show that this test is inexpressible even 
if it is restricted to binary trees. That is, there is no FO-definable Boolean 
query Ql>bt such that, for a binary tree T, the output Qbbt(T) is true iff Tis 
balanced. 

Assume, to the contrary, that such a query is FO-definable. We now con
struct a binary FO-definable query Q which fails the BNDP - this would 
contradict Corollary 4.19. 

The new query Q works as follows. It takes as an input a binary tree T, 
and for every two nonleaf nodes a, b finds their successors a', a" and b', b". It 
then constructs a new tree Ta,b by removing the edges from a to a', a" and 
from b to b', b", and instead by adding the edges from a to b', b" and from b 
to a', a". It then puts (a, b) in the output if Qbbt (Ta,b) is true (see Fig. 4.6). 
Clearly, Q is FO-definable, if Qbbt is. 

Assume that T itself is a balanced binary tree; that is a structure in 
STRUCT2 [u]. Then for two nonleaf nodes a, b, the pair (a, b) is in Q(T) iff a, b 
are at the same distance from the root. Hence, for a balanced binary tree T of 
depth n, the graph Q(T) is a disjoint union of n - 1 cliques of different sizes, 
and thus I deg_set(Q(T)) I= n- 1. Hence, Q fails the BNDP, which proves 
that Qbl>t is not FO-definable. D 

4.5 Locality of FO Revisited 

In this section, we start by analyzing the proof of Hanf-locality of FO, 
and discover that it establishes a stronger statement than that of Theorem 
4.12. We characterize a new notion of expressibility via a stronger version of 
Ehrenfeucht-Fralsse games, which will later be used to prove bounds on logics 
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a" b' b" 

Fig. 4.6. Changing successors of nodes in a balanced binary tree 

with counting quantifiers. The question that we ask then is: arP there more 
precise and restrictive locality criteria that can be stated for FO? The answPr 
to this is positive, and we shall present two such n•sults: Gaifrnan 's theorem, 
and the threshold equivalence criterion. 

First, we show how to avoid the restriction that no constant symbols occur 
in a; that is, we extend the notions of the T-ball and r-neighborhood to the cas<' 
of arbitrary relational vocabularies a (vocabularies without function symbols). 
Let c = ( c1 , ••• , C 11 ) list all the constant symbols of a. Then 

B~(a) 

The T-neighborhood of a, with I a I= m , is defined as the structurp N,21 (a) in 
the vocabulary a, (a extended with rn constants), whose univr rse is B;1(a) , 
the interpretations of a-relations and constants arc inherited from 2L and thP 
rn extra constants arc interpreted as a. 

One can check that all the results proved so far extend to the setting that 
allows constants (see Exercise 4.1). From now on, we app ly all the locali ty 
concepts to relational vocabularies. 

We can also use the notion of locality to state when 2l ==o 23 ; t hat is. 
when the duplicator wins the Ehrenfeucht-Frai:ssc game 011 2l and 23 without 
even starting. This happens if and only if (0. 0) is a partial isomorphism , or. 
equivalently, Nf/(0) ~ N(?"(0). 

We now define a new equivalence relation '::::'.~,;1 as follows. 

"' hij ru ·f "' ru • :« '::::'.0 · :v 1 :« =o :v ; 
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• 2l ~~~ 1 113 if there is a bijection f : A---+ B such that 
b .. 

forth: for each a E A, we have (2l, a) ~k•J (113, f(a)); 
b" back: for each bE B, we have (2l,J- 1(b)) ~k•J (113, b). 

One can easily see that just one of forth and back suffices: that is, forth 
and back are equivalent, since f is a bijection. 

The notion of the back-and-forth described in Sect. 3.5 was equivalent 
to the Ehrenfeucht-Fra"isse game. We can also describe the new notion of 
back-and-forth as a game, called a bijective Ehrenfeucht-Fraisse game (or just 
bijective game). Let 2l and s:B be two structures in a relational vocabulary. 
The k-round bijective game is played by the same two players, the spoiler and 
the duplicator. If I A I =f. I B I, then the duplicator loses before the game even 
starts. In the ith round, the duplicator first selects a bijection fi : A ---+ B. 
Then the spoiler moves in exactly the same way as in the Ehrenfeucht-Fra"isse 
game: that is, he plays either ai E A or bi E B. The duplicator responds by 
either f(ai) or f- 1 (bi)· As in the Ehrenfeucht-Fra"isse game, the duplicator 
wins if, after k rounds, the moves (a, b) form a winning position: that is, (a,'&) 
and (b, CB) are a partial isomorphism between 2l and lB. 

If the duplicator has a winning strategy in the k-round bijective game on 
2l and 113, we write 2l =~ij lB. Clearly, it is harder for the duplicator to win the 
bijective game; that is, 2l =~ij 113 implies 2l =k 113. In the bijective game, the 
duplicator does not simply come up with responses to all the possible moves 
by the spoiler, but he has to establish a one-to-one correspondence between 
the spoiler's moves and his responses. 

The following is immediate from the definitions. 

L 4 20 or ~bij ro ·jf or _bij ro emma . . ""-k :v z ""=k :v. D 

By Corollary 4.10, (2l, u)==>3d+1 (113, v) implies the existence of a bijection 
f : A---+ B such that (2l, uc) ==>d (s:B, vf(c)) for all c EA. Since the winning 
condition in the bijective game is that Ngt(a) ~ N~(b), where a and bare the 
moves of the game on 2l and s:B, by induction on k we conclude: 

Corollary 4.21. If (2l, a) ==>r:1._1);2 (s:B, b), then (2l, a) =~iJ (s:B, b). D 

Bijective games, as will be seen, characterize the expressive power of a 
certain logic. Since the bijective game is harder to win for the duplicator than 
the ordinary Ehrenfeucht-Fra"isse game, such a logic must be more expressive 
than FO. Hence, the tool of Hanf-locality will be applicable to a certain ex
tension of FO. We shall see how it works when we discuss logics with counting 
in Chap. 8. 

Since the most general locality-based bounds apply to more restricted 
games than the ordinary Ehrenfeucht-Fra"isse games, and hence to more ex
pressive logics, it is natural to ask whether more specific locality criteria can 
be stated for FO. We now present two such criteria. 
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We start with Gaifman's theorem. First, a few observations arc needed. If a 

is a relational vocabulary, and m is the maximum arity of a relation symbol in 
it, m 2 2, then the Gaifman graph Q(Ql) is definable by a formula of quantifier 
rank m- 2. (Note that for the case of unary relations, the Gaifman graph is 
simply { (a, a) I a E A} and hence is definable by the formula :r = y.) 

We show this for the case of a single ternary relation R; a general proof 
should be obvious. The Gaifman graph is then defined by the formula 

( ) --, ( R(x,y,z)VR(.r,z,y)VR(y,x.z)) 
X= y V ::JZ " . 

· V R(y, z, x) V R(z, x, y) V R(z, y. :x:) 

Since the Gaifman graph is FO-definable, so is the r-ball of any tuple x. 
That is, for any fixed r, there is a formula dScr(y, x) such that Ql F= dScT(b, ii) 
iff d'J!(b, ii):::; r. Similarly, there arc formulae d=" and d>r. We can next define 
local quantification 

Vy E B,.(x) r.p 

simply as abbreviations: ::Jy E Br(x) <p stands for ::ly (dSc~'(y,:l) 1\ <P), and 
Vy E B,.(x) <p stands for Vy (dScr(y,x) --7 r.p). 

For a fixed r, we say that a formula 'ij;(x) is r-local around :r, and write this 
as 'lj;(rl(x), if all quantification in 't/J is of the form ::lyE Br(x) or Vy E B,.(:r). 

Theorem 4.22 (Gaifman). Let a be relational. Then every FO fonnula 
<p(x) over a is equivalent to a Boolean combination of the following: 

• local for·mulae 'lj;(rl(x) around x; 

• sentences of the form 

Further·more, 

8 

::lxl,···,Xs (1\a(rl(xi) 1\ 

'i=l 

1\ d>2r(x;. Xj)). 
lS,i<j<:_s 

• the transformation from r.p to such a Boolean combination is effective; 

• if <p itself is a sentence, then only sentences of the above for-m appear· in 
the Boolean combination; 

• if qr(<p) = k, and n is the length of x, then the bounds on r and s ar·e 
r:s;7k,s:s;k+n. 0 

Notice that Gaifman-locality of FO is an immediate corollary of Gaifman 's 
theorem (hence the name). However, the proof we presented earlier is much 
simpler than the proof of Gaifman's theorem (Exercise 4.9), and the bounds 
obtained are better. 
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Thus, Gaifman-locality can be strengthened for the case of FO formulae. 
Then what about Hanf-locality? The answer, as it turns out, is positive, if 
one's attention is restricted to structures in which degrees are bounded. We 
start with the following definition. 

Definition 4.23 (Threshold equivalence). Given two structures 2l, 'B in 

a relational vocabulary, we write 2l =::;~h;;, 'B if for every isomorphism type T 
of a d-neighborhood of a po·int either . 

• both 2l and 'B have the same nnmber of points that d-realize T, or 

• both 2l and 'B have at least m points that d-r-ealize T. 

Thus, if m were allowed to be infinity, 2l !=:;~i~~ 'B would be the usual 
definition of 2l !=:; 11 'B. In the new definition, however, we are only interested 
in the number of elements that d-realize a type of neighborhood up to a 
threshold: below the threshold, the numbers must be the same, but above it, 
they do not have to be. 

Theorem 4.24. For each k, l > 0, there exist d, m > 0 snch that for 2l, 'B E 

STRUCTz[a], 
implies 2l =k 'B. 

Proof. The proof is very similar to the proof of Hanf-locality of FO. We define 
inductively r-0 = 0, ri+ 1 = 3T; + 1, take d = Tk-l, and prove that the duplicator 
can play the Ehrenfeucht-Fra·isse game on 2l and 'B in such a way that after 
i rounds (or: with k ~ i rounds remaining), 

( 4.4) 

where ai, b, are points played in the first i rounds of the game. 
It only remains to specify m. Recall from the proof of Theorem 4.17 that 

there is a function Ga : N x N such that the maximum size of a radius d 
neighborhood of a point in a structure in STRUCTz[a] is G17 (d, l). We take m 
to be k · Ga(r~,, l). 

The rest is by induction on i. For the first move, suppose the spoiler plays 
a EA. By 2l ::::::;~-7:·~~~ 'B, the duplicator can find bE B with N;2; (a)~ N,~(b). 

Now assume (4.4) holds after i rounds. That is, N:~!-+ 1 (a;) ~ N;f;+ 1(b;), 
where r = rk-(i+l)· We haw~ to show that (4.4) holds after i + 1 rounds (i.e., 
with k ~ (i + 1) rounds remaining). Suppose in round i + 1 the spoiler plays 
a E A (the case of a move in H is identical). If a E B?r+ 1 (a;), the response 

is by the isomorphism between N?,.+l (at) and N:f;+ 1 (b;), which guarant<~es 
( 4.4). If a tt Bit,+ I (a;)' let T be the isomorphism type of the /'-neighborhood 
of a. To ensure (4.4), all we need is to find bE B such that b r-realizes Tin 

'B, and d93 (b, b;) > 27' + 1 - then such an element b would be the response of 
the duplicator. 
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Assurrw that there is no such elenH'nt b. Since there is an elPnH'nt o E A 
that r-realizes T in 2{, there must be an element b' E lJ that /"-realizes Tin 2.i. 
Tlwn all such elements 1/ must be in NjJ.+ 1 (/:;). Let there lw s of tiH'm. 

Notice that the cardinality of N};\ 1 (&;) does not exceed 111 = k · (; (T (,.,.I). 
This is because the length of&, is at most k, th(' size of each r~, neighborhood 
is at most Gu(TJ,:.I), and 2r + 1 S: r,. 

Therefore, .s S: m, and from 2!'=;;;}.';11 '13 \Vc se<' that there are exactly s el('
ments a' E A that r-realize Tin 21. But by the isomorphism betwcPn N~~+ 1 ( !J,) 
and N/{;.+ 1 (/:;) we know that N.j~+ 1 (ii;) alone contains 8 such clemf'nts, and 
hence there arc at least 8 + 1 of them in A. This contradiction shows that W<' 
can find b that r-realizes T in '13 outside of NJ':+ 1 (/:i), which compl<'tcs tlw 
proof of (4.4) and the theorem. [I 

The threshold equivalence is a useful tool \vhen in the course of proving 
inexpressibility of a certain property, one constructs pairs of strnctures 2t,. '13, 
whose universes have different cardinalities: then Hanf-locality is inapplicahlf'. 

For example, consider the following query over graphs. Suppose th<' in
put graph is a simple cycle with loops on some nodes (i.P., it has edges 
(a1, a2 ), (a2. o.:;), .... (an-I, a11 ). (a,. a1 ), with all a;s distinct, as well as some 
edges of the form (a;, a;)). The question is whdlH'r tlw muniH'r of loops is 
even. An attempt to prove that it is not FO-(h~finab](' using Hanf-locality 
does not succeed: for any d > 0, and any two structures 2l. '13 with 2l •-.4" '13. 
the numbers of nodes with loops in 2l and '13 are equal. 

However, the threshold equivalPnce helps us. Assunw that tlw abov<' query 
Q is expressible by a sentenu~ of quantifier rank k. Then appl.Y TlworPm '1.24 to 
k and 2 (the maximum degree in graphs ckscribed abow), and find d."' > 0. 
We now construct a graph Ud. 11 for any n > 0, as a cycle on which the distancc' 
between any two consecutive' nodes with loops is 2d+ 2, and the number of such 
nodes with loops is n. One can th(~n easily check that Gti.111+l ·=.~/.','11 Gt/.111+2 

and hence tlw two must agree on Q. This is cPrtainly impossible. sh(m:ing that 
Q is not FO-definablc~. 

Note that in this example, Gd., 11 +I *:/+, Gd.m+2 for any r > 0, sine(' the 
cardinalities of Gd.m+l and Gt~.m+ 2 are different, and hencP Hanf-locality is 
not applicablP. 

4.6 Bibliographic Notes 

The first locality result for FO was Hanf's theorem, formulated in 1965 bv 
Hanf [120] for infinit<' models. The version for tlw finite case was presPnt<'d 
by Fagin, Stockrneyer, and Van!i in [76]. In fact, [76] proves what Wf' call thf' 
threshold equivalence for FO, and what W<' call Hanf-locality is stated as a 
corollary. 
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Gaifrnan's theorem is from [88]; Gaifman-locality, inspired by it, was in
troduced by Hella, Libkin, and Nurrnonen [123], who also proved Theorem 

4.11. The proof of Hanf-locality for FO follows Libkin [167]. 
The bounded number of degrees property (BNDP) is from Libkin and 

Wong [169] (where it was called BDP, and proved only for FO-definable queriPs 
over graphs). Dong, Libkin and Wong [57] showed that every Gaifman-local 

query has the I3NDP, and a simpler proof was given by Libkin [166]. 
Bijective games were introduced by Hella [121], and the connection be

tween them and Hanf-locality is due to Nurmonen [188]; the pn,sentation 

here follows [123]. 

Sources for exercises: 
Exercise 4.9: Gaifman [88] 
Exercises 4.10, 4.11, and 4.12: Libkin [166] 
Exercise 4.13: Dong, Libkin, and Wong [57] 
Exercise 4.14: Schwentick and Barthelrnann [217] 
Exercise 4.15: Schwentick [215] 

4. 7 Exercises 

Exercise 4.1. Verify that all the results in Sects. 4.1-4.4 extend to vocabularies 

with constant symbols. 

Exercise 4.2. Prove Lemma 4.4. 

Exercise 4.3. Prove Lemma 4.5. 

Exercise 4.4. Prove Lemma 4.8. 

Exercise 4.5. Prove Lemma 4.15. 

Exercise 4.6. Use Hanf-locality to give a simple proof that graph acyclicity and 

testing if a graph is a tree are not FO-definable. 

Exercise 4. 7. Consider colored graphs: that is, structures of vocabulary 

{E, U1, ... , Uk} where E is binary and U1, ... , Uk are unary (i.e., Ui defines the 

set of nodes of color i). Prove that neither connectivity nor transitive closure are 

FO-definable over colored graphs. 

Exercise 4.8. Provide a complete proof that testing if a binary tree is balanced is 

not FO-definable. 

Exercise 4.9. Prove Theorem 4.22. 

Exercise 4.10. In all the proofs in this chapter we obtained bounds on locality 

ranks of the order 0(3k), whf,re k is the quantifier rank. And yet the exponential 

lower bound was 0(2k). The goal of this exercise is to reduce the upper bound from 

0(3k) to 0(2k), at the expense of a slightly more complicated proof. 
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Let x = (x1, ... , Xn), and let I= {h, ... ,lm} be a partition of { L ... , n}. The 
subtuple of x that consists of the components whose indices are in Ii is denoted by 
xJ. 

Let r > 0. Given two structures, 2l and 'B, and a E A", bE B", we say that r7 
and bare (I, r) -similar if the following hold: 

• N';l(aJ) ~ N:S (by) for all j = 1, ... , rn; 
• d(a"J, af) > r for alll i=- j; 

• d(by,t{) > r for alll i=- j. 

We call a and b r-similar if there exists a partition I such that a and bare (I. r)
similar. A formula <.p has the r-separation property if 2l I= <.p(a) ,___, <.p(b) whenever a 
and b are r-similar. 

Your first task is to prove that a formula has the separation property iff it is 
Gaifman-local. 

Next, prove the following. If r > 0, 2lt::::>r'B, and a, bare 2r-similar, then there 
exists a bijection f: A--> B such that, for every c E .4, the tuples r1x and bf(c) are 
r-similar. 

Use this result to show that I r( <.p) :::; 2k for every FO formula <.p of quantifier rank 
k. 

Exercise 4.11. Define functions HanLrankFo, Gaifman_ranknJ : N--> N as follows: 

HanfJankF(J(n) = max{hlr(<.p) I <.p E FO. qr('P) = n}, 

Gaifman_rankFo(n) = max{lr(<.p) I <.p E FO, qr(<.p) = n}. 

Assume that the vocabulary is purely relational. Prove that for every n > 1, 
Hanf_rankFo(n) = 2n-l- 1 and Gaifman_rankFo(n) = 2"- 1. 

Exercise 4.12. Exponential lower bounds for locality rank were achieved on for
mulae of quantifier rank n with the total number of quantifiers exponential in n. 
Could it be that locality rank is polynomial in the number of quantifiers? 

Your goal is to show that the answer is negative. More precisely, show that there 
exist FO formulae with n quantifiers and locality rank 0( v":t). 

Exercise 4.13. The BNDP was formulated in a rather asymmetric way: the as
sumption was that V-iE deg_set(2l) (i:::; l), and the conclusion that I dr-g_set(Q(2l)) 1:<::: 

JQ(l). A natural way to make it more symmetric is to introduce the following prop
erty of a query Q: there exists a function f~J : N --> N such that 

I deg_set(Q(2l)) I :::; fb(l deg_set(2l) I) 

for ever structure 2l. 
Prove that there are FO-definable queries on finite graphs that violate the above 

property. 

Exercise 4.14. Recall that a formula <.p(x) is r·-local around x if all the quantifica
tion is of the form 3y E Br(x) and Vy E Br(x). We now say that <.p(:T) is basic r-local 
around x if it is a Boolean combination of formulae of the form o:(:r; ), where .T; is a 
component of x, and o:(x;) is r-local around :r;. A formula is local (or basic local) 
around x if it is r-local (or basic r-local) around x for some r. 
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Prove that every FO formula 'P(x) that is local around xis logically equivalent 

to a formula that is basic local around x. 
Use this result to prove that any FO sentence is logically equivalent to a sentence 

of the form 
:l:r1 ... :lxn'iY 'f!(Xl, ... ,Xn,y), 

where 'P(X1, ... , Xn, y) is local around (x1, ... , Xn, y). 

Exercise 4.15. This exercise presents a sufficient condition that guarantees a win

ning strategy by the duplicator. It shows that if two structures look similar (meaning 

that the duplicator has a winning strategy), and are extended to bigger structures in 

a "similar way", then the duplicator has a winning strategy on the bigger structures 

as well. 
Let 2l, 23 be two structures of the same vocabulary that contains only relation 

symbols. Let 2lo, 230 be their substructures, with universes Ao and B 0 , respectively, 

and let 2l1 and 231 be substructures of 2l and 23 whose universes are A- Au and 

B- flo. 

For every a E A, d21 (a, 2lo) is, a..s usual, min { d21 (a, ao) I ao E Ao}, and d'S ( b, 23o) 

is defined similarly. Let 2l(r) (23(r)) be the substructure of 2l (respectively, 23) whose 

universe is {a I d21(a,2lo)::.; r} (respectively, {b I d'J3(b,23o)::.; r}). We write 

if 2l(r) =k 23(r) and, whenever a;, b, are moves m the ith round, d21(a;, 2lo) 

d'13(b;, 23u). We also write 

if there is an isomorphism h : 2l1 -+ 231 such that d21(a, 2lo) 
every a E A- Ao. 

Now assume that the following two conditions hold: 

1 Of -tlist <U d 
· "'(2') =k :.o(2k)' an 

2. Qll ~dist 23). 

Prove that 2l =k 23. 

d'13(h(a), 23o) for 

Exercise 4.16. Let (]' consist of one binary relation E, and let <P be a (]'-sentence. 

Prove that it is decidable whether <P has a model in STRUCT![(J']; that is, one can 

decide if there is a finite graph G in which all in- and out-degrees are 0 and 1 such 

that G F= <P. 
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Ordered Structures 

We know how to prove basic results about FO; so now we start adding things 
to FO. One way to make FO more expressive is to include additional opera
tions on the universe. For example, in database applications, data items stored 
in a database are numbers, strings, etc. Both numbers and strings could be 
ordered; on numbers we have arithmetic operations, on strings we have con
catenation, substring tests, and so on. As query languages routinely use those 
operations, one may want to study them in the context of FO. 

In this chapter, we describe a general framework of adding new operations 
on the domain of a finite model. The main concept is that of invariant queries, 
which do not depend on a particular interpretation of the new operations. We 
show that such an addition could increase the expressiveness of a logic, even 
for properties that do not mention those new operations. We then concentrate 
on one operation of special importance: a linear order on the finite universe. 
We study FO( <) - that is, FO with an additional linear order < on the 
universe, and study its expressive power. 

Adding ordering will be of importance for almost all logics that we study 
(the only exception is fragments of second-order logic, where linear orderings 
are definable). We shall observe the following general phenomenon: for any 
logic that cannot define a linear ordering, adding one increases the expressive 
power, even for invariant queries. 

5.1 Invariant Queries 

We start with an example. Suppose we have a vocabulary u, and an additional 
vocabulary u<,+ = { <, + }, where < is a binary relation symbol, and + is a 
ternary relation symbol. The intended interpretation is as follows. Given a set 
A, the relation < is interpreted as a linear ordering on it, say a1 < ... < an, 
if A = { a 1 , ... , an}. Then + is interpreted as 
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Recall that the query EVEN(2l) testing if I A I= 0 (mod :Z) is not expressible 
over a-structures: we proved this by using Ehrenfcucht-Fra!ss<~ ganws. l\ow 
assume that we are allowed to use a<.+- symbols in the query. Then we can 
write: 

<P = (--,=Jx (x=J·)) V =J:r=Jy ((:r+.r=y) 1\ --,=J: (y< ::)). 

That is, either the universe is empty, or y is the larg<~st denH'nt oft he universe 
and y = :r + :r for some :r:. Then <P tests if I A I= 0 (mod 2). 

However, one has to be careful with this statement. \Ve cannot write 2l f= 
<P iff EVEN(2l) for a a-structure 2l, simply because <P is not a sent<mce of 
vocabulary a. The structure in which <Pis checked is an c.Tpansion of 2l with 
an interpretation of predicate symbols iu a<.+. That is, if 2(< .+ is a structure 
with universe A in which <. + are interpreted as \Vas shown abov<'. tlwn 

Here by (2l. 2l<.+) we mean the structure whos<' universe is A. the symbols 
from a an~ interpreted as in 2l, and <, + are int<•rpreted as in 2(<. +. 

Before giving a general definition, we mak<' anotlwr important. observation. 
If we find any other interpretation for symbols < and +, as long as < is a 
linear ordering on A and + is the addition corn~sponding to <, the result of 
the query defined by <P will be the same. This is the idea of invariance: no 
matter how the extra relations arc interpreted, the result of th<· <}lH'ry is the 
same. 

We now formalize this concept. Recall that if a and a' are two disjoint 
vocabularies, 2l E STRUCT[a], 2l' E STRUCT[a'], and 2l. 2l' have the same 
universe A, then (21, 21') stands for a structure of vocabulary aU a'. in which 
the universe is A, and the interpretation of a (n"spectively. a') is inherited 
from 21 (21'). 

Definition 5.1. Let a and a' be two disjoint vocabulari~es, and let C be a dass 
of <7 1 -structur~es. Let 21 E STRUCT[a]. A formula ip(x) in the language of aUa' 

is called C-invariant on 21 ·if for· any two C stnu:tuTes 2l' and 21" on A we havf' 

p[(21, 21')] = p[(2l. 2l")]. 

A formula p is C-invariant if it is C -invar·iant on every a -str"nctun~. 

If y(x) is C-invariant, W(~ associate with it an 111.-ary query Q", where 
m =I xl. 1t is given by 

{f E Qcp(21) iff (21, 21') F ip(il). 

where 2l' is sonw a'-structure inC whose universe is A. By invarianC<', it does 
not matter which C-structure 21' is used. 

We shall wriU' FO + C for a class of all qu('ries on aU a'-structun~s. and 
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(FO +C)inv 

for the class of queries Q'P, where cp is a C-invariant formula over O" U a'. 

The most important case for us is when C is the class of finit<' linear 
orderings. In that case, we write < instead of C and use the notation 

(FO+<)inv· 

We refer to queries in this class as or·der-invariant queries. 

Notice that (FO+ <)inv refers to a class of queries, rather than a logic. In 
fact, we shall see in Chap. 9 (Exercise 9.3) that it is undecidable whether an 
FO sentence is <-invariant. 

Corning back to our example of expressing EVEN with < and +, the sen
tence if> is a C<,+-invariant sentence, where C<.+ is the class of finite structures 
(A, <, +), with a 1 < . . . < a77 being a linear order on A, and + defined as 

{ ( ai, a:i, a,) I i + j = k}. The Boolean query Q<P defined by this invariant 
sentence is precisely EVEN. 

In some cases, establishing bounds on FO + C and (FO + C)inv is easy. For 
example, the proof that the bounded number of degrees property (BNDP) 
holds for FO shows that adding any structure of bounded degree would not 
violate the BNDP. Thus, we have the following result. 

Proposition 5.2. Let C C: STRUCTz[O"'] for a fixed > 0. Then 
(FO +C) queries have the BNDP. In particular, (FO +C) cannot expr·css the 

transitive closure query. 0 

The situation becomes much more interesting when degrees arc not 
bounded; for example, when C is the class of linear orderings. We study it 
in the next section. 

5.2 The Power of Order-invariant FO 

While queries in (FO +C)inv are independent of any particular structure from 
C, the mere presence of such a structure can have an impact on the expressive 
power. 

In fact, this can be demonstrated for the class of (FO+ <)inv queries. The 
main result we prove here is the following. 

Theorem 5.3 (Gurevich). There are (FO+ <) inv queries that are not FO
definable. That is, 

FO c 
~ (FO+<)inv· 

In the rest of the section we present the proof of this theorem. The proof is 
constructive: we explicitly generate the separating query, show that it belongs 
to (FO+ <)inv, and then prove that it is not FO-definable. 
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\Ve consider structures in the vocabulary rT = { C:} w her<' c:;; is a binary 
rdation symbol. Tlw intr~nded interpretation of o--struct.ures of intr·rest to us 
is finite Boolean algebras: that is, (2x. C:), where X is a finit<' set. 

WP first show that tlH're is a senterH·e 1>1lA such that 12! f= <f>nA iff 21 
is of the form (2x. C:) for a finite X. For that, \Vf' shall need t h<' following 
abbn~viations: 

• ..l(:r) \/z (.r C: z) (intended interprl'tation of .r then is t h<' <'lll]lty set): 

• T(:r) \/z (z C: .r) (:r is the maximal d<~ment with resp<'ct to C:): 
• :r u y = .:: ( 1" c: z) 1\ (y c: z) 1\ \/v. ( (:I: c: II.) 1\ (.y c: u) - ' I. z c: /))): 
e 1" n if = .: ( Z C: :r) 1\ ( :~ C: .1J) 1\ \f 11 ( (II C: .r) 1\ ( U. C: !J) ' ( 11 C .: ) ) ; 

• atom(.t) --,.l_(.r) 1\ \/z (:: C: 1·--+ (z = .r V ..l(.:))) (i.e., .r is an at.orn, 
or a singleton set); 

• x = y _ \/:; (.1: U y = z --+ T(z)) 1\ \/z (.r ll if= z --+ J (.:)) (.r is the 
complerrwnt of y). 

The sent<~nce <PnA is now the usual axiomatizat.ion for atomic I3oo1Pan 
algebras; that is, it is a conjunction of sentences that assert that c: is a partial 
ordering, U and n exist, are uniqtw, ami satisfy tlH' distributivity law and the 
absorption law ( .1" n (X U !J) = :r); that t]w least and the grmtesl elemPnts j_ 

and T are uniqw~; and that cornplPmPnts are unique and satisfy De l\Iorgan 's 
laws. Clearly, this can he stated as an FO sentenn·. 

We now fonrmlate the separating query Q~~;;;;,: 

Q<'ven ("') atom ~ = true 21 f= <PilA and I {a I 21 f= atorn(o)} I== 0 (111od 2). 

That is, it checks if the numlwr of atoms in tlw finitP Boolean algebra 21 
is even. 

Lemma 5.4. Q~~.';;:, E (FO+ <)im. 

Pmof. Let < be an ordering on the universe of 21. It orders the atoms of thP 
Boolean algebra: u 0 < ... < a 11 _ 1 . To dwck if tlw muniH'r of atoms is <~veiL 
we check if there is a set that contains all the atoms in <'V<'Il positions (i.e .. 
a0 , a2 , a4 , ... ) and does not contain a 11 _ 1 . For that, W<' define the following 
formulae: 

• firstatom(.r) = atom(:r) 1\ 'iy (atom(y)--+ .r s; y). 

• lastatom(:r) = atom(:r) 1\ \/y (atorn(y)--+ .If~ x). 

, . (" ) _ ( atorn(x) 1\ atom(y) 1\ (.r < y) ) 
• ncxtdtom x, y = , ( ( ) ( ) ( )) . 1\ ':::JZ atom z 1\ .r < z 1\ z < y 
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That is, firstatom(x) is true of a0 , lastatom(x) is true of an-1, and 
nextatom(x, y) is true of any pair (ai-l, ai), 0 < i:::; n- 1. 

Based on these, we express Q~~g~, by the sentence below: 

( 
't/x (firstatom(x)---> x ~ z) ) 

3z 1\ 't/x (lastatom(x)---> --,(x ~ z)) . 
1\ 't/x,y (nextatom(x,y)---> ((x ~ z) ...... --,(y ~ z))) 

That is, the above sentence is true iff the set containing the even atoms 
a 0 , a 2 , ... does not contain an-l· Note that the set z may be different for 
each different interpretation of the linear ordering <, but the sentence still 
tests if the number of atoms is even, which is a property independent of a 
particular ordering. D 

Lemma 5.5. Q~~:;~ is not FO-definable (in the vocabulary{~}). 

Proof. We shall use a game argument. Notice that locality does not help us 
here: in (2x, ~), for any two sets C, D ~ X, the distance between them is at 
most 2, since 0 ~ C, D. 

The proof illustrates the idea of composing a larger Ehrenfeucht-Fra"isse 
game from smaller and simpler games, already seen in Chap. 3. 

In the proof, we shall be using games on Boolean algebras. We first observe 
that if (2x, ~) =k (2Y, ~),then we can assume, without any loss of generality, 
that the duplicator has a winning strategy in which he responds to the empty 
set by the empty set, to X by Y, and to Y by X. Indeed, suppose the spoiler 
plays 0 in 2x, and the duplicator responds with Y' -=f. 0 in 2Y. If there is one 
more round left in the game, the spoiler would play the empty set in 2Y, and 
the duplicator has no response in 2x, contradicting the assumption that he 
has a winning strategy. Thus, in every round but the last, the duplicator must 
respond to 0 by 0. If the spoiler plays 0 in 2x in the last round, it is contained 
in all the other moves played in 2x, and the duplicator can respond by 0 in 
2 Y to maintain partial isomorphism. The proof for the other cases is similar. 

Next, we need the following composition result. 

Claim 5.6. Let (2x,, ~) =k (2Y1 , ~) and (2x2 , ~) =k (2Y2 , ~). Assume that 
X 1 n X2 = Y1 n Y2 = 0. Then 

(5.1) 

Proof of Claim 5.6. Let A;, Bi, i :::; k, be the moves by the spoiler and the 
duplicator in the game (5.1). Let At = Ai n X 1 , Ar = Ai n X 2 , and likewise 
Bf = Bin Y1, Bf = Bin Y2 • The winning strategy for the duplicator is as 
follows. Suppose i-1 rounds have been played, and in the ith round the spoiler 
plays Ai ~ X1 U X2 (the case of the spoiler playing in Y1 u Y2 is symmetric). 
The duplicator considers the position 
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in the game on (2x1 , <;;;;) and (2Y1 , <;;;;), and finds his response BJ <;;;; Y1 to 
A}. Similarly, he finds Br <;;;; Y2 as the response to Af in the position 
((Ai, ... ,AT_ 1),(Bi, ... ,BT- 1)) in the game on (2x2 ,<;;;;) and (2Y\<;;;;). His 
response to Ai is then Bi = B} U Br. Clearly, playing in such a way, the du
plicator preserves the <;;;; relation. Furthermore, it follows from the observation 
made before the claim that this strategy also preserves the constants: that is, 
if the spoiler plays X 1 , then the duplicator responds by Y1, etc. Hence, the 
duplicator has a winning strategy for (5.1). This proves the claim. 

The lemma now follows from the claim below. 

Claim 5.7. Let IXI,IYI?: 2k. Then 

(2x,c;;;;) =k (2}·.<;;;;). 

Indeed, assume Q~~~~ is definable by an FO-sentence of quantifier rank J.:. 
Take any X of odd cardinality and any Y of even cardinality, greater than 
2k. By Claim 5.7, (2x, <;;;;) =k (2Y. <;;;;),and hence they must agree on Q;;~;;;:, 
which is clearly false. 

Proof of Claim 5. 7. It will be proved by induction on k. The cases of k = 0. 1 
are obvious. Going from k to k+ 1, suppose we have X, Y with I X 1- I Y I?: 2k+ 1 • 

Assume, without loss of generality, that the spoiler plays A <;;;; X in (2x. <;;;;). 
There are three possibilities. 

1. I A I< 2". Pick an arbitrary B <;;;; Y with I B I= I A 1- Then both I X- A I 
and I Y- B I exceed 2k. Thus, by the induction hypothesis, (2x ~cl. <;;;;) =~, 
(2Y~B, <;;;;).Furthermore, (2A, <;;;;) ~ (2 8 , <;;;;),which implies a weaker fact 
that (2A, <;;;;) =k (2B, <;;;;). By Claim 5.6, 

(2x.<;;;;,A) =k (2y.<;;;;.B), 

meaning that after the duplicator responds to A with B, he can continue 
playing for k more rounds. This ensures a winning position, for the dupli
cator, after k + 1 rounds. 

2. IX- AI< 2k. Pick an arbitrary B <;;;; Y with IY- Bl=l X- AI. Then tlu• 
proof follows case 1. 

3. I A 1?: 2" and I X- A 1?: 2". Since I Y 1?: 2k+I, we can find J3 <;;;; Y with 
I B I?: 2k and I Y - B I?: 2k. Then, by the induction hypothesis, 

(2A. <;;;;) =k (2B, <;;;;). 
( 2x~A, <;;;;) =1. (2 Y~J3. <;;;;). 

and we again conclude (2x. <;;;;,A) =k (2Y. <;;;;,B), thus proving the win
ning strategy for the duplicator in k + 1 moves. 
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This completes the proof of the claim, and of Theorem 5.3. D 

Gurevich's theorem is one of many instances of the proper containment 
C ~ (£+ <)inv, which holds for many logics of interest in finite model theory. 
We shall see similar results for logics with counting, fixed point logics, several 
infinitary logics, and some restrictions of second-order logic. 

5.3 Locality of Order-invariant FO 

We know how to establish some expressivity bounds on invariant queries: 
for example, if extra relations are of bounded degree, then invariant queries 
have the BNDP. There are important classes of auxiliary relations that are 
of bounded degree. For example, the class Succ of successor relations: that 
is, graphs of the form { (a0, a I), (a1 , a2), ... , (an-l, an)} where all ai's are dis
tinct. Then the BNDP applies to FO + Succ, because for any ~ E Succ, 
deg_set(~) = {0, 1 }. 

Adding order instead of successor destroys the BNDP, because for an or
dering L on n elements, deg_set(L) = {0, ... , n- 1 }. Moreover, while FO+ < 
is local, locality does not tell us anything interesting. With a linear ordering, 
the distance between any two distinct elements is 1. Therefore, if a structure 
~is ordered by<, then Ni'2!,<)(ii) = (~, <,ii). Hence, every query is trivially 
Gaifman-local with locality rank 1. 

Gaifman-locality is a useful concept when applied to "sparse" structures, 
and structures with a linear order are not such. However, invariant queries 
do not talk about the order: they simply use it, but they are defined on a

structures for a that does not need to include an ordering. Hence, if we could 
establish locality of order-invariant FO-definable queries, it would give us very 
useful bounds on the expressive power of (FO+ <)inv· All the locality proofs 
we presented earlier would not work in this case, since FO formulae defining 
invariant queries do use the ordering. Nevertheless, the following is true. 

Theorem 5.8 (Grohe-Schwentick). Every m-ary query in (FO+ <)inv, 
m 2:: 1, is Gaifman-local. 

This theorem gives us easy bounds for FO+ <.For example, to show that 
the transitive closure query is not definable in FO+ <, one notices that it 
is an invariant query. Hence, if it were expressible in FO+ <, it would have 
been an (FO+ <)inv query, and thus Gaifman-local. We know, however, that 
transitive closure is not Gaifman-local. 

The proof of the theorem is quite involved, and we shall prove a slightly 
easier result (that is still sufficient for most inexpressibility proofs). We say 
that an m-ary query Q, m > 0, is weakly local if there exists a number d 2:: 0 
such that for any structure~ and any ii1 , ii2 E Am with 
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it is the case that 
a1 E Q(2t) iff a2 E Q(2t). 

That is, the only difference between weak locality and thP usual Gaifman
locality is that for the former, the neighborhoods arc required to bP disjoint. 

The result that we prove is the following. 

Proposition 5.9. Every unary quer·y in (FO+ <)inv is weakly local. 

The proof will demonstrate all the main ideas required to prove Theorem 
5.8; completing the proof of the theorem is the subject of ExPrcises 5.8 and 
5.9. 

The statement of Proposition 5.9 is also very powerful, and suffices for 
many bounds on the expressive power of FO+ <. Suppose, for example, that 
we want to show that the same-generation query over colored trees is not in 
FO+ <. Since same generation is order-invariant, it suffices to show that it is 
not weakly local, and thus not in (FO+ <)inv· 

We consider colored trees as structures of the vocabulary (E. C), where E 
is binary and C is unary, and assume, towards a c:ontradiction, that a binary 
query Q.-9 (same generation) is definable inFO+< by a formula cp(J·.y). L<'t 

7/J(x) ~y (C(y) 1\ cp(:r. y)). 

Then 7/J defines a unary order-invariant query, testing if there is a node y in 
the set C such that (.:r:, y) is in the output of Q89 • To show that it is not 
weakly local, assume to the contrary that it is, and construct a tree T as 
follows. Let d witness the weak locality of the query defined by 4•. Then T has 
three branches coming from the root, two of length d + 1 and one of length 
d + 2. Let the leaves be a, b, c, with c being the leaf of the branch of length 
d + 2. The set C is then {a}. Note that b ~ r c and their balls of radius d an' 
disjoint, and yet (T, <) f= 7/J(b) 1\ -,'t/J(c) for any ordering<. Hence, tb is not 
weakly local, and thus Q89 is not definable in FO+ <. 

We now move to the proof of Proposition 5.9. First, we present the main 
idea of the proof. For that, we define the radius r sphere, r > 0, of a tuple a 
in a structure 2t as 

s~(a) B~(a) - B~~~ (a). 

That is, S'j:(a) is the set of elements at distance exactly r from a. As usual, the 
superscript 2l will be omitted when irrelevant or understood. We fix, for the 
proof, the vocabulary of the structure to be that of graphs; that is, CJ = (E), 
where E is binary. This will simplify notation without any loss of generality. 

Given a structure 2t and a E A, its d-ball can be thought of as a scquencP 
of r-spheres, r ::; d, where E-edges could go between Si(a) and S;+ 1 (a), or 
between two elements of the same sphere. 

Let Q be a unary (FO+ <)inv query on STRUCT[CJ], defined by a formula 
cp(x) of quantifier rank k. Fix a sufficiently large d (exaet bounds will be dPar 



5.3 Locality of Order-invariant FO 75 

from the proof), and consider a ~~ b, with Bd(a) and Bd(b) disjoint. Let h 
be an isomorphism h: Nd(a)--+ Nd(b). 

We now fix a linear ordering -<a on Ed (a) such that d21 (a, x) < d21 (a, y) 
implies :r -<a y. In particular, a is the smallest element with respect to --<,. 
We let -<b be the image of -<a under h. Let -<o be a fixed linear ordering on 
A- Bd(a, b). We now define a preorder --< as follows: 

x--< y iff X -<a y, x,y E Br1(a) 
or x -<I! y, x, y E Br1(b) 
or h(x) -<by, x E Br1(a), y E Bd(b) 
or x -<b h(y), x E Bd(b), y E Bd(a) 
or x -<o y, x, y tf. Bd(a, b) 
or x E Bd(a, b), y tf. Bd(a, b). 

In other words, --< is a preorder that does not distinguish elements :r and 
h(x), but it makes both x and h(x) less than y and h(y) whenever x -<a y 
holds. Furthermore, each element of Bd(a, b) is less than each element of the 
complement, A- Bd(a, b), which in turn is ordered by --< 0 . 

Our goal is to find two linear orderings, ~a and ~b on 2l, such that 

(5.2) 

This would imply 

a E Q(2t) iff (2l, ~a) f= cp(a) iff (2l, ~b) f= cp(b) iff bE Q(2t). (5.3) 

These orderings will be refinements of--<, and will be defined sphere-by-sphere. 
For the ~" ordering, a is the smallest element, and for the ~" ordering, b is the 
smallest. On Sd(a) u 8,1(b), the orderings ~a and ~b must coincide (otlwrwise 
the spoiler will win easily). 

Note that --< is a preorder: the only pairs it does not order are pairs of 
the form ( :r, h( x)). To define ordering on them, we select two "sparse" sets of 
integers .J = {jl, ... ,j111 } and L = {h, ... , lrn+d with 0 < .h < ... < j, < d 
and 0 < h < 12 < ... < lrn+l < d. "Sparse" here means that the difference 
between two consecutive integers is at least 2k + 1 (other conditions will b<; 
explained in the detailed proof). Assume that x E Sr (a), y E Sr (b), and 
y = h(x), for r ~d. Then 

and 

x ~" y <=? I {j E J I j < r} I is even, 
y ~" x <=? I {j E .J I .i < T} I is odd, 

:r: ~" y <=? I { l E L ll < r} I is odd, 
y ~b :r <=? I { l E L ll < r} I is even. 

(5.4) 

(5.5) 

Thus, the parity of the number of .ii 's or l i 's below r tells us whether the order 
on pairs (x, h(x)) prefers the eh;ment from Br1(a) or Bd(b). Note that a is the 
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least clement with respect to :S:u (in particular, a :S:u b), and h is the least 
dement for :S:b, but since the number of switches of prderene<~s diffPrs by one 
for :S:a and :S:b, on Sr1 (a, b) both orderings are the same. 

Of course a switch can be detected by a first-order formula, but we have 
many of them, and they happen at spheres that arc well separated. The ke.v 
idea of the proof is to use the sparseness of .! and L to show that the diff<T<'IlC<' 
between them cannot be detected by the spoikr in k moves. This \Vill ensure 
(Qt. a. :S:a) =~, (Ql, b, :S:b)· 

\Ve now present the complete proof; that is, we show how to construct two 
orderings, :S:n and :S:b, such that (5.2) holds. First, we may assume, without 
loss of generality, that no sphere Sr ( o, b), T :S: d, is empty. If any ,'-,', (a, h) wen• 
empty, Qt would have been a disjoint union of lJd (a), Bd (b), and /l - B" ( o, h). 
with no £-edges between these sets. Then, using N,T (a) ~ N,J1 (h). it is msy to 
find orderings :S:a and :S:b such that (Ql, a. :S:a) and (Qt, h. :S:Ii) are isomorphic. 
and hence (Ql, a, :S:n) =k (Qt. b. :S:b) holds. 

To define the radius d for a giwn k (the quantifier rank of a formula 
defining Q), we need some additional notation. Let rT(, l IH' the vocalm
lary (E,<.U-r,U-,+I····,U-I,Uo,UI, .... U,_l·Ur), wlwre all the U,'s are 
unary. Let t be the number of rank-( k + 1) typ<'S of rT(, l structures, \dH're 
T = 2k (this number, as we know, dep<mds only on k). 

Let E be a finite alphabet of cardinality t. Recall that a string s of length 
n ov<~r E is n~present<~d as a structure A Is of the vocabulary ( <, /1 1 ••••• A 1) 

with the universe { L ... , n} ordered by <, and each unary A; int.<~rpreted as 
the set of positions between 1 and n where the symbol is the ith svmhol of l,'. 

We call a subset X = { x 1 , ... , :rp} of { 1. ... , n} r-sparse if 

min l:r;- .r 1 I> r, .r; > r. n- .r; > r. for all i :S: p. 
ic;'.) . 

Next, we need the following kmrna. 

Lemma 5.10. For ever·;y I. k 2.: 0, there exists a number d > 0 such that. 
given any string s E E* of length n 2.: d. where 12.,' I~ t. thcr·e c:ci.st two .~·ubscts 
J, L c:;; { I , ... , n} such that 

• I L 1=1 J I+ I > 2'; 

• .! and L ar-e 2" + l-spar·se; and 

• (AJ,,J) =HL (1\Is.L). 

The proof is a standard Ehrenfeucht-Frai'sse gam<' argument. and is left to 
the read<'r as an exercise (Exercise 5.6). 

vVe now let d Iw given by Lemma 5.10, fork the quantifier rank of a formula 
defining Q, and t the number of rank-(k + 1) types of rT( 2')-structures. 

Fix a ;::,:;;~1 b, with Bd(a) and nd(h) disjoint, and let h be an isomorphism 
Nd(a)-+ Nd(b). Fori. r :S: d, let R;(a) he a rT(rl-structure \vho-;e universe is 
tlw union 
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;+r· 

U Sj(a) 
j=i-r 

(if j < 0 or j > d, we take the corresponding sphere to be empty), and 
each UP is interpreted as S;+p(a), and the ordering is --<a, the fixed linear 
ordering on Bd(a) such that d21(x, a) < d21(y, a) implies x --<a y (restricted 
to the universe of the structure). Structures R~(b) are defined similarly, with 
the ordering being --<1, the image of --<a under the isomorphism h. Note that 
R~(b) ~ R~(a). 

Let E be the set of rank-(k + 1) types of a(2k)-structures. Define a strings 
oflength d+ 1 which, in position i = 1, ... ,d+ 1, has the rank-(k+ 1) type of 
R;-,; 1 (a). Applying Lemma 5.10, we get two 2k + 1-sparse sets J, L such that 
(M." J) '=-k (Ms, L). Let J = {jl, ... ,jm} with ]o = 0 <]I < ... < Jm < d 
and L = {l1, ... , lm+I} with lo = 0 < h < l2 < ... < lm+l <d. Using these J 
and L, define ::;a and ::;I> as in (5.4) and (5.5). 

Let Nd,J(a) and Nd,L(a) be two structures in the vocabulary (E, <, U, c) 
with the universe Bd(a). In both, the binary predicate E is inherited from 2.l, 
the ordering< is --<a, and the constant cis a. The only difference is the unary 
predicate U: it is interpreted as ujE.l Sj(a) in Nd,J(a), and as ulEL Sz(a) in 
Nd,L(a). 

Let 2.la stand for (2.l, :=;a, a) and 2.lb for (2.l, :=;b, b). The winning strategy for 
the duplicator on 2.la and 2.lb is based on the following lemma. 

Lemma 5.11. The duplicator has a winning strategy in the k-round game 
on Nd,J(a) and Nd,L(a). Moreover, if PI, ... ,pk are the moves on Nd,J(a), 
and q1 , ... , Qk are the moves on Nd,L(a), then the following conditions can be 
guaranteed by the winning strategy: 

1. If p; E Sr(a) and d- r:::; 2k-i, then Qi =Pi· 

2. If ( r 1 , ... , Tk) and (r~, ... , r~) are such that each Pi is in the sphere 8,., (a) 
and Qi is in the sphere Sr' (a), then ((r1, ... , rk), (r~, ... , rU) define a par
tial isomorphism betweer:: ( Ms, J) and ( M 8 , L). 

The idea of Lemma 5.11 is illustrated in Fig. 5.1. We have two structures, 
( lv1." J) and (Ms, L), which are linear orders with extra unary predicates, 
and two additional unary predicates, J and L of different parity, which are 
shown as short horizontal segments. Using the fact that ( Ms, J) '=-k+ 2 ( M._, L), 
we prove that Nd,J(a) '=-k Nd,L(a). These are shown in Fig. 5.1 as two big 
circles, with concentric circles inside representing spheres Sr with r being in 
J or L, respectively. These spheres form the interpretation for an extra unary 
predicate in the vocabulary of structures Nd,.J(a) and Nd,L(a). 

Next, we show that Proposition 5.9 follows from Lemma 5.11; after that, 
we prove Lemma 5.11. 
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(M,, J) (AJ,, L) 

Fig. 5.1. Games involved in the proof of Proposition 5.9 

From Nd,J(a) =k Nd,L(a) to 2ta =k 2l/J. We now show how Lemma 5.11 
implies Proposition 5.9; that is, 2ta =k 2l!J. The idea for the winning strategy 
on 2ta and 2lb is that it almost mimics the one in Nd,.J(a) =k N,,,L(a). 

We shall denote moves in 2ta by a 1 , ... , and moves in 2l, by IJI ..... Suppose 
the spoiler plays a; E 2ta (the case of a move in 2lb is symnwtric). If a; tfc 
Bd(a, b), then b; =a;, and we also set p; = q; =a. 

If a; E Bd(a,b), we define p; E Bd(a) to be a; if a; E Bd(a). and h- 1(a;) 
if a; E Bd(b). The duplicator then determines the response q; top;, according 
to the Nd,.J(a) =k N,u,(a) winning strategy. The response b; is going to be 
either q; itself, or h(q;), and we use sets J and L to determine if b; lives in 
Bd(a) or Bd(b). 

We define two mappings 

V.J: Bd(a,b)---> {0, 1} and VL: Bd(a.b)---> {0, l} 

such that for every x E Bd (a), 

VJ(x) + v.1(h(x)) = vL(x) + vL(h(:r:)) 1. 

For ;r; E Bd(a), find r:::; d such that x E Sr(a). Then 

VJ(x) = {~ if I {.j E .J I j < r} I is even, 
otherwise, 

and VJ(h(x)) = 1 - 11J(:r:). Similarly, for :r E Bd(b), we find r such that 
x E Sr(b) and set 

if I { l E L I l < r} I is cwn. 
otherwise, 

and define vL(.r,) = 1- vL(h(x)) for :r E Bd(a). 
We now look at q; and h(q.;); we know that vL(q;) + vL(h(q.;)) = 1. W0 

choose b; to be one of q; or h(q.;) such that vL(b;) = u.~(a;). 
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This describes the strategy; now we prove that it works. Dealing with the 
constant is easy: if the spoiler plays a in 2la, then the duplicator has to respond 
with b in Qlb and vice versa. 

We now move to theE-relation. Since the parity of I J I and I L I is different, 
condition 1 of Lemma 5.11 implies that for any move in Bd(a, b)- Bd-2"' (a, b) 
with m moves to go, the response is the identity. Hence, if E( a;, a1) holds, 
and one or both of a;, a1 are outside of Bd (a, b), then E ( b;, b1) holds (and vice 
versa). Therefore, it suffices to consider the case when E(a;,a1) holds, and 
a;, aJ E Bd(a, b). 

Assume, without loss of generality, that a;,a1 E Bd(a). Then E(p;,p_j) 
holds, and hence E(q;,qj) holds. Given the duplicator's strategy, to conclude 
that E(b;, b1) holds, we must show that both b; and bj belong to the same 
ball- Bd(a) or Bc1(b). 

The elements a; and a1 could come either from the same sphere Sr(a), or 
from two consecutive spheres Sr(a) and Sr+l(a). In the first case, if they come 
from the same sphere, VJ(a;) = v.1(a1) and thus vL(b;) = vL(bj)· Furthermore, 
since a; and aj are in the same sphere, we conclude that p; and PJ are in the 
same sphere, and hence, by the winning strategy of Lemma 5.11, q; and qj are 
in the same sphere. This, together with vL(b;) = VL(bj), means that b; and bi 
are in the same ball. 

Assume now that a; E Sr (a) and aj E Sr+l (a). From condition 2 of Lemma 
5.11, for some r' :::; d we have q; E Sr'(a) and qj E Sr'+l(a). Now there are 
two cases. In the first case, VJ(a;) = VJ(aj)· Then there are two possibilities. 
If r,r + 1 rf. J, then r',r' + 1 rf. L (by condition 2 of Lemma 5.11), and 
hence vL(b;) = VJ(a;) = VJ(aj) = vL(bj) implies that b;,bj are in the same 
ball, and E(b;, bj) holds. The other possibility is that r + 1 E .J, r rf. .J. Then 
r' + 1 E L,r' rf. L, and again we conclude E(b;,b1). 

The second case is when V.J(a;) i= V.J(a1). This could only happen if r is 
in J (and thus r + 1 rf. .J). Then again by condition 2 of Lemma 5.11, r' E 

L,r' + 1 rf. L. Suppose V.J(a;) = 0. Then VL(b;) = 0, and vL(bj) = v.1(a1) = 1. 
Since b; E Sr'(a,b) and bj E Sr'+l(a,b), and r' E L, both b; and bi must 
belong to the same ball (Bc1(a) or Bd(b)), and hence E(b;, bj) holds. 

Thus, E(a;, aj) implies E(b;, b1); the proof of the converse- that E(b;, b.i) 
implies E(a;,aj) --is identical. 

Finally, assume that a; :::;a aj. If a; E Sr (a, b), aj E Sr' (a, b) and r < r', 
then, by condition 2 of Lemma 5.11, b; E Sr0 (a,b),bj E Srb(a,b) for some 
r0 < r!J, and hence b; :::;b b1. 

Thus, it remains to consider the case of a;, a1 being in the same sphere; 
that is, a;, aj E Sr (a, b). If p; i= PJ, then p; -<a Pj and hence q; -<a PJ, which 
in turn implies b; :::;b b1. The final possibility is that of p; = P.i; then either 
(1) a; E Sr(a) and a1 = h(a;), or (2) a1 E Sr(a) and a; = h(a:i)· We prove 
case (1); the proof of case (2) is identical. 

Note that the orderings :::;a and :::;bare defined in such a way that whenever 
x = h(y), then :Sa orders them according to VJ; that is, if VJ(x) < VJ(y), then 
x :::;a y, and if V.J(Y) < V.J(x), then y :::;ax. The ordering :::;b behaves likewise 
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with respect to the function v L. Hence, if a.i = h( a;) and a; <::::a a.i, then 
VJ(ai) = 0 and VJ(aJ) = 1. From Lemma 5.11, q; = q1, and thus b; and bi are 
related by the isomorphism h. Since v L( b;) = 0 and v L( bi) = 1, we know that 
bi :S::b bj. 

This concludes the proof that ai :S::a aj implies b;. :S::b bi; the proof of the 
converse is identical. Thus, we have proved, using Lemma 5.11, that 2ta =~c 2t1, 

which is precisely what is needed to conclude (weak) locality of q. It thus 
remains to prove Lemma 5.11. 

Proof of Lemma 5.11. We shall refer to moves in the game on Nd.J(a) and 
Nd,L(a) asp; (in Nd,.J(a)) and qi (in Nd.L(a)), and to moves in the game on 
(Ms, J) and (Ms, L), provided by Lemma 5.10, as e; for (Ms . .J) and .{.; for 
(Ms, L). 

For two elements :1:, y in the universe of l\I8 (which is { 1, .... d + 1}), tlH' 
distance between them is I x - y 1- The next claim shows that after i rounds. 
distances up to 21.:-i between played elements, and elements of the sets .J and 
L, are preserved. 

Claim 5.12. Let e1 , ... , ei and h, ... , J; be elements played m the fir·st 
rounds of the game on ( M 8 , .!) and ( M 8 , L). Then: 

• if leh- c12l<:::: 2k-i, then l.fh- f12l=leh- eh 1: 

• if I ej1 - ehi> 2k-i, then I h - fh I> 21.-i; 

• if min .lx- ei 1<:::: 21.:-i, then min .lx- Cj I= min .IY- fi 1: 
xE.l.J~' .TE./ . .J~., yEL . .J~!. 

• if min .i:r- ej I> 2k-i, then min .IY- /i I> 2"-i· 
.TE.l . .J~' !!EL.J~1 

Proof of Claim 5.12. Since we know that (llf8 , .!) '=1.+2 (liis, L), it suffices to 
show that for any x, y, p <:::: k, and any r <:::: 2P, there is a formula of quantifier 
rank p + 1 that tests if I x - y I= r, and there is a formula of quantifier 
rank p + 2 that tests if the minimum distance from x to au element of tlH' 
set (interpreted as .J and L in the models) is exactly ·r. \VP prove thP first 
statement; the second is an easy exercise for the wader. 

We define a 0 (x, y) = (x = y); this tests if the distance is zero. To test if 
the distance is one, we see if x is the successor of y or y is thP successor of .r: 

a 1 (x,y) = (x<yf\--,::Jz(x<zl\z<y)) V (y<:r:l\•::iz(y<zl\z<.r)). 

Now, suppose for each r <:::: 2~', we have a formula a, (:r, y) in FO[p+ 1] testing 
if the distance is r. We now show how to test distances up to 2~'+' using 
FO[p + 2] formulae. Suppose 2P < r- <:::: 2~'+ 1 . The formula n, is of the form 
((x < y) 1\a~.(x,y)) V ((y < x) 1\o:~'(x,y)). We present o:;.(:r.y) below. L<'t 
r-1 , r 2 <:::: 2P be such that r 1 + r 2 = r. Then 
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Clearly, this increases the quantifier rank by 1. This proves the claim. 

Given :r E S,.(a) andy E s,..(a), define 6(x, y) as T-7"1 • Given X]' ... ' :rm in 

Ed( a), and u 2' 0, we define a structure 6u[xl, ... , Xrn] as follows. Its universe 

is {x 1-u::; 6(x,:ri)::; u, i::; rn}. It inherits binary relations E and--< from 

Ed( a). Note that the universe of 6u[x1, ... , Xrn] is a union of spheres. Suppose 

these are spheres S,., (a), ... , S,., (a), with r-1 < ... < rw. Then the vocabu

lary of 6u [x1, ... , Xm] contains w unary predicates Ut, ... , Uw, interpreted as 

s,.l (a), ... ' 8,., (a). 
Furthermore, 6.~[X[, ... ,xm] and 6t[x[, ... ,xm] extend 6u[X[, ... ,xm] 

by means of an extra unary relation U interpreted as the union of spheres 

s,.,(a) with TiE J (riEL, respectively). 
We shall be interested in the parameter 7L of the form 2k-i, i ::; k, and now 

define a relation 6£,_, [xt, ... ,xm] "'k-i 6~,_, [y1, ... ,ym]· The first condition 
is as follows: 

If the universe of 6£,_, [xt, ... , Xrn] is a union 
of 11) spheres, s,.l(a) u ... u s,.w(a), then the 
universe of 6~,-i [Yt, ... , Ym] is a union of w 

spheres, s,.; (a) u ... u S,.;v (a), and Tj E J iff 
rj E L. 

(5.6) 

Define L1u ( r1, ... , Tw) as {j > 1 I Tj+ 1 - Tj > u}. The second condition is: 

(5.7) 

For 1::; j < j'::; w+ 1, define the restriction 6!,[x1 , ... ,:rm]j' 
to include only the spheres from s,.J (a) up to s,.j,-1 (a) (and likewise for 

6t [YJ, ... , Yrn J{ ). The next condition is: 

For each consecutive j, l E { 1, w + 1} - L1 2,_, (r1, ... , T 111 ), 

6£, _, [x 1, ... , Xml;' =i. 6~•-· [Yt, · · ·, YrnJ{ · 
(5.8) 

We now write 6£._, [xt, ... , Xm] "'k-i 6f,_, [yJ, ... , Yrn] if (5.6), (5.7), and 

(5.8) hold. 

Our goal is to show that the duplicator can play in such a way that, after 

i moves, 
(5.9) 

where Po= qo =a. 
The proof is by induction on i. The case of i = 0 (i.e., 6£,_, [Po] "'" 

6~,_,[q0 ]) is immediate from the sparseness of J and L. We also set c0 = 

fo = 1. 
Now suppose (5.9) holds, and the spoiler plays Pi+l E Nd,J(a), such that 

Pi+l E S,.(a) (the case of the move Qi+l E Nd,L(a) is symmetric:). The dupli

cator sets ei+l E { L ... , d + 1} to be r + 1, and finds the response h+l to e;+J 
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in the game on (Ms, J) and (Ms, L ), from position ( (e0 , ... , c; ). (f0 ....• .f;) ). 
Let fi+ 1 = r' + 1; then the response q;+ 1 will be found in s.,., (a). 

Assume that 6~k-,[Po,PJ, ... ,p;] is the union of spheres S,,(a) U ... U 

Srw (a), and erk-dqo, q1 , ... , q;] is the union of spheres S,; (a) U ... U S',.;, (a). 

We distinguish two cases. 

Case 1. In this case I b(p;+J,PJ) I> 21.--(i+l) for all j ·:; U' (i.e., I 
e;+l- e:i I> 2k-(i+ll). From Claim 5.12, we conclude lb(qi+ 1 .q.J) I> 2k-(i+Jl 
for all j. Since ei+ 1 and fi+ 1 satisfy all the same unary predicates over 
( lYI,., J) and ( 1\1 s, L), we see that there is an element q i+ 1 in s,, (a) such 
that 6 2 k [pi+ I] '=k+ 1 6 2 k [q;+J] and hence 

Moreover, by Claim 5.12, r ± l E J iff r' ± l E L, for every l <::: 2A-(i+ 1 l, and 
hence 

From here 

follows easily. This implies (5.8), and (5.6), (5.7) follow from the construction. 
The final note to make about this case is that if d- r <::: 2k-(i+lJ, then qi-+ 1 

can be chosen to be equal to Pi+l, while preserving (5.9). 

Case 2. In this case I 6 (Pi+ 1, P.io) I<::: 2k- ( i+ 1) for som1~ .io <::: w. Find two 

consecutive j.j' E L1 2<·-i(r1 , ...• r 11 .) such that Pi+J is in 6fk_,[p0 .... ,p;J::'· 
From Claim 5.12, IS(qi+ 1 ,q:i) 1<::: 2k-(i+tl. We then use (5.8) and find q;+J in 
s,,(a) so that 

(5.10) 

Conditions (5.6) and (5.7) for 2k-(i+l) now follow from Claim G.12, and condi
tion (5.8) then follows from (5.10), since for every sphere which is a part of one 
of the structures mentioned in (5.10), there is a unary predicate interpreted 
as that sphere. 

Finally, if d + 1 - ei+ 1 <::: 2k-(i+l), then d + 1 - c.in ::;: 2'·-i. and thus 

P:io = q.io and the structures 6£k_,[po, ... ,p;]~' and 6i, ,[qu ..... qt]:;' are 
actually isomorphic. Hence, responding to Pi+ 1 with IJ;+J = Pi+ 1 will pre
serve the isomorphism of structures of the form 6£, (-tll[Po· .... p;.JJ;ttll' 

and 6~<k-(i+ll [qo, ... , q;, Qi+1lf containing the sphere with Pi-t 1 = lfi+l· 

This finally shows that the duplicator plays in such a way that (5.9) is 
preserved. After k moves, the moves of the game (jJ, if) form a partial isomor-

phism. Indeed, if p;1 , p;2 are in different structures 6{ [P1:;' and 6{ [z~l', then 

q;,, q.; 2 are in different structures 6f [qJ1' and 6{' [qJf, and hence then· is no 
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E-relation between them. Furthermore, since ei, < Ci 2 iff /i 1 < f; 2 , we see 
that Pi 1 --< p;2 iff Q;, --< Qi 2 • If Pi" p;2 are in the same structure 6{ lPJ{, then 

Qi,, Qi2 are in 6f[<lJ{, and hence by (5.8), theE and--< relations between them 
are preserved. Finally, since ei E J iff fi E L, we have Pi E U iff q; E U. This 
shows that (p, if) is a partial isomorphism between Nd,J(a) and Nd,L(a), and 
thus finishes the proof of Lemma 5.11 and Proposition 5.9. D 

5.4 Bibliographic Notes 

While the concept of invariant queries is extremely important in finite model 
theory, over arbitrary models it is not interesting, as Exercise 5.1 shows. 

The separating example of Theorem 5.3 is due to Gurevich, although he 
never published it (it appeared as an exercise in [3]). Another separating 
example is given in Exercise 5.2. 

Locality of invariant FO-definable queries is due to Grohe and Schwentick 
[113]. Their original proof is the subject of Exercises 5.8 and 5.9; the proof 
presented here is a slight simplification of that proof. It uses the concept of 
weak locality, introduced in Libkin and Wong [170]. 

Sources for exercises: 
Exercise 5.1: Ebbinghaus and Flum [60] 
Exercise 5.2: Otto [192] 
Exercises 5.3 and 5.4: Libkin and Wong [170] 
Exercises 5. 7 5.9: Grohe and Schwentick [113] 
Exercise 5.11: Rossman [210] 

5. 5 Exercises 

Exercise 5.1. Prove that over arbitrary structures, FO = (FO+ <)inv· 
Hint: use the interpolation theorem. 

Exercise 5.2. The goal of this exercise it to give another separation example for 
FO ~ (FO+ <)inv· We consider structures in the vocabulary u = (U1, U2, E, R, S) 
where Ut, U2 are unary and E, R, S are binary. We consider a class C of structures 
~ E STRUCT[u] that satisfy the following conditions: 

1. ul and u2 partition the universe A. 
2. E ~ ul X [h and s ~ u2 X u2. 
3. The restriction of~ to (U2, S) is a Boolean algebra (we refer to its set of atoms 

as X). 
4. I X 1=1 ul I= 2m; moreover, if ul = {?It) ... , 1I2m} and X = {XI' ... , .T2m}, then 

m 

R = U {u2,-J, u2;} X {x2,-1,x2;}. 
j_-= 1 
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First, prove that the class C is FO-definable. Next, consider the following Boolean 
query Q on C: 

Q(Ql) = true iff (U1 , E) is connected. 

Prove that Q E (FO+ <)inv on C, but that Q is not FO-definable on C. 

Exercise 5.3. Give an example of a query that is weakly local, but is not Gaifman
local. 

Exercise 5.4. Prove that weak locality implies the BNDP for binary queries. Does 
this implication hold for m-ary queries, where m > 2? 

Exercise 5.5. Using Proposition 5.9, prove that acyclicity and k-colorability are 
not definable inFO+<. 

Exercise 5.6. Prove Lemma 5.10. 

Exercise 5.7. In the proof of weak locality of invariant queries presented in this 
chapter, we only dealt with nonoverlapping neighborhoods. To deal with the case of 
overlapping Bd(a) and Bd(b), prove the following. 

Let d' = 5d + 1, and let a ~;:, b. Then there exists a set X containing {a. b} and 
an automorphism g on N;}l(X) such that g(a) =b. 

Exercise 5.8. Prove that every unary query in (FO+ <)inv is Gaifman-local. 
The main ingredients have already been presented in this chapter, but for thP 

case of nonoverlapping neighborhoods. To deal with the case of overlapping neigh
borhoods Nd(a) and Nd(b), defined', g, and X as in Exercise 5.7. 

Now note that each sphere S,.(X) is a union of g-orbits; that is, sets of the form 
{gi(v) I i E Z}. For each orbit 0, we fix a node co and define a linear ordering :S;o 
on 0 by co :S;o g(co) :S;o g2(co) :S;o .... Let :S;m be the image of :S;o under g"'. 

The definition of ::=a and :S;b is almost the same as the definition we used in the 
proof of Proposition 5.9. We start with a fixed order on orbits that respects distance 
from X. It generates a preorder on Bd(X), which we refine to two different orders 
in the following way. On So(X), we let ::=a be :S;o and :S;b be :S;1= g(:S;o). Then, for 
suitably defined J and L (cf. the proof of Proposition 5.9), we do the following. Let 
J = {jJ, ... ,jrn},jl < ... < Jm· For all spheres Sr(X),r < .h, the order on each 
orbit is :S;o, but on SJI (X) we use :S;t instead. We continue to use :S;1 until Sh--1 (X), 
and on Si2 (X) we switch to :S;2, and so on. For =S;b, we do the same, except that we 
use the set L instead. We choose J and L so that I J 1=1 L I +1, which means that 
on Sd(X), both ::=a and :S;b coincide. 

The goal of the exercise is then to turn this sketch (together with the proof of 
Proposition 5.9) into a proof of locality of unary queries in (FO+ <)inv· 

Exercise 5.9. The goal of this exercise is to complete the proof of Theorem 5.8. 
Using Exercise 5.8, show that every m-ary query in (FO+ <)inv, for m > 1, is 
Gaifman-local. 

Exercise 5.10. Calculate the locality rank of an order-invariant query produced in 
the proof of Theorem 5.8. You will probably have to use Exercise 3.10. 
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Exercise 5.11. We know that FO ~ (FO+ <)inv· What about (FO + Succ)inv'? 
Clearly 

FO <;:: (FO + Succ)inv <;:: (FO+ <)inv, 

and at least one containment must be proper. Find the exact relationship between 
these three classes of queries. 

Exercise 5.12; Consider again the vocabulary a<.+ and a class C<.+ of IT<.+
structures where < is interpreted as a linear ordering, and + as the addition corre
sponding to <. Prove that every query in (FO + C< ,+ )inv is local. 
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Complexity of First-Order Logic 

The goal of this chapter is to study the complexity of queries expressible 
in FO. We start with the general definition of different ways of measuring 
the complexity of a logic over finite structures: these are data, expression, and 
combined complexity. We then connect FO with Boolean circuits and establish 
some bounds on the data complexity. We also consider the issue of uniformity 
for a circuit model, and study it via logical definability. We then move to 
the combined complexity of FO, and show that it is much higher than the 
data complexity. Finally, we investigate an important subclass of FO queries 
- conjunctive queries - which play a central role in database theory. 

6.1 Data, Expression, and Combined Complexity 

Let us first consider the complexity of the model-checking problem: that is, 
given a sentence P in a logic C and a structure ~' does ~ satisfy P? There 
are two parameters of this question: the sentence l]), and the structure ~
Depending on which of them are considered parameters of the problem, and 
which are fixed, we get three different definitions of complexity for a logic. 

Complexity theory defines its main concepts via acceptance of string lan
guages by computational devices such as Turing machines. To talk about 
complexity of logics on finite structures, we need to encode finite structures 
and logical formulae as strings. For formulae, we shall assume some natural 
encoding: for example, enc( if?), the encoding of a formula if?, could be its syn
tactic tree (represented as a string). For the notion of data complexity, defined 
below, the choice of a particular encoding of formulae does not matter. 

There are several different ways to encode structures. The one we use here 
is the one most often used, but others are possible, and sometimes provide 
additional useful information about the running time of query-evaluation al
gorithms. 

Suppose we have a structure~ E STRUCT[a]. Let A= { a 1 , ... , an}· For 
encoding a structure, we always assume an ordering on the universe. In some 
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structures, the order relation is a part of the vocabulary; in others, it is not, 
and then we arbitrarily choose one. The order in this case will have no effect 
on the result of queries, but we need it to represent the encoding of a structure 
on the tape of a Turing machine, to be able to talk about computability and 
complexity of queries. 

Thus, we choose an order on the universe, say, a 1 < a2 < ... < a,. Each 
k-ary relation R'<l will be encoded by an n'"-bit string enc(R'<l) as follows. 
Consider an enumeration of all k-tuples over A, in the lexicographic order 
(i.e., (a1, ... , al), (a1, ... , a1, a2), ... , (an, ... , ar, an-1 ), (a~~., ... , an)). Let a.i 
be the jth tuple in this enumeration. Then the jth bit of enc( R'<l) is 1 if 
aj E R'<l, and 0 if aj rf_ R'<l. We shall assume without any loss of generality 
that u contains only relation symbols, since a constant can be encoded as a 
unary relation containing one element. 

If u = { R 1 , ... , Rp}, then the basic encoding of a structure is the con
catenation of the en co dings of relations: enc( R~) · · · enc( R~). In some com
putational models (e.g., circuits), the length of the input is a parameter of 
the model and thus I A I can easily be calculated from the basic encoding; in 
others (e.g., Turing machines), I A I must be known by the device in order to 
use the encoding of a structure. For that purpose, we define an enc(~) which 
is simply the concatenation of on 1 and all the enc( R~) 's: 

enc(~) = on1·enc(R~)···enc(R~). (6.1) 

The length of this string, denoted by II~ II, is 

1' 

II~ II = (n + 1) + L narity(R;). (6.2) 
'i=l 

Definition 6.1. Let K be a complexity class, and£ a logic. We say that 

• the data complexity of£ is K if for every sentence if> of£, the language 

{ enc(~) I ~ f= if>} 

belongs to K; 

• the expression complexity of £ is K if for· ever·y finite structure ~. the 
language 

{ enc(if>) I~ f= if>} 

belongs to K; and 

• the combined complexity of£ is K if the language 

{(enc(~), enc(if>)) I~ f= if>} 

belongs to K. 
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• Furthermore, we say that the combined complexity of L is hard for JC (or 
JC-har·d) if the language {(enc(21), enc(<I>)) 121 f= <I>} is a /C-hard problem. 
The data complexity ·is JC-har·d if for some <I>, { enc(21) I 21 f= <I>} is a hard 
problem for JC, and the expr·ession complexity is /C-hard if for· some 21, 
{ enc( <I>) I 21 f= <I>} is /C-hard. 

• A problem that is both in JC and /C-hard is complete for JC, or JC-complete. 
Thus, we can talk about data/expression/combined complexity being JC
complete. 

Given our standard choice of encoding, we shall sometimes omit the nota
tion enc(-), instead writing {211 21 f= <I>} E JC, etc. 

The notion of data complexity is most often used in the database context: 
the structure 21 corresponds to a large relational database, and the much 
smaller sentence <I> is a query that has to be evaluated against 21; hence <I> is 
ignored in this definition. The notions of expression and combined complexity 
are often used in verification and model-checking, where a complex specifica
tion needs to be evaluated on a description of a finite state machine; in this 
case the specification <I> may actually be more complex than the structure 
21. We shall also see that for most logics of interest, all the hardness results 
for the combined complexity will be shown on very simple structures, thereby 
giving us matching bounds for the combined and expression complexity. Thus, 
we shall concentrate on the data and combined complexity. 

We defined the notion of complexity for sentences only. The notion of data 
complexity has a natural extension to formulae with free variables defining 
non-Boolean queries. Suppose an m-ary query Q is definable by a formula 
<p(:r: 1 , ... , xm)· Then the data complexity of Q is the complexity of the lan
guage {(enc(21),enc({a})) I a E Q(21)}. This is the same as the data com
plexity of the sentence (:J!x S(x)) 1\ (Vx (S(x) -+ <p(x))), where Sis a new 
m-ary relation symbol not in a (we assume that the logic L is closed under the 
Boolean connectives and first-order quantification). Recall that the quantifier 
:J!x means "there exists a unique x". Thus, as long as L has the right closure 
properties, we can only consider data complexity with respect to sentences. 

6.2 Circuits and FO Queries 

In this section we show how to code FO sentences over finite structures by 
Boolean circuits. This coding will give us bounds for both the data and com
bined complexity of FO. 

Definition 6.2. A Boolean circuit with n inputs :r1 , ... , Xn is a tuple 

C = (V,E,.X,o), 

where 
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1. (V, E) is a dir·ected acyclic graph with the set of nodes V (which we call 

gates) and the set of edges E. 

2. ,\ is a fnnction from V to { :1:1, ... , .Tn} U { V, 1\, '} .mch that: 

• .A(v) E { :r1, ... , :Tn} implies that v has in-degree 0; 

• .A(v) = ' implies that v has in-degree 1. 

3. o E V. 

The in-degr·ee of a node is called its fan-in. The size of C is the number· of 

nodes in V; the depth of C is the length of the longest path fmm a node of 

in-degree 0 to o. 

A circuit C computes a Boolean function with n inputs .r 1 ..••• , .1:, as fol

lows. Suppose we are given values of .r 1, ... ,:r11 • Initially, Wf' compute the 

values associated with each node of in-degree 0: for a node labeled .r;, it is 

the value of x;; for a node labeled V it is false; and for a noel<> labelf'cl 1\ it is 

trne. Next, we compute the value of each node by induction: if we havf~ a node 

v with incoming edges from v 1 , •••• vz, and we know the vahws of a 1 •••• , a, 
associated with v 1 , •••• vz, then the value a associated with vis: 

• a 1 V ... Va1 if .A(v) = V; 

• a 1 1\ ... 1\ uz if .A(v) = /\; 

• -,a 1 if ,\ ( v) = ' (in this case Wf~ know that I = 1). 

The output of the circuit is the value assigned to tlw nod(~ o. An example 

of a circuit computing the Boolean function (.r 1 1\ '.r2 1\ .r:1) V ' ( :r:1 1\ '.r 1) is 
shown in Fig. 6.1; the output node is depicted as a doublP cirde. 

Note that a circuit with no inputs is possible, and its in-degn~e zero g;ates 

are labeled V or /\. Such a circuit always outputs a mnstant (i.e., tr·ne or 

false). 
We next define families of circuits and languages in { CL 1} * they ace<' pt. 

Definition 6.3. A family of cirraits is a sequence C = (C, ), 20 wher-e each 

Cn ·is a cir·cuit with n inputs. It accepts the langMge L(C) c;; {0, l }* defined 

as follows. Let s be a str-ing of length n. It can be v·iewed as a Boolean vector· 

X8 such that the i th component of :Cs is the i th symbol in ,, . Then s E /, (C) 

iff Cn outputs 1 on :Cs. 
A family of c-ir·cuits C is sa·id to be of polynomial .size if ther-e is a polyno

mial p : N __, N snch that the size of each Cn is at most p(n). For a function 

f : N __, N, we say that C is of depth f(n) if the depth of C, is at most f(n ). 

We say that C is of constant depth ·if there 'is d > 0 s·nch tlwt fri1' all n, the 

depth of Cn is at most d. 
The cla8s of languages accepted by polynomial-size con8tant-depth families 

of cir-cu-its is called nonuniform AC11 • 
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Fig. 6.1. Boolean circuit computing (x1 1\ •X2 1\ X3) V •(x3 1\ •X4) 

For example, the language that consists of strings containing at least two 
ones is in nonuniform AC0 : each circuit Cn, n > 1, has /\-gates for every pair 
of inputs Xi and Xj, and then the outputs of those /\-gates form the input for 
one V-gate. 

A class of structures C ~ STRUCT[a] is in nonuniform AC0 if so is the 
language { enc(2l) I 2l E C}. An example of a class of structures that is not 
FO-definable, but belongs to nonuniform AC0, is the class EVEN of structures 
of the empty vocabulary: that is, {(A, 0) I I A I mod 2 = 0}. The coding of 
such a structure with I A I= n is simply onl; hence ck always returns true for 
odd k (as it corresponds to structures of even cardinality), and false for even 
k. 

Next, we extend FO as follows. Let P be a collection, finite or infinite, of 
numerical predicates; that is, subsets of Nk. For example, they may include <, 
+considered as a ternary predicate {(i,j,l) I i + j = l}, etc. For P including 
the linear order, we define FO(P) as an extension of FO with atomic formulae 
of the form P(x1 , ... ,xk), for a k-ary P E P. The semantics is defined as 
follows. Suppose 2l is a a-structure, and its universe A is ordered by < as 
ao < ... < an-I· Then 2l f= P(ai1 , ••• , aik) iff the tuple of numbers (i1 , ... , ik) 
belongs to P. 

For example, let P2 C N consist of the even numbers. Then the query 
EVEN is expressed as an FO( { <, P2}) sentence as follows: 

\fx (Vy (y S:: x) ---> P2(x)). 

We are now interested in the class FO(AII) where All stands for the family 
of all numerical predicates; that is, all subsets of N, N2 , N3 , etc. We now show 
the connection between FO(AII) and nonuniform AC0 • 
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Theorem 6.4. Let C be a class of structures definable by an FO(AII) sentence. 

Then C is in nommifomt AC 0 . That is, 

FO(AII) C nonuniform AC 0 . 

Furthemwre, for every FO(AII) sentence <P, then~ is a fam.ily of cir·c·nits of 

depth O(II<PII) accepting {2ll2l f= <!J}. 

Proof. We describe Pach circuit C, in the family C accepting { 2l I 2l f= P}. If 
k is not of the form 112lll for some structure 2l, then C, always r<'t.urns false. 
Assume k is given by (6.2); that is, k is the size of tlH' encodings of structun~s 2l 
with an n-element universe. \Ve then convert cp into a quantifier-free sent.c!l{:e 

<P' over the vocabulary a, predicate symbols in AIL and constants 0, .... n - 1 
as follows. Inductively, we replace each quantifier ::l.I:yJ(.r. ,lj) or \/.ryJ(:r. if) wit b 

n-1 n~l v y(c. m and 1\ y(r:. if). 
r=ll ('=ll 

respectively. Notice that tlw number of connectives V, 1\. -.. V ./\ in 1'' is ex
actly tlw same as the number of conrwctives V. 1\,-. and qnantifiers 3.\/ in 
<P. 

We now build the circuit to evaluate <P'. l\ot<~ that <P' is a BoolP<W combi
nation (using connectives V. /\, -.. V, /\)of formulae of the fmm l'(i 1 ••••• ik). 
where P is a numerical predicate, and R('i 1 •... , im). where R is an m-ar~· 
symbol in a. The former is replac<~d by its truth value (which is either a V m 
a 1\ gate with zero inputs), and the latter corresponds to one hit in enc(2l): 
that is, the input of the circuit.. Tlw depth of the n~sulting; circ·uit. is hounded 
by the number of connectives V. /\, -., V, 1\ in <P', and hence dqwnds only 011 

<P, and not on k. The size of the circuit C"' is dearly polynomial in k. which 
completes the proof. D 

Corollary 6.5. The data cornple1:ity of FO(AII) is nonunifrmn AC 11 • 

v\'e conclude this section with another bound 011 tlw ('Olllplexity of FO 
queries. This time we determine the running time of such a query in t<Trns of 
the sizes of encodings of a query and a structure. 

Given an FO formula yJ, its width is thP maximum number of free \'ariables 
in a subformula of :p. 

Proposition 6.6. Let <P be an FO sentence in vocalmlar-y a, rmd let 2l E 

STRUCT[a]. If the width of<P is!.:, then checking whether- 2l f= <P r:an he done 

in time 
0(11 cp II X ll2tll/,). 

Pmof. Assume, without loss of generality, t.hat <P uses /\. -,, and 3 but not V 

and \/. Let :p1 • ...• cp 111 enumerate all the subforrnulae of <P; W<' know that tlwy 
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contain at most k free variables. We now inductively construct <p;(2l). If <p; has 
k; free variables, then <p;(2l) ~ Ak'. It will be represented by a Boolean vector 
oflength nk', where n =I AI, in exactly the same way as we code relations in 
21.. 

If <p; is an atomic formula R(x1 , ... , xkJ, then <p;(2l) is simply the encoding 
of R in enc(2l). If <p; is --,<p1(2l), we simply flip all the bits in the representation 
of <p1(2t). If <p; is <pj 1\ <p1, there are two cases. If the free variables of <pj and 
<p1 are the same, then <p;(2l) is obtained as the bit-wise conjunction of <pj(2l) 
and <p1(2l). Otherwise, <p;(x, if, Z) = <pJ(x, if) 1\ <p1(x, z), and <p;(2l) is the join 
of <p1(2t) and <p1(2l), obtained by finding, for all tuples over a E AIXI, tuples 
bE AIYI and c E AIEl such that the bits corresponding to (a, b) in <pj (21.) and to 

(a, C) in <p1(2l) are set to 1, and then setting the bit corresponding to (a, b, C) 
in <p;(2l) to 1. Finally, if <p;(x) = 3z<p1(z, x), we simply go over <p1(2l), and if 
the bit corresponding to (a, a) is set to 1, then we set the bit corresponding 
to a in <p; (21.) to 1. 

The reader can easily check that the above algorithm can be implemented 
in time 0(11 cf> II x ll2tllk), since none of the formulae <p; has more than k free 
variables. 0 

6.3 Expressive Power with Arbitrary Predicates 

In the previous section, we introduced a powerful extension of FO - the logic 
FO(AII). Since this logic can use arbitrary predicates on the natural numbers, 
it can express noncomputable queries: for example, we can test if the size of 
the universe of 2l is a number n which codes a pair (k, m) such that the kth 
Turing machine halts on the mth input (assuming some standard enumera
tion of Thring machines and their inputs). Nevertheless, we can prove some 
strong bounds on the expressiveness of FO(AII): although we saw that EVEN 

is FO(AII)-expressible, it turns out that the closely related query, PARITY, is 
not. 

Recall that PARITYu is a query on structures whose vocabulary CJ contains 
one unary relation symbol U. Then 

PARITYu(2l) 

We shall omit the subscript U if it is understood from the context. 
To show that PARITY is not FO(AII)-expressible, we consider the Boolean 

function parity with n arguments (for each n) defined as follows: 

{ 1 if l{ilx;=1}1 mod2=0, 

0 otherwise. 

We shall need the following deep result in circuit complexity. 
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Theorem 6. 7 (Furst-Saxe-Sipser, Ajtai). Ther·e is no constant-depth 
polynomial-size family of cir-cnits that computes par-ity. D 

Corollary 6.8. PARITY is not e.rpr·essible in FO(AII). 

Pmof. Assume, to the contrary, that PARITY is expressible. By Theorun 6.4. 
there is a polynomial-size constant-depth circuit family C that comput<~s 
PARITY on erwodings of structures. Such an encoding of a structure 2l with 
I A I= n is 0"1 · s, where s is the string of length 11 whose ith dement is 1 iff 
the ith element of A is in lJ'21. 

We now use C to construct a new family of circuits <IE'fining parity. Th<> 
circuit with n inputs :r 1, ••• , J'n works as follows. For each J:,, it adds au in
degree 0 gate g; labeled V, and for J:11 it also adds an in-dq;rf'e 0 gate q;, 
labeled /\. Then it puts C2n+l, tlw circuit with 2n + 1 inputs from C on tlw 
outputs of g1 , ... , 9n, g;, followed by :r 1· ... , ;E 11 , as shown below: 

Clearly this circuit computes par-ity(:r1 , ... , .I'n), and by Tlworem 6.:1 the re
sulting family of circuits is of polynomial size and hounded depth. This con
tradicts Theorem 6. 7. [] 

As another example of inexpressibility in FO(All), we show the following. 

Corollary 6.9. Gmph connectivity is not expr-essible in FO(AII). 

Proof. We shall follow the idea of the proof of Corollary 3.1!); however, that 
proof used inexpressibility of the query EVEN, which of com~<' is definable in 
FO(AII). We modify the proof to make use of Corollary 6.8 instead. 

First, we show that for a graph G = (V. E), where Eisa successor rdatim1 
on a set U <;;;; V of nodes, FO(AII) cannot t<~st if th<~ cardinality of U is 
even. Indeed, suppose to the contrary that it can; then this can h(' donC' 
in nonuniform AC 0 , by a family of circuits C. \V<~ now show how to use C 
to test PARITY. Suppose an encoding on1 ·.sofa unary relation U is giwn, 
where U = {i 1, ... , id <;;;; {1, ... , n}. We transform U into a succPssor relation 
Su = {(it.i2), ... ,(ik-J,ik)}. W<~ leave it to the reader to show how to nse 
bounded-depth circuits to transform 0 11 l · s into 0" l · .s' where s' of length n 2 

codes Su. Then using tlw circuit C,2 +n+ 1 from C on 0"1 · .s' we can test if U 
is even. 

Finally, using inexpressibility of parity of a successor rdation, W(' show 
inexpressibility of connectivity in FO(AII) using the same proof as in Corollary 
3.19. D 



6.4 Uniformity and AC0 95 

6.4 Uniformity and AC0 

We have noticed that nonuniform AC0 is not truly a complexity class: in fact, 
the function that computes the circuit Cn from n need not even be recursive. 
It is customary to impose some uniformity conditions that postulate how Cn is 
obtained. While it is possible to formulate these conditions purely in terms of 
circuits, we prefer to follow the logic connection, and instead put restrictions 
on the choice of available predicates in FO(AII). 

We now associate a finite n-element universe of a structure with the set 
{0, ... , n-1 }, and consider an extension of FO over a-structures by adding two 
ternary predicates, + and x, which are graphs of addition and multiplication. 
That is, 

+={(i,j,k)li+j=k} and X={(i,j,k)li·j=k}. 

Note that we have to use + and x as ternary relations rather than binary 
functions, to ensure that the result of addition or multiplication is always in 
the universe of the structure. The resulting logic is denoted by FO( +, x ). 

Definition 6.10. The class of structures definable inFO(+, X) is called uni
form AC0 . 

We shall normally omit the word uniform; hence, by referring to just AC0 , 

we mean uniform AC0 . Note that many examples of AC0 queries seen so far 
only use the standard arithmetic on the natural numbers; for example, EVEN 

is in AC0 . 

It turns out that AC0 is quite powerful and can define several interesting 
numerical relations on the domain { 0, ... , n- 1}. One of them, which we shall 
see quite often, is the bit relation: 

BIT(x,y) is true the yth bit of the binary expansion of x is 1. 

For example, the binary expansion of x = 18 is 10010, and hence BIT(x, y) 
is true if y is 1 or 4, and BIT(x, y) is false if y is 0, 2, or 3. 

We now start building the family of functions definable in FO(+, x). 
Whenever we say that a k-ary function is definable, we actually mean that 
the graph of this function, a k + 1-ary relation, is definable. However, to 
make formulae more readable, we often use functions instead of their graphs. 
First, we note that the linear order is definable by x ~ y {:::} ::lz +(x, z, y) (i.e., 
:=iz (x+z = y)), and thus the minimum element 0, and the maximum element, 
denoted by max, are definable. 

Lemma 6.11. The integer division lxfyJ and (x mod y) are definable in 
FO(+, x). 
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Proof. If y cf. 0, then 

11 = l :r / y J ¢;> ( ( u · /J) :::; :r 1\ ( 3u < y ( .r = u · y + 1 ·))) • 

Furthermore, 

71=(:rmody) ¢;> 3t• ((u= l.rjyj)/\(u+y·t'=J·)). D 

In particular, WP can express divisibility :r I y as (.r mod y) = 0. 

1\;"ow our goal is to show the following. 

Theorem 6.12. BlT is expressible 1:n FO(+. x). 

Proof. \Ve shall prove this in sewral stages. First, note that the following tests 
if :r is a power of 2: 

'V 11. u ( ( .r: = IL · u) 1\ ( 1' cf. 1)) ---+ ( 3z (n = z + ;:; ) ) . 

This is because pmu2 (:r) asserts that 2 is the only primC' factor of .r. Next. W<' 
define the pn,dicate 

BIT'(:r, y) (l.rjyj mod 2) = J. 

Note that if y = 2°, then BIT' (:r. y) is true iff the .-::th bit of .r is l. Assunl<' 
that we can d(~fine the predicate y = 22 • Then 

IHT(:r. y) 3v. (v = 2'1 1\ BIT'(.r.v)). 

Thus, it remains to show how to express the binary predicate .r· = 2.'1. \VP do 
so by coding an iterative computation of 2Y. Tlw codes of such computations 
will he numbers, and as we shall see, those nmnbers can !)(' as large as f 1 . 

Since we only quantify over {0, ... , n -- I}. wlwre n is 1h<' size of tiH' finit<' 
structure, we show IH,]mv how to express the prcdicatP 

P2(:r. y) = :r = 2.'1 1\ :r1 :::; 11- L. 

With P2 , we can define .r: = 2!1 as follows: 

\Ve now show how to express P2(.r,y). Let y = L~~~; y, · 2', so that .If is 
:th-tYh-2···YtYo in binary (we assume that the most significant bit .1/k--t is 
L). Then 2!1 = Il~;r: 2ll• 2 '. \Ve now define the following recurrences for i < k: 

Po= I 

Pi+1 = 2p; 

!1() = () 
a,+ t = a; + .IJ; · 2' 

ho cc= ] 

bit-t= b, · 2v,·'2' 
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Thus, p; = 2;, ai is the number whose binary representation is Yi--1 ... Yo, 
and b, = 2n,. We define sequences p = (po, ... ,pk), a = (ao, ... , ak), b = 
(bo, ... , bk)· 

Next, we explain how to code these sequences. Notice that in all three 
of them, the ith element needs at most 2i bits to be represented in binary. 
Suppose we have an arbitrary sequence c = (c0, ... , ck), where each c; has 
at most 2; bits in binary. Such a sequence will be coded by a number c such 
that its 2; bits from 2i to 2i+l - 1 form the binary representation of c;. These 
codes, when applied top, a, and b, result in numbers p, a, and b, respectively. 
These numbers turn out to be relatively small. Since the length of the binary 
representation of y is k, we know that y 2: 2k~ 1 . If x = 2Y, then x 2: 22k _, 

and x4 2: 22"+'. The binary representation of p, a, and b has at most 2k+ 1 - 1 
bits, and hence the maximum value of those codes is 22'+' ~ 1 - 1, which is 
bounded above by x 4 • Hence, for defining P2 , codes of all the sequences will 
be bounded by the size of the universe. 

How can one extract numbers ci from the code c of c? Notice that 

is Ci. In general, we define extract ( x, u) l x / u J mod u, and thus c; 
2' . 2' 2 2'+ 1 2' extract( c, 2 ) . Notice that since (2 ) = 2 , for u = 2 we have c; 

extract(c,u) and ci+ 1 = extract(c,u2 ). 

Assume now that we have an extra predicate ppow2 (u) which holds iff u 
is of the form 22' . With this, we express P2 ( x, y) by stating the existence of 
a, b, p (coding a, b, f)) such that: 

• extract(p, 2) = 1, extract( a, 2) = 0, extract(b, 2) = 1 (the initial concli
tions of the recurrences hold). 

• If u < x and ppow2 (u), then extract(p, u2 ) = 2 · extract(p, u) (the recur
rence for p is correct). 

• If u < x and ppow2 (u), then either 

1. extract( a, u 2 ) = extract( a, u) and extract( b, u 2 ) = extract(b, u), or 
2. extract( a, u2 ) = extract( a, u) + extract(p, u) and extract(b, u 2 ) = v · 

extract(b, u). 

That is, the recurrences for a and b are coded correctly: the first case 
corresponds to Yi = 0, and hence a;+ 1 = ai and bi+ 1 = bi; the second case 
corresponds to y; = 1, and henn~ a;+ 1 = ai +Pi and bi+ 1 = b; · 22' = b;. · u. 

• There is u such that ppow2 (u) holds, extract( a, u) y, and 
extract(b, u) =:c. That is, the sequences show that 2Y = x. 

Clearly, the above can be expressed as an FO formula. 
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All that remains is to show how to express the predicate ppow~ (v). This 
in turn is done in two steps. First, we define a predicate h (1') that holds iff 
v is of the form I:;'= 1 22 ' (i.e., in its binary representation, onf's appear only 
in positions corresponding to powers of 2). With this predicatP. we define 

Note that if ppow~( v) holds, one can find w with BIT' ( w, u) such that ll' ::::; u 2 ; 

given that allnumlwrs for which ppow2 (·) is checked are below ,yn=l. tlw 
::Jw is guaranteed to range over the finite universe. 

To express P1 , we need an auxiliary formula pow.1 (v) '= ]1011''2 ( u) 1\ 
(u mod 3 = 1) testing if 1l is a power of 4. Now P 1(u.) is tlw conjunction 
of ·BIT' (11, 1) 1\ BIT' (u, 2) and the following formula: 

\fv (2 < u::::; 11--. (BIT'(n.v) +--+ (pou•4 (v)l\3w [(u··u.· = 1')/\BIT'(u.w)]))). 

This formula states that 1-bits in the binary representation uf u are 2 and 
others given by the sequence c 1 = 2, e~ = 1, .... ~'i+l = c}; that is, bits in 
positions of the form 22 '. This defines ? 1 , and thus compld,es the proof of thf' 
theorem. D 

The BIT pn~dicaw turns out to be quite powerful. First note the follmving. 

Lemma 6.13. Addition is definable inFO(<. BIT). 

Proof. We use the standard carry-lookahead algorithm. Given :r. y, and 11, wP 
define carry(:c, y. u) to be true if, while adding 1·, :y given as binary numiH~rs. 
the carry bit with number u is 1: 

::Jv ( (v<u.ABIT(.r.v)ABIT(:y,v)) ) 
1\ \fw ((w < u 1\ w > v)--. (BIT(;r. w) V BIT(y.1c))) · 

Then :c + y = ;:; iff 

\fv (mT(z.u) +--+ ((BIT(T,u) ]lBIT(y,u))8'<"arry(.r.y.u))). 

where cp E8 7./J is an abbreviation for cp +--+ •I}J. D 

A more complicated result (see Exercise 6.5) states tlw following. 

Lemma 6.14. Mv,ltiplication is definable inFO(<. I3JT). 

We thus obtain: 

Corollary 6.15. FO(<,BIT) = FO(+. x). 

Hence, uniform AC0 can be characterized as tlw dass of structures dPfin
able inFO(<, BIT). 
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6.5 Combined Complexity of FO 

We have seen that the data complexity of FO(AII) is nonuniform AC0 , and 
the data complexity of FO is AC0 . What about the combined and expression 
complexity of FO? It turns out that they belong to a much larger class than 
AC0 . 

Theorem 6.16. The combined complexity of FO is PSPACE-complete. 

Proof. The membership in PSPACE follows immediately from the evaluation 
method used in the proof of Proposition 6.6. To show hardness, recall the 
problem QBF, satisfiability of quantified Boolean formulae. 

Problem: QBF 
Input: A formula tP = QI XI ... Qnxn a( XI, ... , Xn), where: 

each Q; is either 3 or V, and 
a is a propositional formula in XI, ... , Xn· 

Question: If all x;'s range over {true,false}, is tfJ true? 

It is known that QBF is PSPACE-hard (see the bibliographic notes at the 
end of the chapter). We now prove PSPACE-hardness of FO by reduction from 
QBF. 

Given a formula tfJ = QIXI ... QnXn a(xi, ... , Xn), construct a structure 
~ whose vocabulary includes one unary relation U as follows: A = {0, 1}, 
and U21 = { 1}. Then modify a by changing each occurrence of x; to U ( x;), 
and each occurrence of •X; to -.U(x;). Let au be the resulting formula. For 
example, if a(xi, x2, x3) = (xu\x2) V ( •XI /\x3), then au is (U(xi) !\ U(x2)) V 
(•U(xi) !\ U(x3 )). Then 

<P is true 

which proves PSPACE-hardness. D 

Since the structure ~ constructed in the proof of Theorem 6.16 is fixed, 
we obtain: 

Corollary 6.17. The expression complexity of FO is PSPACE-complete. 

For most of the logics we study, the expression and combined complexity 
coincide; however, this need not be the case in general. 

6.6 Parametric Complexity and Locality 

Proposition 6.6 says that checking whether ~ F tfJ can be done in time 
0(11 <P II · II~ Ilk), where k is the width of tfJ: the maximum number of free 
variables of a subformula of tfJ. In particular, this gives a polynomial time 
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algorithm for evaluating FO queries on finite structures, for a fixed sentence 
P. Although polynomial time is good, in many cases it is not sufficient: for 
example, in the database context where ll2t II is very large, even for small k 

the running time O(ll2tlll.:) may be prohibitively expensive (in fact, the goal 
of most join algorithms in database systems is to reduce the running time 
from the impractical 0( n 2 ) to 0( n log n) - at least if the result of the join 
is not too large - and running time of the order n 10 is completely out of the 
question). 

The question is, then, whether sometimes (or always) one can find bd
ter algorithms for evaluating FO queries on finite structures. In particu
lar, it would be ideal if one could always guarantee time linear in II 2l II· 
Since the combined complexity of FO queries is PsPACE-complete, something 
must be exponential, so in that case we would expect the complexity to be 
O(g(II<PII)·II2tll ), where g: N---> N is some function. 

This is the setting of parameter·ized complexity, where the standard input of 
a problem is split into the input part and the parameter part, and one looks 
for fixed parameter tractable problems that admit algorithms with running 
time O(g( n) · nP) for a fixed p; here n is the size of the parameter, and n is the 
size of the input. It is known that even some NP-hard problems become fixed 
parameter tractable if the parameters are chosen correctly. For example, SET 
COVER is the problem whose input is a set V, a family :F of its subsets, and 
a number k, and the output is "yes" if there is a subset of V of size at most 
k that intersects every member of :F. This problem is NP-complete, but if we 
choose 1r = k + maxFEF IF I to be the parameter, it becomes solvable in time 
O(w1r+l ·IFI), thus becoming linear in what is likely the largest part of tlw 
input. 

We now formalize the concept of fixed-parameter tractability. 

Definition 6.18. Let £ be a logic, and C a class of structures. The model
checking problem for £ on C is the problem to check, for· a given structure 
2l E C and an £-sentence P, whether 2l f= P. 

We say that the model-checking problem for £ on C is fixed-parameter 
tractable, if there is a constant p and a function g : N ---> N such that for 
every 2( E C and every £-sentence P, checking whether 2l f= P can be done in 
time 

We say that the model-checking problem for £ on C is fixed-parameter 
linear, if p = 1; that is, if there is a function g : N ---> N such that for· every 
2( E C and every £-sentence P, checking whether 2l f= P can be done in time 

g(II<PII)·II2tll· 

We now prove that on structures of bounded degree, model-checking for 
FO is fixed-parameter linear. The proof is based on Hanf-locality of FO. 
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Theorem 6.19. Fix l > 0. Then the model-checking problem for FO on 

STRUCTz [cr] is fixed-parameter linear. 

Pr-oof. We use threshold equivalence and Theorem 4.24. Given l and <!>, we can 
find numbers d and m such that for every~' 23 E STRUCTt[cr], it is the case 
that ~!=;~.'~,23 implies that ~ and 23 agree on <!>. 

We know that for structures of fixed degree l, the upper bound on the num
ber of isomorphism types of radius d neighborhoods of a point is determined 
by d, l, and cr. We assume that T1 , ... , TM enumerate isomorphism types of all 
the structures of the form N,T(a) for~ E STRUCTz[cr]. 

Let ni(~) =I {a I Nl(a) of type Ti} I· With each structure ~' we now 
associate an M-tuple i(~) = (t 1 , ... , tM) such that 

if n.;(~) <::: m, 

otherwise. 

LetT be the set of all M-tuples whose elements come from {1, ... , m} U { * }. 
Note that the number of such tuples is ( rn + 1) M, which depends only on l 
and <!>, and that each t(~) is a member ofT. 

From Theorem 4.24, i(~) = i(23) implies that ~and 23 agree on<!>. Let To 
be the set oft E T such that for some structure ~ E STRUCTz[cr], we have 
~ I= <!> and i(~) = f. We leave it as an exercise for the reader (see Exercise 
6. 7) to show that T0 is computable. 

The idea of the algorithm then is to compute, for a given structure ~' 
the tuple i(~) in linear time. Once this is done, we check if t E T0 . The 
computation of T0 depends entirely on <!> and l, but not on ~; hence the 
resulting algorithm has linear running time. 

For simplicity, we present the algorithm for computing t(~) for the case 
when~ is an undirected graph; extension to the case of arbitrary~ is straight
forward. We compute, for each node 'l (assuming that nodes are numbered 
0, ... , n ~ 1), T(i), the isomorphism type of its d-neighborhood. For this, we 
first do a pass over the code of~' and construct an array that, for each node 
i, has the list of all nodes j such that there is an edge ( i, j). Note that the size 
of any such list is at most l. Next, we construct the radius d neighborhood 
of each node by looking up its neighbors, then the neighbors of its neighbors, 
etc:., in the array constructed in the first step. After d iterations, we have 
radius d neighborhood, whose size is bounded by a number that depends ou 
the<!> and l but not on~. Now for each i, we find j <::: M such that T(i) = Ti; 
since the enumeration T 1 , ... , TJ\f does not depend on ~' each such step takes 
constant time. Finally, we do one extra pass over (T(i))i and computet(~). 
Hence, i(~) is computed in linear time. As we already explained, to check 
if ~ I= <!>, we check if t E T0 , which takes constant time. Hence, the entire 
algorithm has linear running time. D 

Can one prove a similar n~sult for FO queries on arbitrary structures? 
The answer is most likely no, assuming some separation results in complexity 



L02 6 Complexity of First-Order Logic 

theory (see Exercise 6.9). In fact, these results shmv that even fixecl-paramf'ter 
tractability is very unlih•ly for arbitrary structures. 

Nevertheless, fixed-parameter tractability can he shown for sumC' interC'st
ing classes of structun~s. 

Recall that a graph His a minor· of a graph C if H can lw obtained from a 
subgraph of G by contracting edgC's. A dass C of graphs is called minor-closed 
if for any G E C and ll a minor of G, W(' have HE C. 

Theorem 6.20. If C is a minor·- closed class of gmphs which does not include 
all the gmphs, then rn.odel-eheeking for FO on C i.s fi:red-pamrn.eter· tractable. 

The proof of this (hard) theorem is not given here (see Exercise 6.10). 

Corollary 6.21. Model-checking for- FO on the class of planar· gmphs ·is ji.ud
pamrneter tractable. D 

6. 7 Conjunctive Queries 

In this section we introduce a subclass of FO queries that plays a central 
role in database theory. This is the class of conjnnr:tivc queries. These are 
the queries most commonly asked in relational databases; in fact any SQL 
SELECT-FROM-WHERE query that only uses conjunction of attribute equalitiC's 
in the WHERE clause is such. Logically this class has a simpl<~ ('haracterization. 

Definition 6.22. A first-or·der· fonnula :p(f) over· a relational vocalmlar-y IT 

is called a conjunctive query if it is bnilt fmrn atomic formulae using only 
conjunction 1\ and existential quantification 3. 

By renaming variabl<~s and pushing existential quantifiers outside. we can 
see that every conjunctive query can be expressed as 

k 

:p(.E) 3TJ 1\ o,(.f,l7). (G.3) 
I= I 

where each o; is either of the form R('a), where R E cr and 11 is a tupl<~ of 
variables from :1, :/J, or n = v, where 11. u are variables from .f. FJ or constant 
symbols. 

We hav<~ seen an example of a conjunctive query in Chap. 1: to test if there 
is a path of length k + 1 bt>tween x and .r' in a graph E, one can write 

To see how conjunctive queries can lw evaluat<~d. we introduce the <'Oil

cept of a join of two relations. Suppose \Ve have a formula :p(.r 1 •••• .. r 1n) over 
vocabulary cr. For each 2t E STRUCT[cr], this formula definC's an m-ary r<'

lation cp(2t) ={a I 2t f= :p(o)}. We can view :p(2t) as an m.-ary relation with 
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attributes x 1 , ... , Xm: that is, a set of finite mappings { x1, ... , :Em} ---+ A. 
Viewing cp(2l) as a relation with columns and rows lets us name individual 
columns. 

Suppose now we have two relations over A: an m-ary relation S and an 
l-ary relation R, such that R is viewed as a set of mappings t : X ---+ A and S 
is view(~d as a set of mappings t : Y ---+ A. Then the join of R and S is defined 

as 
R~S = {t:XUY---.A I tlxER,tlyES}. (6.4) 

Suppose that R is cp(2l) where cp has free variables (X', z), and S is v;(Ql) 
where ·1/J has free variables (if, z). How can one construct R ~ S? According 

to (6.4), it consists of tuples (a, b, C) such that cp(a, C) and 7/J(b, C) hold. Thus, 
R ~ s = [cp ;\ v;J(2l). 

As another operation corresponding to conjunctive queries, consider again 
a relation R viewed as a set of finite mappings t : X ---+ A, and let Y c::; X. 
Then the pmjection of R on Y is defined as 

Jry(R) = {t: y---+ A I ==Jt' E R: t'ly= t}. (6.5) 

Again, if R is cp(2l), where cp has free variables (X', if), then Jrg(R) is simply 
[==Jx cp(x, if)J(R). 

Now suppose we have a conjunctive query 

(6.6) 

where each n;(17i) is an atomic formula S(ili) for someS E a, and 71;. is a list 
of variables among x, if. Then for any structure 2l, 

(6.7) 

A slight extension of the correspondence between conjunctive queries and 
the join and projection operations involves queries of the form 

(6.8) 

where f3 is a conjunction of formulae u 1 = u 2 , where u 1 and u 2 are variables 
occurring among fi 1, ... , 1Ln. 

Suppose we have a relation R, again viewed as a set of finite mappings 
t : X ---+ A, and a set C of conditions x; = x.i, for x;, x .i E X. Then the 
selection operation, ac(R), is defined as 

{t:X---.A ItER, t(x1)=t(xj) forallxi=Xj EC}. 

If R is cp(2l), then ac(R) is simply [cpA f3](R), where f3 is the conjunction of 
all the conditions .r; = x.i that occur in C. 

For f'J being as in (6.8), let Cf:J be the list of all equalities listed in ,6. Then, 
using the selection operation, the most general form of a conjunctive query 
above can be translated into 
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(6.9) 

Many common database queries are of the form (6.9): they compute the 
join of two or more relations, select some tuples from them, and output 
only certain elements of those tuples. These can be expressed as conjunctive 
queries. 

The data complexity of conjunctive queries is the same as for general FO 
queries: uniform AC0 . For the combined and expression complexity, we can 
lower the PsPACE bound of Theorem 6.16. 

Theorem 6.23. The combined and expression complexity of conjunctive 
queries are NP-complete (even for Boolean conjunctive queries). 

Proof. It is easy to see that the combined complexity is NP: for the query 
given by (6.3) and a tuple a, to check if 'P(a) holds, one has to guess a tuplP 
band then check in polynomial time if/\; n;(a, b) holds. 

For completeness, we use reduction from 3-colorability, defined 
in Chap. 1 (and known to be ~P-complete). Define a structure 
2l = ({0, 1, 2}, N), where N is the binary inequality relation: N = 
{ (0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}. Suppose we are given a graph with 
the set of nodes U = {a 1 , ... , an}, and a set of edges E c:;: U x U. We then 
define the following Boolean conjunctive query: 

1\ N (;r:;. J'.J ). 

(a;.a1 )EE 

(6.10) 

Note that for a given graph (U, E), the query <P can be constructPd in ddPr
ministic logarithmic time. 

For the query <P given by (6.10), 2l f= <P iff there is an assignment of 
variables x;, 1 :::; i :::; n, to { 0, 1, 2} such that for every edge ( o.;, a.i), the corn•
sponding values x; and J:.i are different. That is, 2l f= <P iff (U. E) is 3-colorablP, 
which provides the desired reduction, and thus proves NP-completenPss for 
the combined (and expression, since 2l is fixed) complexity of conjunctive 
queries. D 

As for the data complexity of conjunctive queries, so far we have seen no 
results that would distinguish it from the data complexity of FO. We shall 
now see one result that lowers the complexity of conjunctive query evaluation 
rather significantly, under certain assumptions on the structurP of qtwriPs. 
Unlike Theorem 6.19, this result will apply to arbitrary structures. 

Recall that in general, an FO sentence <I> can be evaluated on a structure 
2l in time 0(11 <I> II ·ll2tiiA:), where k is the width of <P. We shall now lower this 
to 0(11 <I> II · ll2tll) for the class of acyclic conjunctive queries. That is, for a 
certain class of queries, we shall prove that they are fixed-parameter linear Oil 

the class of all finite structures. To define this class of queries, we need a few 
preliminary definitions. 
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Let H be a hypergraph: that is, a set U and a set E of hyper-edges, or subsets 
of U. A tree decomposition of H is a tree T together with a set Bt <:;;; U for 
each node t of T such that the following two conditions hold: 

1. For every a E U, the set { t J a E Bt} is a subtree of T. 

2. Every hyper-edge of His contained in one of the Bt'S. 

A hypergraph H is acyclic if there exists a tree decomposition of H such that 
each Bt, t E T, is a hyper-edge of H. 

Definition 6.24. Given a conjunctive query r.p(Y) 3x ( o:1 ( ul) 1\ ... 1\ 

o:n(un)), its hypergraph 7-i(r.p) is defined as follows. Its set of nodes is the set 
of all variables used in r.p, and its hyper-edges are precisely u1 , ... , Un. 

We say that r.p is acyclic if the hypergraph H(r.p) is acyclic. 

For example, let P = 3x3y3z R(x, y) 1\ R(y, z). Then 7-i(P) is a hyper
graph on {x,y,z} with edges {(x,y),(y,z)}. A tree decomposition of 7-i(P) 
would have two nodes, say ii and t2 , with an edge from t1 to t 2 , and 
Bt1 = {x,y},Bt2 = {y,z}. Hence, Pis acyclic. 

As a different example, let P1 = ::3x3y::3z R(x, y) 1\ R(y, z) 1\ R(z, x). Then 
7-i(P') is a hypergraph on {x, y, z} with edges { (x, y), (y, z), (z, x)}. Assume it 
is acyclic. Then there is some tree decomposition of 7-i(P') in which the sets 
Bt include {x,y},{y,z},{x,z}. By a straightforward inspection, there is no 
way to assign these sets to nodes of a tree so that condition 1 of the definition 
of tree decomposition would hold. Hence, cp' is not acyclic. 

In general, for binary relations, hypergraph and graph acyclicity coincide. 
To give an example involving hyper-edges, consider a query 

l]t = ::3x::3y::3z::3n:3v (R(x, y, z) 1\ R(z, u, v) 1\ S( u, z) 1\ S(x, y) 1\ S( v, w)). 

Its hypergraph has hyper-edges { x, y, z }, { z, u, v }, { u, z }, {x, y }, { v, w }. The 
maximal edges of this hypergraph are shown in Fig. 6.2 (a). This hypergraph 
is acyclic. Indeed, consider a tree with three nodes, t 1 , t 2 , t3 , and edges (t1 , t 2 ) 

and (t1, t;{)· Define Bt1 as { z, u, v }, Bt2 as { x, y, z }, and Bt3 as { v, w} (see 
Fig. 6.2 (b)). This defines an acyclic tree decomposition of H(w). 

If, on the other hand, we consider a query 

l]t' = 3x::3y3z::3u3v (R(x, y, z) 1\ R(z, u, v) 1\ R(x, v, w)) 

then one can easily check that 7-i(P') (shown in Fig. 6.2 (c)) is not acyclic. 

We now show that acyclic conjunctive queries are fixed-parameter 
tractable (in fact, fixed-parameter linear) over arbitrary structures. The result 
below is given for Boolean conjunctive queries; for extension to queries with 
free variables, see Exercise 6.13. 
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(a) 

t'2 

{z.v.11} 
t! 

{ .r. y, .? } 

(b) 

f:l 
{u.w} 

Fig. 6.2. Cyclic and acyclic hypergraphs 

(c) 

Theorem 6.25. Let <P be a Boolean acyclic conjunctive qner·y over- CJ

structnres, and let l.2l E STRUCT[CJ]. Then ch;xking whether· l.2l f= <P can be 
done in time O(II<PII · ll1.2tlll· 

Proof. Let <l> be 
II 

<P = =:ixt ... :I:m /\ o;(i7,l. 
i=l 

where each a, (11;) is of the form S ( fi; l for S E CJ, and i7; contains some 
variables from .i. The case when some of the o; 's are variable equalities can 
be shown by essentially the same argument, by adding one sekc:ticm over the 
join of all a;(l.2l)'s. 

We use a known result that if H is acyclic, then its 1 ree decomposition 
satisfying the condition that each B1 is a hyper-edge of H can be computed in 
linear time. Furthermore, one can construct this decomposition so that B,, 9'c 
B 12 for any t 1 =f t2 . Hence, we assume that we have such a decomposition 
(T, (Bt)tET) for H(<P), computed in time 0(11 <PIll· Let -< deno1e tlw partial 
order ofT, with the root being the smallest node. 

From the acydicity of H, it follows that there is a bijection between max
imal, with respect to <;;, sets FI1, and nodes t of T. FcJr <~ach i, let v, lw tlw 
node t such that ·i7; is contained in B 1 . This node is unique: we look for tlw 
maximal i11 that contains il,, and find the unique node t such that B1 = F7.~. 

We now define 
Rt = lXI ct;(l.2ll. (6.11) 

1E[l.n] 
Vi=1 

Our goal is now to compute the join of all R1's, since (6.7) implies that 

(6.12l 

To show that (6.lll and (6.12) yield a linear time algorithm, we 
need two complexity bounds on computing projections and joins: r.x(R) 
can be computed in time 0(11 Rill, and R 1><1 8 can be computed in time 
0(11 R II + 11811 + II R 1><1 S II l (se(~ Exercise 6.12). 
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To see that each R 1 can be computed in linear time, let it be such that 

?Li, = Bt (it exists since the query is acyclic). Then 

Rt = a;, (ui,) ~ ai, ('ui,) ~ ... ~ a;k ( i1ik), 

where all 71;1 ~ i1;,, j :::; k. Hence R 1 ~ ai, (Qt). Using the above bounds for 
computing joins and projections, we conclude that the entire family R 1 , t E T, 
can be computed in time 0(11 4> II · II Q( II). 

We define 

where >: is the partial order ofT, with the root r being the smallest element. 
If t is a leaf of T, then P1 = R1• Otherwise, let t be a node with children 

t1, ... ,tz. Then 

(6.13) 

Using (6.13) inductively, we compute PT 1><1 1R1 in time 

0(11 T II ·max1 II R 1 II). We saw that II R1 II:'SII Q( II for each t, and, further
more, T can be computed from 4> in linear time. Hence, Pr can be found in 

time 0(11 4> II · II Q( II), which together with (6.12) implies that Q( f= 4> can be 
tested with the same bounds. This completes the proof. D 

There is another interesting way to connect tree decompositions with 
tractability of conjunctive queries. Suppose we have a conjunctive query zp(x) 
given by (6.3). We define its graph Q(zp), whose set of vertices is the set of 
variables used in zp, with an edge between two variables u and v if there 

is an atom ai such that both u and v are its free variables. For exam
ple, if zp(x,y) = 3z3v R(x,y,z) 1\ S(z,v), then Q(zp) has undirected edges 
(x, y), (x, z), (y, z), and (z, v). 

A tree decomposition of Q(zp) is a tree decomposition, as defined earlier, 
when we view Q( zp) as a hypergraph. In other words, it consists of a tree T, 
and a set B 1 of nodes of Q ( zp) for each t E T, such that 

1. { t I v E Bt} forms a subtree ofT for each v, and 

2. for every edge (u, v), both 'U and v are in one of the B 1 's. 

The width of a tree decomposition is max1 I B 1 I -1. The treewidth of Q ( zp) 

is the minimum width of a tree decomposition of Q ( zp). It is easy to see that 
the treewidth of a tree is 1. 

For k > 0, let CQ., be the class of conjunctive queries zp such that the 
treewidth of Q ( zp) is at most k. Then the following can be shown. 

Theorem 6.26. Let k > 0 be fixed, and let zp be a query from CQ,. 
Then, for every structure Q(, one can compute zp(Qt) in polynomial time in 

II 4> II + II Q( II + II zp(Qt) II· In particular, Boolean queries from CQ., can be 

evaluated 'in polynomial time in II 4> II + II Q( II- D 
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In other words, conjunctive-query evaluation becomes tractabk for queries 
whose graphs have bounded treewidth. Exercise 6.15 shows that the converse 
holds, under certain complexity-theoretic assumptions. 
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Yannakakis [249] 
Grobe, Schwentick, and Segoufin [114] 
Flum and Grobe [81] 
Gottlob, Leone, and Scarcella [96] 
Chandra and Merlin [34] 

Exercise 6.1. Show that none of the following is expressible in FO(AII): transitive 
closure of a graph, testing for planarity, acyclicity, 3-colorability. 

Exercise 6.2. Prove that LJXJ is expressible inFO(+, x). 

Exercise 6.3. Consider two countable undirected graphs. For the first one, the uni
verse is N, and we have an edge between i and j iff BIT(i,j) or BIT(j, i) is true. In 
the other graph, the universe is N+ = {n EN In> 0} and there is an edge between 
n and m, for n > m, iff n is divisible by Pm, the mth prime. Prove that these graphs 
are isomorphic. 

Hint: if you find it hard to do all the calculations required for the proof, you may 
want to wait until Chap. 12, which introduces some powerful logical tools that let 
you prove results of this kind without using any number theory at all (see Exercise 
12.9, part a). 

Exercise 6.4. Show that the standard linear order is expressible in FO(BIT). Con
clude that FO(+, x) = FO(BIT). 

Exercise 6.5. Prove Lemma 6.14. 
You may find it useful to show that the following predicate is expressible in 

FO ( +, X): BitSum( x, y) iff the number of ones in the binary representation of x is 
y. 

Exercise 6.6. Prove that QBF is PSPACE-complete. 

Exercise 6.7. We stated in the proof of Theorem 6.19 that the set of tuples f E T 
for which there exists a structure 2l with t(2l) =rand 2l F cp is computable. Prove 
this statement, using the assumption that 2l is of bounded degree. Derive bounds 
on the constant in the 0( 112lll) running time. 

Exercise 6.8. Give an example of a two-element structure over which the expression 
complexity of conjunctive queries is NP-hard. Recall that in the proof of Theorem 
6.23, we used a structure whose universe had three elements. 
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Exercise 6.9. In this exercise, we refer to parameterized complexity class lt'[l] 
whose definition can be found in [58, 81]. This class is believed to contain problems 
which are not fixed-parameter tractable. 

Prove that checking !X f= P, with P being the parameter, is W[1]-hard, even if 
Pis a conjunctive query. Thus, it is unlikely that FO (or even conjunctive queries) 
are fixed-parameter tractable. 

Exercise 6.10. Derive Theorem 6.20 from the following facts. H is an excluded 
minor of a class of graphs C if no G E C has H as a minor. If such an H exists, then 
C is called a class of graphs with an excluded minor. 

• If Cis a minor-closed class of graphs, membership inC can be verified in PTIME 
(see Robertson and Seymour [205]). 

• If Cis a PTIME-decidable class of graphs with an excluded minor, then checking 
Boolean FO queries on Cis fixed-parameter tractable (see Flum and Grohe [81]). 

Exercise 6.11. Prove that an order-invariant conjunctive query IS FO-definable 
without the order relation. That is, (CQ+ <)inv ~ FO. 

Exercise 6.12. Prove that H M ,','can be evaluated in O(IIRII +liS II+ IIR M Sll). 

Exercise 6.13. Extend the proof of Theorem 6.25 to deal conjunctiw queries with 
free variables, by showing that tp(!X), for an acyclic tp, can be computed in time 
0(11 'P II · II !X II · II tp(!X) II). Also show that if the set of free variables of tp is contained 
in one of the Bt's, for a tree decomposition ofH(tp), then the evaluation can be done 
in time O(ll 'P II · II !X II). 

Exercise 6.14. Extend Theorem 6.25 and Exercise 6.13 to conjunctive queries with 
negation; that is, conjunctive queries in which some atoms are of the form :r f y, 
where x and y are variables. 

Exercise 6.15. Under the complexity-theoretic assumption that W[l] contains 
problems which are not fixed-parameter tractable (see Exercise 6.9), the con
verse to Theorem 6.26 holds: if for a class of graphs C, it is the case that ev
ery conjunctive query tp with Q(tp) E C can be evaluated in time polynomial in 
II P II + II !X II + II tp(!X) II, then C has bounded treewidth (i.e., there is a constant 
k > 0 such that every graph inC has treewidth at most k). 

Exercise 6.16. We say that a class of structures C ~ STRUCT[u] has bounded 
treewidth if there is k > 0 such that for every !X E C, the treewidth of its Gaif
man graph is at most k. Prove that FO is fixed-parameter tractable on classes of 
structures of bounded treewidth. 

Exercise 6.17. Give an example of a conjunctive query which is of treewidth 2 but 
not acyclic. Also, give an example of a family of acyclic conjunctive queries that has 
queries of arbitrarily large treewidth. 

Exercise 6.18. Given a hypergraph H, its hypertree decomposition is a triple 
(T, (Bt)tET, (Ct)tET) such that (T, (Bt)tET) is a tree decomposition of H, and each 
Ct is a set of hyper-edges. It is required to satisfy the following two properties for 
every t E T: 
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1. Bt c_:; UCt; 
2. UCt n UB, c_:; Bt. 

'V~t 

The hypertree width of H is defined as the minimum value of maxtET I Ct I, taken 

over all hypertree decompositions of H. 
Prove the following: 

(a) A hypergraph is acyclic iff its hypertree width is 1. 
(b) For each fixed k, conjunctive queries whose hypergraphs have hypertree width 

at most k can be evaluated in polynomial time. 

Note that this does not contradict the result of Exercise 6.15 which refers to 

graph-based (as opposed to hypergraph-based) classes of conjunctive queries. 

Exercise 6.19. Suppose 'PI(£) and <p2(£) are two conjunctive queries. We write 

'Pl c_:; <p2, if <p1 (m) c_:; <p2(m) for all Ql (in other words, Vx <p1(x)-+ <p2(x) is valid in 

all finite structures). We write <p1 = <p2 if both <p 1 c_:; '{!2 and <p2 c_:; <p 1 hold. 
Prove that testing both <p1 c_:; <p2 and <p1 = <p2 is NP-complete. 

Exercise 6.20: Use Ehrenfeucht-Frai"sse games to prove that PARITY is not ex

pressible in FO ( +, x). 
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Monadic Second-Order Logic and Automata 

We now move to extensions of first-order logic. In this chapter we introduce 
second-order logic, and consider its often used fragment, monadic second
order logic, or MSO, in which one can quantify over subsets of the universe. 
We study the expressive power of this logic over graphs, proving that its 
existential fragment expresses some NP-complete problems, but at the same 
time cannot express graph connectivity. Then we restrict our attention to 
strings and trees, and show that, over them, MSO captures regular string and 
tree languages. We explore the connection with automata to prove further 
definability and complexity results. 

7.1 Second-Order Logic and Its Fragments 

We have seen a few examples of second-order formulae in Chap. 1. The idea is 
that in addition to quantification over the elements of the universe, we can also 
quantify over subsets of the universe, as well as binary, ternary, etc., relations 
on it. For example, to express the query EVEN, we can say that there are two 
disjoint subsets U1 and U2 of the universe A such that A = U1 u U2 and there 
is a one-to-one mapping F : U1 ---> U2 . This is expressed by a formula 

where 'Pis an FO formula in the vocabulary (U1 , U2, F) stating that U1 and U2 
form a partition of the universe (Vx (Ul(x) <--+ ·U2(x))), and that F <:;;; ul X u2 
is functional, onto, and one-to-one. 

Note that the formula 'Pin this example has three second-order free vari
ables U1, U2, and F. We now formally define second-order logic. 

Definition 7.1 (Second-order logic). The definition of second-order logic, 
SO, extends the definition ofFO with second-order variables, ranging over sub
sets and relations on the universe, and quantification over such variables. We 
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as.surne that for· ever'y k > 0, there ar·e infinitely many var·iables X t·. X~ .... , 
ranging over k-ary n~lations. A for·rnula of SO can have both jiTst-order- and 

second-order freP- variable.s; we wTite zp(.r. X) to indicate that .? an~ free first

order· var·iable.s, and X are free second-order variables. 

Given a vocabulary rr that consi.sts of r·elation and ron.stant symbols, we 
define SO terms and formulae, and their fn:e variables, as follows: 

• Every first-onler· variable :r, and ever·y constant symbol c, are first-or·der· 

terms. The only free var·iable of a tenn J" is the vrwiable J'. and c has no 
free var·iables. 

• There ar·e three kind.s of atomic forrnulw:: 

- FO atomic formulae; that is, formulae of the fonn 

t = t', where t, t' are terms, and 

- R( t), where t i.s a tuple of tcmts, and R E rr, and 

-- X ( t 1 , ... , t !.-), where t 1 , ... , t k ar·e terms, and X is a secor1.d- or·d(:r- var"i-

able of ar·ity k. The fr·ee first-or·der· variablc.s of this for-m·1da an~ fr-ee 

first-or·der variables oft 1 •... , t~;; the fn:e 8ecorul-onier- variable is X. 

• The formulae of SO are closed under· the Boolean connective_, V. /\. --,, and 
first-order quantification, with the ·usual rules for fr·ee vm,iables. 

• If zp(:r, Y. X) is a formula, then 3Y zp(.i, Y X) and \iY zp(.?. Y. }() an; 

fonnulae., whose fr·ee var"iables an: .t and X. 

The semant?:cs is defined as follows. Suppose '2! E STHUCT[rr]. For- eru:h 

formula zp(.T, X), we define the notion '2! f= zp( b. i}). wheTe I~ is a tuple of 

elements of A of the .same length a.s .i, and for· X = (X 1 ••.•• Xr). with each 

X; being of arity n;, B = ( B 1 ••••• Bz), wheTe each B; is 11, subset of A"'. 
We give the semantics only for constnu:toTs tho.t o.r-e di.ffen:nt fmm those 

for FO: 

• If zp(.T, X) is X ( t 1 •...• tic), where X i.~ k-ar-;t; and t1 • •••• I~, ar·e tenn.s. with 

f7'ee variables among .i, then '2! f= zp(b, B) iff the tnpll' (t~(b) ..... 1~1 (b)) is 

in B. 

• If zp(x. X) is ::JY 11J(:f. Y X), wher·e Y is k-ar'y, then '2! f= zp(b. B) if for· 

some C c:;; A k, it is the case that '2! f= 011( b. C. ti). 
•If zp(:r,X) is VY 1f!(x. Y.X), andY is k-m·y, then '2! f= zp(h. ii) if for· all 

C c:;; Ak, we have '2! f= 1/'(b.C.I~). 

\\'e know that every FO formula can be writt<~n in the pr<>n<>x normal form 
Q 1:r1 •.. q,:r 11 J•, where Cj.;'s arc 3 or \7, and li' is quantifier-fre<'. Like\vis<': 
every SO formula can be written as a sequencp of first- ancl S<'cond-onlPr 
quantifiers, followE'd by a quantifier-frPE' formula. Fnrt hermore. note t lw fol
lowing equivalences: 
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3x Q cp(x, ·) +--+ ::JX Q (:3x (X(x) 1\ cp(x, ·))) (7.1) 

\lx Q cp(x, ·) +--+ \IX Q (:3!x X(x)-> \lx (X(x)-> cp(x, ·))), (7.2) 

where Q stands for an arbitrary sequence of first- and second-order quantifiers. 
Using those inductively, we can see that every SO formula is equivalent to a 
formula in the form 

(7.3) 

where QiXi are second-order quantifiers, QjXj are first-order quantifiers, and 
'lj; is quantifier-free. 

We now define some restrictions of the full SO logic of interest to us. The 
first one is the central notion studied in this chapter. 

Definition 7.2. Monadic SO logic, or MSO, is defined as the restriction of 
SO where all second-order variables have arity 1. 

In other words, in MSO, second-order variables range over subsets of the 
universe. 

Rules (7.1) and (7.2) do not take us out of MSO, and hence every MSO 
formula is equivalent to one in the normal form (7.3), where the second-order 
quantifiers precede the first-order quantifiers. 

Definition 7.3. Existential SO logic, or ::JSO, is defined as the restriction of 
SO that consists of the formulae of the form 

:3X1···:3Xn cp, 

where cp does not have any second-order quantification. If, furthermore, all 
Xi's have arity 1, the resulting restriction is called existential monadic SO, 
or ::JMSO. 

If the second-order quantifier prefix consists only of universal quantifiers, 
we speak of the universal SO logic, or \ISO, and its further restriction to 
monadic quantifiers is referred to as \/MSO. 

In other words, an ::JSO formula starts with a second-order existential prefix 
:3X1 ... 3Xn, and what follows is an FO formula cp (in the original vocabulary 
expanded with X1, ... ,Xn). 

Formula (1.2) from Chap. 1 stating the 3-colorability of a graph is an 
example of an ::JMSO formula, while (1.3) stating the existence of a clique of 
a given size is an example of an :380 formula. 

Definition 7.4. The quantifier rank of an SO formula is defined as the max
imum depth of quantifier-nesting, including both first-order and second-order 
quantifiers. That is, the rules for the quantifier rank for FO are augmented 
with 

• qr(::JX cp) = qr(\/X cp) = qr(cp) + 1. 
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7.2 MSO Games and Types 

MSO can be characteri11ed by a type of Ehrenfeucht-Frai:ss{~ game, which is 
fairly close to the game we have used for FO. As in the case of FO, the ganw 

is also closely connected with the notion of type. 
Let MSO[k] consist of all MSO formulae of quantifier-rank at most k. 

An MSO rank-k rn, l-typc is a consistent set S of l\ISO[k] formulae with m 
free first-order variables and l free second-order variables such that for ewry 
cp(x1 , .•. , .T111 , X 1 , •.. , Xt) from MSO[k], either cp E S or •cp E S. 

Given a structun~ Ql, an m-tuple a E A, and an l-tuph~ V of subsets of A, 
the MSO mnk-k type of (a, lf) in Ql is the set 

mso-tpk(Ql,a, V) = {cp(x,X) E MSO[k] 

Clearly, mso-tpdQl, a, V) is an MSO rank-k type. 

When both a and V are empty, rnso-tpdQl) is the s<~t of alll\ISO[k] s<~n
tences that are true in Qt. 

Just as for FO, a simple inductive argument shows that for <'ach m and 
l, up to logical equivalence, there are only finitely many different formulae 
cp(:r: 1 , ... ,xm,X 1 , ... ,X1) in MSO[k]. Hence, MSO rank-k m,l types (wh<'n~ 
rn and l stand for the number of free first-order and second-order variables, 
respectively) are essentially finite objects. In fact, just as for FO, one can show 
the following result for MSO. 

Proposition 7.5. Fi:r: k, I, m. 

• There exist only finitely many MSO mnk-k m, l types. 

• Let T1 , ... , T,, enumerate all the MSO mnk-k m, I types. Then~ e:r:i.~t 

MSO[k] for-rnulae o:;(:f, X), i = L ... , s, such that for· ever-;tJ stmcture 

Ql, ever-y m-tuple a of elements of A, and every !-tuple 0 of subsets of A, 

it is the case that Ql F a; (a, r7) iff mso-tpk (Ql, a, rl) =' T;. 

Furthermore, each MSO[k] for-rnula with m free first-onlcr var·iables 

and l free second-or·der· variables is equivalent to a disjunction of so'me of 

the a; 's. 

Hence, just as in the case of FO, we shall associat<~ rank-k typPs with their 
defining formulae, which are also of quantifier rank k. 

\Ve now present the modification of Ehrenfeucht-Fra1ss{~ garrws for l\ISO. 

Definition 7.6. An MSO game is played by two player·s, the spoilfT and the 

duplicator, on two structnr·es Ql and 23 of the same vocalrnlar·y a. The game 

has two differ·ent kinds of moves: 
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Point move This is the same move as in the Ehrenfeucht-Fraisse game for FO: 
the spoiler chooses a structure, Ql or ~, and an element of that structure; 
the duplicator responds with an element in the other structure. 

Set move The spoiler chooses a structure, Ql or~' and a subset of that struc
ture. The duplicator responds with a subset of the other structure. 

Let a 1 , ... , ap E A and b1 , ... , bp E B be the point moves played in the 
k-round game, with V1, ... , Vs ~ A and U1, ... , Us ~ B being the set moves 
{i.e., p + s = k, and the moves of the same round have the same index). Then 
the duplicator wins the game if (ii, b) is a partial isomorphism of (Ql, V) and 
(~, U). If the duplicator has a winning strategy in the k-round MSO game on 
Ql and ~, we write Ql =11so ~. 

Furthermore, we write (Ql, ii0 , V0 ) =1180 (~, b0 , U0 ) if the duplicator has a 
winning strategy in the k-round MSO game on Ql and ~ starting with position 
((iio, Vo), (bo, U0 )). That is, when k rounds of the game ii, b, V, U are played, 
(ii0 ii, b0 b) is a partial isomorphism between (Ql, V0 , V) and(~, U0 , U). 

This game captures the expressibility in MSO[k]. 

Theorem 7. 7. Given two structures Ql and~' two m-tuples ii0 , b0 of elements 
of A and B, and two [-tuples Vo, Uo of subsets of A and B, we have 

~ MSO ~ ~ ~ 

That is, (Ql, iio, Vo) =k (~, bo, Uo) iff for every MSO[k] formula r.p(x, X), 

Ql F= r.p(iio, Vo) {=} ~ f= r.p(bo, Uo). 

The proof is essentially the same as the proof of Theorem 3.9, and is left 
to the reader as an exercise (see Exercise 7.1). 

In the case of sentences, Theorem 7.7 gives us the following. 

Corollary 7.8. If Ql and ~ are two structures of the same vocabulary, then 
Ql =11so ~ iff Ql and ~ agree on all the sentences of MSO[k]. 

As for FO, the method of games is complete for expressibility in MSO. 

Proposition 7.9. A property P of O"-structures is expressible in MSO iff there 
is a number k such that for every two O"-structures Ql, ~' if Ql has the property 
P and ~ does not, then the spoiler wins the k-round MSO game on Ql and ~. 

Proof Assume P is expressible by a sentence P of quantifier rank k. Let 
0:1, ... , O:s enumerate all the MSO rank-k types (without free variables). Then 
P is equivalent to a disjunction of some of the o:; 's. Hence, if Ql has P and ~ 
does not, there is some i such that Ql f= o:; and~ f= •o:;, and thus Ql ~11so ~-
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Conversely, suppose that we can find k 2 0 such that for every 2l having 
P and 113 not having P, we have 2l ¢:~so 113. Now take any two structures 
2l1 and 2l2 such that 2l1 =t'80 2l2. Suppose 2l1 has P. If 2l2 does not havP 
P, we would conclude 2l1 ¢=t'so 2l2 , which contradicts the assumption; hence 
2l2 has P as well. Thus, P is a union of rank-k MSO types. Since there arP 
finitely many of them, and each is definable by a rank-k MSO sfmtence, W(' 

conclude that P is MSO[k]-definable. 0 

Most commonly, we use the contrapositive of this proposition, which tells 
us when some property is not expressible in MSO. 

Corollary 7.10. A property P of a-structures is not expressible in MSO iff 
for every k 2 0, one can find 2lk, 113k· E STRUCT[a] such that: 

• 2lk has the property P, 

• 23k does not have the property P, and 

• 2lk =~so 113 k. 

Our next goal it to usf~ games to study expressibility in MSO. A usf'ful 
technique is the composition of MSO games, which allows us to construct more 
complex games from simpler ones. Similarly to Exercise 3.15, we can show the 
following. 

Lemma 7 .11. Let 2l1, 2l2, 113 1 , 1132 be a -structur·es, and let 2l be the disjoint 
union of 2l1 and 2l2, and 113 the disjoint union of 113 1 and 1132 . As.mme 
or =MSO ro and of =MSO ro Then of =MSO ro 
"-'1 -A: "-'1 "-'2 -k "-'2· "-'-A: "-'· 

Proof sketch. Assume the spoiler makes a point move, say a in 2l. Then a is 
in 2l1 or 2l2. Suppose a is in 2l1; then the duplicator selects a response b in 
1131 according to his winning strategy on 2l1 and 1131 . 

Assume the spoiler makes a set move, say U <;;;; A. The universe A is the 
disjoint union of A1 and A2, the universes of 2l1 and 2l2. Let U; = UnA;, i = 
1, 2. Let Vi be the response of the duplicator to U; in 113;, i = 1, 2, according 
to the winning strategy. Then the response to u is v = VI u v2. It is routine 
to verify that, using this strategy, the duplicator wins in 1.~ rounds. D 

As an application of the composition argument, we prove the following. 

Proposition 7.12. Let a= 0. Then EVEN is not MSO-expressible. 

Proof. We claim that for every 2l and 113 with I AI, IBi 2 2k, it is the case that 
2l =~180 113. Clearly this implies that EVEN is not MSO-definable. Since a = 0, 
we shall write U =t180 V instead of the more formal (U, 0) =t180 (V, 0). 

We prove the statement by induction on k. The cases of k = 0 and k = 1 
are easy, so we show how to go from k to k + 1. 

Suppose 2l and 113 with I A I, IBI 2 2k+ 1 are given. We only consider a 
set move by the spoiler, since any point move a can be identified with the 
set move {a}. Assume that in the first move, the spoiler plays U <;;;; A. \Vf' 
distinguish the following eases: 
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1. lUI :::; 2k. Then pick an arbitrary set V s;;; B such that IV I=IU I· We have 
U ~ V (and thus U =~so V), and A-U =~soB- V- the latter is by 
the induction hypothesis, since lA- Ul, IB- VI 2': 2k. Combining the two 
games, we see that from the position (U, V) on Q( and ~' the duplicator 
can continue the game fork rounds, and hence Q( =~!? ~-

2. lA- Ul :::; 2k. This case is treated in exactly the same way as the previous 
one. 

3. lUI > 2k and lA - Ul > 2k. Since IBI 2': 2k+l, we can find a subset 
V ~ B such that both I VI and I B - VI are at least 2k. By the induction 
hypothesis, we know that U =~so V and A-U =~soB- V, and hence 
from (U, V), the duplicator can play for k more rounds, thus proving 

-MSO !.X=~1 ~- D 

Suppose now that the vocabulary is expanded by one binary symbol < 
interpreted as a linear ordering; that is, we deal with finite linear orders. Then 
EVEN is expressible in MSO. To see this, we let our MSO sentence guess the 
set that consists of alternating elements a1, a3, ... , a2n+I, ... in the ordering 
a 1 < a2 < a3 < ... , such that the first element is in this set, and the last 
element is not: 

( 
'Vx (first(x) --> X(x)) ) 

::JX A 'Vx (last(x)--> ,x(x)) , 
A 'Vx'Vy succ<(x, y) --> (X(x) ~ --,X(y)) 

where first(x) stands for 'Vy (y 2': x), last(x) stands for 'Vy (y :::; x), and 
succ<(x, y) stands for (x < y) A --,::Jz (x < z A z < y). 

Thus, as for FO, we have a separation between the ordered and unordered 
case. Noticing that EVEN is an order-invariant query, we obtain the following. 

Corollary 7.13. MSO ~ (MSO+ <)inv· D 

Note the close connection between Corollary 7.13 and Theorem 5.3: the 
latter showed that FO ~ (FO+ <)inv, and the separating example was the 
parity of the number of atoms of a Boolean algebra. We used the Boolean 
algebra to simulate monadic second-order quantification; in MSO it comes for 
free, and hence EVEN worked as a separating query. 

7.3 Existential and Universal MSO on Graphs 

In this section we study two restrictions of MSO: existential MSO, or ::JMSO, 
and universal MSO, or 'VMSO, whose formulae are respectively of the form 

and 
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where rp is first-order. 
These also are commonly found in the literature under the names monadic 

Ei for ::JMSO and monadic Ifl for \.fMSO, where monadic, of course, refers to 
second-order quantification over sets. In general, Et consists offormulae whos{' 
prefix of second-order quantifiers consists of k blocks, with the first block 
being existential. For example, a formula ::JXaX2\.fYaZ14' is a E:l-forrnula. 
The class IIt is defined likewise, except that the first block of quantifiers is 
universal. 

Another name for :3M SO is monadic NP, and \.fMSO is referwd to as 
monadic coNP. The reason for these names will become clear in Chap. 9, 
when we prove Fagin's theorem. 

We now give an example of a familiar property that separates monadic Ill 
from monadic Ei (i.e., \.fMSO from ::JMSO). 

Proposition 7.14. Graph connectivity is expr·essible in \.fMSO, but is not e:J:
pressible in ::JMSO. 

Proof. A graph is not connected if its nodes can be partitioned into two 
nonempty sets with no edges between them: 

::JX ( ::Jx X(:r:) 1\ ::Jx -,X(x) ) 
1\ (\fx\fy (X(x) 1\ -,X(y)--+ -,E(x,y))) 

(7.4) 

Since (7.4) is an ::JMSO sentence, its negation, expressing graph connectivity, 
is a universal MSO sentence. 

For the converse, we use Hanf-locality. Suppose that connectivity is de
finable by an ::JMSO sentence P = :3X1 ... :3X111 rp. Assume without loss of 
generality that m > 0. Since rp is a first-order sentence (over structures of 
vocabulary a extended with X 1, ... , Xn), it is Hanf-local. Let d = hlr(ip), the 
Hanf-locality rank of rp. That is, if ( G, U1, ... , Um)'=>d(G'. V1 ..... V," ), where 
G, G' are graphs and the U/s and the V,'s interpn~t X;'s over them, then 
(G, U1, ... , Urn) and (G', V1, ... , Vrn) agree on rp. 

We now set K = 2m(2d+l) and r = (4d+4)K. We claim the following: if G 
is an m-colored graph (i.e., a graph on which m unary predicates are defined), 
which is a cycle of length at least r, then there exist two nodes a and b such 
that the distance between them is at least 2d + 2, and their d-neighborhoods 
are isomorphic. 

Indeed, for a long enough cycle, the d-neighborhood of each node a is a 
chain of length 2d + 1 with a being the middle node. Each node on the chain 
can belong to some of the U; 's, and there are 2m possibilities for choosing 
a subset of indexes 1, ... , m of U/s such that a E U;. Hence, there are at 
most K different isomorphism types of d-neighborhoods. If the length of the 
cycle is at least (4d + 4)K, then there is one type of d-neighborhoods which 
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a a' 

b' b 

Fig. 7.1. Illustration for the proof of Proposition 7.14 

is realized by at least 4d + 4 elements, and hence two of those elements will 
be at distance at least 2d + 2 from each other. 

Now let G be a cycle of length at least r. Since G is a connected graph, 
we have G F <J>. Let U], ... 'Um witness it; that is, ( G, ul' ... 'Um) F 'P· 
Choose a,b such that a ;::::;~c.u 1 •...• u,) band d(a,b) > 2d + 1, and let a',b' be 
their successors (in an arbitrarily chosen orientation of G; the one shown in 
Fig. 7.1 is the clockwise orientation). 

We now construct a new graph G' by removing edges (a, a') and (b, b') 
from G, and adding edges (a, b') and (b, a'). We claim that for every node c, 

N (G,UJ, ... ,Um)( ) Co,! N(G',UJ, ... ,Um)( ) 
r1 c ~ r1 c. (7.5) 

First, since a and bare at the distance at least 2d + 2, the d-neighborhood 
of any point in G or G' is a chain of length 2d + 1. If c is at the distance d or 
greater from a and b, its d-neighborhood is the same in (G. U1 , ... , Um) and 
( G', U1 , ... , U,), which means that (7.5) holds. 

Suppose now that the distance between c and a is do < d, and assume 
that c precedes a in the clockwise orientation of G. Then the d predecessors 
of care the same in both structures. Furthermore, since a ;:::o~c,u1 , ...• U"') b, in 
both structun~s the d- d0 successors of a agree on all the U/s. Hence, (7.5) 
holds for c. The remaining cases (again, viewing Gin the clockwise order) are 
those of c preceding b, or following a or a' and being at the distance less than 
d from them. In all of those cases the same argument as above proves (7.5). 

We have thus established a bijection f between the universes of 
(G,UJ, ... ,Um) and (G',U], ... ,Um) (which is in fact the identity) that wit
nesses 

(G, U1, ... , Urn) '=+r1 (G', U1 .... , U,). 

Since d = hlr(<p), we conclude that (G',U1 , ... ,Um) f= <p, and hence G' f= 
:JX1 ... 3Xm <p; that is, G' f= <J>. But G' is not a connected graph, which 
contradicts our assumption that <J> is an 3MSO sentence defining graph con
nectivity. D 
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Notice that the formula (7.4) from the proof of Proposition 7.14 shows 
that the negation of graph connectivity is :::JMSO-expressible, which means 
that =:IMSO can express queries that are not Hanf-local. One can also show 
that other forms of locality are violated in :::JMSO (see Exercise 7.6). 

We now consider a related property of reachability. V/e assume that the 
language of graphs is augmented by two constants, s and t, and we are intc>r
ested in the property, called (s, t)-reachability, that asks whPther ttwre is a 
path from .s to t in a given graph. \Ve have seen that unclin~cted connectivity 
is not :::JMSO-definable; surprisingly, undirected (s. t )-reachability is! 

Proposition 7.15. For· undirected gmphs W'ithout loops, (s. t)-rmchafrility is 

expressible in :::JMSO. 

Proof. Consider the sentence cp in the language of graphs expanded with one 
unary relation X that says the following: 

1. both s and t are in X, 

2. both s and t have an edge to exactly one member of X, and 

3. every member of X except s and t has edges to precisely two mernlwrs of 
X. 

Let <P be :::JX cp. We claim that G f= <P iff there is a path from s to t in G. 
Indeed, if there is a path from s to t, we can take X to lw the shortest path 
from s tot. Conversely, if (G. X) f= cp, then X is a path that starts in s; since 
the graph G is finite, X must contain the last node on the path, which could 
be only t. D 

The approach of Proposition 7.15 does not work for directed graphs, h<'

c:ause of back edges. Consider, for example, a directed graph which consists of 
a chain { (s, a I), (a1 , a2), (a 2, a:1), (a:3, t)} together with the edge (o:1.at). The 
only path between s and t consists of edges s, a 1 , a 2 • o:3• t; however. if v.re let 
X= {s,at,a2,a:l,t}, the sentence cp from the proof of Proposition 7.15 is 
false, since a3 has one incoming edge, and two outgoing edges. It seems that 
the approach of Proposition 7.15 could be generali~ecl if then~ is a bound on 
degrees in the input graph, and this is indeed tlw case (Exercise 7. 7). However, 
in general, one can show a negative result. 

Theorem 7.16. Reachability for directed gmphs is not r:rpressible in ::31\ISO. 

We conclude this section by showing that there are games that charactfTize 
expressibility in :::JMSO, much in thf~ same way as Ehwnfeucht-Fra!sse games 
and MSO games characterize expressibility in FO and !\ISO. 

Definition 7.17. The I. k-Fagin game on two stnu:tnn~s Qt. 'BE STHUCT[J] 
i.s played as follows. The .spoiler- .selects l subsets U1 . .... Ur of i1. Then the 
rl11.plicator· selects I subsets V1, •••• V, of B. After· that. the spoiler· and the 



7.3 Existential and Universal MSO on Graphs 123 

duplicator play k rounds of the Ehrenfeucht-Fraisse game on (2l, Ut, ... , Uz) 
and (113, Vt, ... , Vi). 

The winning condition for the duplicator is that after k rounds of 
the Ehrenfeucht-Fraisse game, the elements played on (2l, U1, ... , Ut) and 
(113, V1 , ... , Vi) form a partial isomorphism between these two structures. 

A fairly simple generalization of the previous game proofs shows the fol
lowing. 

Proposition 7.18. A property P of CJ-structures is 3MSO-definable iff there 
exist l and k such that for every 2l E STRUCT[CJ] having P, and for every 
113 E STRUCT[CJ] not having P, the spoiler wins the l, k-Fagin game on 2l and 
113. D 

This game, however, is often rather inconvenient for the duplicator to play 
(after all, we use games to show that a certain property is inexpressible in a 
logic, so we need the win for the duplicator). A somewhat surprising result 
(see Exercis(~ 7.9) shows that a different game that is easier for the duplicator 
to win, also characterizes the expressiveness of 3MSO. 

Definition 7.19. Let P be a property of CJ-structures (that is, a class of CJ
structures closed under isomorphism). The P, l, k-Ajtai-Fagin game is played 
as follows: 

1. The duplicator selects a structure 2l E P. 

2. The spoiler selects l subsets U1 , ... , U1 of A. 

8. The duplicator selects a structure 113 tj. P, and l subsets V1 , ... , Vi of B. 

4. The spoiler and the duplicator play k rounds of the Ehrenfeucht-Fraisse 
game on (2l, U1, ..• , Uz) and (113, V1 , ... , Vi). 

The winning condition for the duplicator is that after k rounds of 
the Ehrenfeucht-Fraisse game, the elements played on (2l, U1 , ... , U1) and 
(113, Vt, ... , Vi) form a partial isomorphism between these two structures. 

Intuitively, this game is easier for the duplicator to win, because he selects 
the second structure 113 and the coloring of it only after he has seen how the 
spoiler chose to color the first structure 2l. 

Proposition 7.20. A property P of CJ-structures is 3MSO-definable iff there 
exist l and k such that the spoiler has a winning strategy in the P, l, k-Ajtai
Fagin game. D 

Hence, to show that a certain property P is not expressible in 3MSO, it 
suffices to construct, for every l and k, a winning strategy for the duplicator 
in the P, l, k-Ajtai-Fagin game. This is easier than a winning strategy in the 
l, k-Fagin game, since the duplicator sees the sets U/s before choosing the 
second structure 113 for the game. An example is given in Exercise 7.10. 
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7.4 MSO on Strings and Regular Languages 

We now study MSO on strings. Recall that a string over a finite alphabet can 
be represented as a first-order structure. For example, tlw string s = ahooh 

is represented as ( { 1, 2, 3, 4. 5}, <, !~1 , Pb), where < is the usual ordering, and 
Pa and Pb contain positions in s where a (or h, respectively) occurs: that is. 
Pu. = {1, 3, 4} and H = {2, 5}. 

In general, for a finite alphabet 1:', we define thf' vocabulary a~· that 
contains a binary symbol < and unary symbols I~, for eaC"h a E E. A string 
8 E E* of length n is then represented as a structun~ "Us E STRUCT[a~,J 

whose universe is {], ... , n}, with < interpreted as the order on the natural 
numbers, and ~' being the set of positions when~ the letter a occurs. for each 
a in E. 

Suppose we have a sentence <P of some logic £, in the vocabulary a E. Such 
a sentence defines a language, that is, a subset of E*, given by 

L(<P) { 8 E E* I M., F (p}. (7.6) 

vVe say that a language L is definabk in a logic £ if there <~xists an £-sentenC"e 
<P such that L = L(<P). 

The following is a fundamental result that connects l'viSO-definability and 
regular languages. 

Theorem 7.21 (Biichi). A language is definable in :VISO iff it is r-eq·ular. 

Pr-oof. We start by showing how to define ew~ry regular language Lin l\180. If 
Lis regular, then its strings an~ accepted by a deterministic finite automaton 
A= (Q,q0 ,F.6), where Q = {q0 , ... ,q,_J} is the set ofst.at<'s, q0 E Q is 
the initial state, F <,;; Q is the set of final states, and 6 : Q x L' ---+ Q is tlw 

transition function. \\'e take <P to be the MSO sentence 

3Xo · . · 3Xm-l ypart 1\ \Ostart 1\ \Otrans 1\ ip;H'ccpl. ( 7. 7) 

In this sentence, we are guessing m sets X 0 , .... X 111 __ 1 that correspond to 
elements of the universe of Afs (i.e., positions of 8) wlwre the automaton A is 
in the state qo, q1 , ... , Qm-·l, respectively, and the remaining three first-on!t~r 
formulae ensure that the behavior of A is simulated correctly. That is: 

• \Opart asserts that X 0 , ... , Xrn-l partition the universe of 1\l,. This is easy 
to express in FO: 

rn-1 

V;t V ( X;(:r) 1\ 1\ -.X1 (.ri) 
i=ll rfi 
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• 'Pstart asserts that the automaton starts in state qo: 

\:fx (\ ( (Pa(x) 1\ \:fy (y;::: x)) -+ X8(qo,a)(x)) 
aEE 

Note some abuse of notation: 8(qo, a)= qi for some i, but we write X8(qo,a) 
instead of xi. 

• 'Ptrans asserts that transitions are simulated correctly: 

rn-1 

\:fx\:fy 1\ 1\ ( ((x-< y) 1\ Xi(x) 1\ Pa(Y)) -+ X8(qi,<L)(Y)) , 
i=O aEE 

where x -< y means that y is the successor of x. 

• 'Paceepts asserts that at the end of the string, A enters an accepting state: 

\:fx ( (Vy (y ~ x)) -+ V Xi(x)) . 
qiEF 

Hence, (7.7) captures the behavior of A, and thus L(<P) = L. 

For the converse, let <P be an MSO sentence in the vocabulary aE, and 
let k = qr(<P). Let To, ... , Tm enumerate all the rank-k MSO types of aE 
structures (more precisely, rank-k 0, 0 types, with zero free first- and second
order variables, or, in other words, sentences). 

Let IJ!i be an MSO sentence of quantifier rank k defining the type Ti. That 
is, 

Ms ~ IJ!i {:} mso-tpk(Ms) = Ti. 

Since qr(<P) = k, the sentence <Pis a disjunction of some of the IJ!;'s. We define 
F ~ {To, ... , Tm} to be the set of types consistent with <P. Then <Pis equivalent 
to V riEF IJ!i. 

We further assume that To is the type of M., where E denotes the empty 
string. That is, this is the only type among the T; 's that is consistent with 
-,::Jx (x = x). 

We now define the automaton 

(7.8) 

with the set of states S ={To, ... ,Trn}, the initial state To, the set of final 
states F, and the transition function 8<1> : S x E-+ 28 defined as follows: 

;: ( ) ::J ~* ( mso-tpk(Ms) = Ti ) 
Tj E u F Ti, a {:} :::18 E u , d t (M ) _ . . an mso- Pk s·a - T 1 

(7.9) 

We now claim that the automaton A<P is deterministic (i.e., for every Ti and 
a E E there is exactly one Tj satisfying (7.9)). For that, notice that by a 
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composition argument similar to that of Lemma 7.11, if s 1 , 8 2 , t 1 , t 2 E E* an' 
such that l\1s, =tiso kft, and kf82 =~so Aft2 , then 11181 . 82 =~180 l'lf1 t. 12 . 

Now suppose that mso-tpk(.l\18 ,) = mso-tpk(A182 ) = T;. In particular, 
.l'vfs, =~so kfs 2 • Then l'vfs,·a =ti80 Jlv{,2 .a· Suppose also that we have .h i= )2 
such that mso-tpk(11{, 1 .a) = Tj, and mso-tpJJAI82 .a) = Th. Then 11!., 1 ." f= !JrJ,, 
but since 111s2 ·a f= !Jrh and qr(!Jrh) = k, we obtain 111,1 ." f= !Jrh, which implies 
mso-tpk(.l'vfs,·a) = T)2 i= Tj 1 • This contradiction proves that the automaton 
(7.8) is deterministic. 

Now by a simple induction on the length of the string we prove that for 
any strings, after readings the automaton A<P ends in the state T; such that 
mso-tpk(Jivf.,) = Ti. For the empty string, this is our choice of To. Suppose now 
that mso-tpk(Afs) = Ti and A<P is in state Ti after reading 8. By the definition 
of the transition function O<P and the fact that it is deterministic, if A<P reads 
a, it moves to the state Ti such that mso-tpk(llfs·u) = T" which proves the 
statement. 

Therefore, A<P accepts a strings iff mso-tpdl'vi.,) is in F, that is, is consis
tent with <P. The latter happens iff Afs f= <P, which proVPs that the language 
accepted by A<P is L(<P). This completes the proof. 0 

We have seen that over graphs, there are universal MSO-sentences which 
are not expressible in ::JMSO. In contrast, over strings every MSO sentence 
can be represented by an automaton, and (7.7) shows that the behavior of 
every automaton can be captured by an ::JMSO sentence. Hence, we obtain 
the following. 

Corollary 7.22. Over strings, MSO = ::JMSO. 0 

As an application of Theorem 7.21, we prove a few bounds on the expres
sive power of MSO. We have seen before that MSO over the empty vocabulary 
cannot express EVEN. What about the power of MSO on linear orderings? Re
call that Ln denotes a linear ordering on n elements. From Theorem 7.21, we 
immediately derive the following. 

Corollary 7.23. Let X~ N. Then the set {L, In EX} is MSO-definable iff 
the language {an I n E X} is regular. 0 

Thus, MSO can test, for example, if the size of a linear ordering is even, 
or-- more generally- a multiple of k for any fixed k. On the other hand, one 
cannot test in MSO if the cardinality of a linear ordering is a square, or the 
kth power, for any k > 1; nor is it possible to test if such a cardinality is a 
power of k > 1. 

As a more interesting application, we show the following. 

Corollary 7.24. It is impossible to test in MSO if a graph is Hamiltonian. 
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Proof. Let Kn.m denote the complete bipartite graph on sets of cardinalities 
n and m; that is, an undirected graph G whose nodes can be partitioned 
into two sets X, Y such that lXI = n, IYI = m, and the set of edges is 
{ (:c, y), (y, :r) I x EX, y E Y}. Notice that Kn,rn is Hamiltonian iff n = rr1. 

Assume that Hamiltonicity is definable in MSO. Let E = {a,b}. Given a 
strings, we define, inFO, the following graph over the universe of J\1.,: 

tp(x,y) 

That is, tp(l\18 ) is Kn,m, where n is the number of a's in s, and m is the 
number of b's. Thus, if Hamiltonicity were definable in MSO, the language 
{ s E E* I the number of a's in s equals the number of b's} would have been 
a regular language, but it is well known that it is not (by a pumping lemma 
argument). 0 

7.5 FO on Strings and Star-Free Languages 

Since MSO on strings captures regular languages, what can be said about tlw 
class of languages captured by FO? It turns out that FO corresponds to a 
well-known class of languages, which we define below. 

Definition 7.25. A star-free regular expression over E is an expression built 

from the symbols 0 and a, for each a in E, using the operations of union ( + ), 
complement (-), and concatenation ( ·). Such a regular expression e denotes a 
language L( e) over E as follows: 

• £(0) = 0; L(a) ={a} for a E E. 

• L(el + e2) = L(el) U L(e2). 

• L(i') = E*- L(e). 

• L(et · e2) = {s1 · -"2l.s1 E L(cl) . .s2 E L(e2)}. 

A language denoted by a star-free expr·ession is called a star-free language. 

Note that some of the regular expressions that use the Kleene star * are ac
tually star-free, because in the definition of star-free expressions one can use 
the operation of complementation. For example, suppose E = {a, b }. Then 
(a+ b)* defines a star-free language, denoted by the star-free expression 0. 
Likewise, e = a*b* also denotes a star-free language, since it can be charac
terized as a language in which there is no b preceding an a. A language with 
a b preceding an a can be defined as (a+ b)* · ba · (a+ b)*, and hence L(e) is 
defined by the star-free expression 

0 · b ·a· 0. 

Theorem 7.26. A langnage is definable inFO iff it is star-free. 
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Pmof. We show that every star-free language is definable in FO by induction 
on the star-free expression. The empty language is <h~finable by fal.~e, the 
language {a} is definable by ::J!:r (.J: = :r) 1\ 'v'x P,(:r). If c = i; 1 and L(c 1) is 
definable by <P, then ,p defines L(e). If e = e1 + c2 , with L(et) and L(c2 ) 

definable by <JJ 1 and <JJ2 n~spec:tively, then <JJ1 V <JJ2 defines L(e). 
Now assume that e = e1 · e2, and again L(c 1) and L(e2 ) are <kfinabl<> 

by <P 1 and <1>2 . Let x be a variable that does not ()(:cur in <JJ 1 and </>2 , andlPI 
cp;(:r:), i = 1, 2 .. be the formula obtained from <P 1 by rdativizing f~ac:h quantifier 
to the set of positions { .IJ I :y ::.; :r;} for cp 1 , and to { y I y > .r} for tp:z. !\lore 
pn~cisely, we inductively replace each subfonnula ::Jy~' of <P 1 by ::Jy (y ::.; .r) 1\ 

and each such subformula of <P2 by ::J:y (y > .r) 1\ t'. Then, for a strings and a 
position p, we have 1\{, f= cp 1 (p) iff !vf~P f= <1> 1, where ,U:fi' is the substructur<' 
of AI, with the domain { L ... , p}. Furthermore, M, p~ cp2 (p) iff M.? 1' f= <P2 . 

where !vl/:P is the substructure of 11!, whose universe is the complenwnt of 
{l, ... ,p}. Hence, s E L(e) iff M, f= ::l:r cp 1(.r) 1\ cp2 (.r), \vhich prows that 
every star-free language is FO-definable. 

We nmv prove the other direction: every FO-definahh~ language is star-fr<'P. 
For technical reasons (to get the induction off the ground), ,,_.-e expand (J2"· with 
a constant max, to be interpreted as the largest dE~rnent of the universe. Since 
max is FO-definahle, this does not affect the set of FO-definabh~ languages. 

The proof is now by induction on the quantifier rank /,: of a sent.f•nce </>. 
l\'ote that since star-free languages are closed under tlw Boolean operations, 
an arbitrary Boolean combination of sentences defining star-frn~ languages 
also defines a star-fref~ language. 

For k = 0, we have Boolean combinations of tlw sentences of the form 
Pa (max), as well as tr·ue and false. The sentence Pa (max) clcfirws the language 
denoted by 0 · rL true defines L(0), and false defines L(0). 

Givf~n the closure under Boolean combinations, for the inductiv<~ st<'p it 
suffices to consider sentences <P = ::l:rcp(:r), where qr(cp) = k. 

Let To, ... , T111 enumerate all the rank-k FO-typr~s (again. with r<:'SJH'cl to 
sentences: we do not have free variables). \"'p define 

S' _ { ( . ) I for some s and. a position p. ]\]" f== Y.~(p). } 
'<[>- T,.Tl ('f<P)- ' i (~j>Ji - . tp~,; 11 ii - T 1 diH tpk 11 s ) -- T 1 

Our goal is now to show the following: for every string u, J\111 f== <P iff tlwre 
exists a position pin 11 such that for some ( T;, T 1 ) in S',1,, w<' hav<' 

t ( 'JS1')- .. l t (1\]>P)-· Pk H 11 - T, dll( P~c . II - lj. (7.10) 

First, we notice that this claim implies that the language L(<J>) is star-freP. 
Indeed, each ofT; is definable by an FO sentence iJt, of quantifier rank A:, and 
hence by thf' induction hypothesis, f~ach language L(llJ;) is star-freP. Thus, 

L(<P) = u 
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That is, L(<P) is a union of concatenations of star-free languages, and hence 
it is star-free. 

If Jlv1, f= <P, then the existence of p and a pair ( Ti, Tj) follows from the 
definition of S<J>. Conversely, suppose we have a string u and a position p such 
that (7.10) holds. Since (Ti,Tj) E sp, we can find a strings with a position p' 

in it such that M., f= 'fJ(p'), tpk(M~P') = Ti, and tpk(M?P) = T1. Hence, 

M <p - '1<p' '1 ,>p - M>p' u =k 1V .:: l lV. u =k s ' 

and thus (M,,p) '=k (M8 ,p1 ). Since qr('P) = k, it follows that Mu f= l.fJ(p), 
and hence Mu f= <P, as claimed. This completes the proof. D 

Corollary 7.27. There exist regular languages which are not star-free. 

Proof. The language denoted by (aa)* is regular, but clearly not star-free, 
since EVEN is not FO-definable over linear orders. D 

7.6 Tree Automata 

We now move from strings to trees. Our goal is to define trees as first-order 
structures, and study MSO over them. We shall connect MSO with the notion 
of tree automata. Tree automata play an important role in many applications, 
including rewriting systems, automated theorem proving, verification, and 
recently database query languages, especially in the XML context. 

We consider two kinds of trees in this section. Ranked trees have the prop
erty that every node which is not a leaf has the same number of children (in 
fact we shall fix this number to be 2, but all the results can be generalized 
to any fixed k > 1). On the other hand, in unmnked trees different nodes can 
have a different number of children. We shall start with ranked (binary) trees. 

Definition 7 .28. A tree domain is a subset D of { 1, 2} * that is prefix-closed; 
that is, if s E D and s' is a prefix of D, then s' E D. Furthermore, if s E D, 
then either both s · 1 and s · 2 are in D, or none of them is in D. 

A L' -tree T is a pair ( D, f) where D is a tree domain and f is a function 
from D to L' (the labeling function). 

We refer to the elements of D as the nodes ofT. Every nonempty tree 
domain has the node E, which is called the root. A node s such that s ·1, s · 2 ric D 
is called a leaf. 

The first tree in Fig. 7.2 is a binary tree. We show both the nodes and the 
labeling in that picture. The nodes ll1, ll2, 12, 21,22 are the leaves. 

We represent a tree T = (D, f) as a first-order structure 
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Fig. 7.2. Examples of a ranked and an unranked tre<' 

of vocabulary a :!J expanded with two binary relations succ 1 and succ 2 . HPn' 
--< is interpreted as the prefix relation on D (in particular, it is a partial order, 
rather than a linear order, as was the case with strings), 1~, is interpr<'tcd as 
{8 ED I f(s) =a}, and succ; is {(s,s · i) ls,s · i ED}, fori= 1.2. 

\Ve let Trees( E) be the set of all L'-trees. If we have a c.entence <P of some 
logic, it defines the set of trees (also called a tree language) 

{T E n·ees(L') I Air F <P}. 

Thus, we shall he talking about tree languages definahlP in various logics. 

Definition 7.29 (Tree automata and regular tree languages). A (non
deterministic) tree automaton is a htple A = ( Q, q0 , S. F), where Q ·is a fi
nite set of states, q0 E Q, F c;;; Q is the set of .final (accepting) states, and 
S : Q x Q x E ---+ 2Q is the transition function. 

Given a tr·ee T = ( D, f), a run of A on T is a fanction r : D ·--• Q such 
that 

• if s is a leaf labeled a, then r ( s) E S ( qu, lJo, o); 

• if r(s · 1) = q, r(s · 2) = q' and f(s) =a, then r(s) r=: S(q, q', o). 

A nm is called successful if r(f) E F (the mot is in the accepting state). The 
set of trees accepted by A is the set of all tn:es T for which there e:rists a 
successful run. 

A tn~e language is called regular if it is accepted by a tree automaton. 
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In a· deterministic tree automaton, the transition function is 6 : Q x Q x 
E--. Q, and the definition of a run is modified as follows: 

• if sis a leaf labeled a, then r(s) = 6(qo,q0 ,a); 

• if r(s · 1) = q, r(s · 2) = q' and f(t) =a, then r(s) = 6(q, q', a). 

For example, consider a deterministic tree automaton A whose set of states 
is { q0 , Qa, Qb, q, q'}, with F = { q'}, and the transition function has the follow-
ing: 

6(qo, Qo, a) = Qa 

6(qo, qo, b) = Qb 

6 ( q,' Q/, b) = q 
6 ( Qa, Qa, b) = q' 
6(q, Qb, a) = q 
6 ( q, q', a) = q' . 

Then this automaton accepts the ranked tree shown in Fig. 7.2: following the 
definition of the transition function, we define the run r such that: 

• for the leaves, r-(111) = r-(21) = r-(22) = Qa and r-(112) = r-(12) = Qb; 

• r(ll) = 6(q0 , Qb, b)= q; 

• r-(1) = 6(q, Qb, a) = q; 

• r(2) = 6(q0 , q"' b) = q'; and finally, 

• r(e) = 6(q,q',a.) = q', and since q' E F, the automaton accepts. 

We now establish the analog of Theorem 7.21 for trees, by showing that 
regular tree languages are precisely those definable in MSO. 

Theorem 7.30. A set of trees is definable in MSO iff it is regular. 

Proof. The proof is similar to that of Theorem 7.21. To find an MSO definition 
of the tree language accepted by an automaton A, we guess, for each state 
q, the set Xq of nodes where the run of A is in state q, and then check, in 
FO, that each leaf labeled a is in Xq for some q E 6(q0 , q0 , a), that transitions 
are modeled properly, and that the root is in one of the accepting states. The 
sentence looks very similar to (7.7), and is in fact an ::JMSO sentence. 

The proof of the converse, i.e., that MSO only defines regular languages, 
again follows the proof in the string case. Suppose an MSO sentence iP of 
quantifier rank k is given. We let To, ... , Tm enumerate all the rank-k MSO 
types, with To being the type of the empty tree, and take {To, ... , Trn} as the 
set of states of an automaton A<J>. Since iP is equivalent to a disjunction of 
types, we let F = { T; [ T; is consistent with <P}. Finally, 
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a 

T .7 

Fig. 7.3. Illustration for the proof of Theorem 7.30 

if there are trees T1 and T2 whose rank-k MSO types are T, and TJ, n~spectively, 

such that the rank-k MSO type of the tree obtained by hanging T1 and T2 as 
children of a root node labeled a is Tz (see Fig. 7. 3). 

Again, similarly to the proof of Theorem 7.21, one can show that A,p is a 
deterministic: tree automaton accepting the tree language {T [ T f= <P}. 0 

Corollary 7.31. Every tree automaton is equivalent to a deterministic tn'.e 
automaton, and every MSO sentence over trees is equivalent to an 31\ISO 
sentence. D 

The connection between FO-definability and star-free languages does not, 
however, extend to trees. There are several interesting logics lwtween FO and 
MSO, and some of them will be introduced in exercises. 

We next show how to extend these results to unmnked trees. 

Definition 7.32 (Unranked trees). An unranked tn~e domain -i.s a sulm'.t 
D of {1, 2, ... } * (finite words over· positive integer·s) that is pncfix-r.losed, and 
such that for s · i E D and j < i, the strings· .j is ·in D as well. An unmnked 
tree is a pair ( D, f), wher·e D is an unmnked tr·ee domain, and f is the labeling 
function f : D -+ E. 

Thus, a node in an unranked tree can have arbitrarily many children. An 
example is shown in Fig. 7.2 (the second tree). Some nodes the root, nodes 
11 and 3 -have three children; some have two (node 2), sorrw have one (nodes 
1 and 3:1). 

The transition function for an automaton working on binary trees was 
of the form 6 : Q x Q x E -+ Q, based on the fact that each nonl<~af node 
has exactly two children. In an unranked tree, the number of children could 
be arbitrary. The idea of extending the notion of tree automata to the tm

ranked case is then as follows: we havn additional string automata that nm on 
the children of each node, and tlw acceptance conditions of t host' automata 
determine the state of the parent node. This is formali>~nd in the definition 
below. 
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Definition 7.33 (Unranked tree automata). An unranked tree automa

ton is a triple A = ( Q, q0 , 6), where a.s before Q i.s the .set of .states, qo is an 

element of Q, and 6 i.s the transition function 6 : Q x E __, 2Q* such that 

6 ( q, a) i.s a regular language over Q for every q E Q and a E E. 

Given an unranked tree T = ( D, f), a run of A on T i.s defined a.s a 

function r : D __, Q .such that the following holds: 

• if s is a node labeled a, with children s · 1, ... , s · n, then the str·ing 

r(s · l)r(s · 2) ... r(s · n) is in 6(r(s), a). 

In particnlar, if s ·is a leaf, then r( s) = q implies that the empty string belongs 

to 6(q, a). 

A r-un is successful if r( E) = q0, and T i.s accepted by A if there exists an 

accepting r-un. An unranked tree language L i.s called regular if it i.s accepted 

by an unranked tr·ee automaton. 

To connect regular languages with MSO-definability, we have to represent 

unranked trees as structures. It is no longer sufficient to model just two suc

cessor relations, since a node can have arbitrarily many successors. Instead, 

we introduce an ordering on successor relations. That is, an unranked tree 

T = ( D, f) is represented as a structure 

(D, -<, (~,)uEE, <sib!), (7.11) 

where -<, as before, is the prefix relation, Pa is interpreted as { s E D I f(s) = 

} d I II • ff th • d d . . ThT • • h l I . a ,an s <sibiS 1 ere1sano esan z,JEn,z<J,SUC t1ats =s·'l, 
s" = s · j. In other words, s' and s" are siblings, and s' precedes s". 

Thus, when we talk about. FO-definability, or MSO-definability over un

ranked trees, we mean definability over structures of the form (7.11). 
Finally, the connection between automata and MSO-definability extends 

to unranked trees. 

Theorem 7.34. An v.nranked tree lang-uage i.s regular iff it is MSO-definable. 

The proof of this theorem is similar in spirit to the proofs of Theorems 

7.21 and 7.30, and is left as an exercise for the reader. 

7. 7 Complexity of MSO 

In this section we study complexity of MSO. We have seen that MSO, and 

even ::JMSO, are significantly more expressive than FO: ::JMSO can express 

NP-complete problems (3-colorability, for example), and by using negation, 
we can express coNP-complete problems in MSO. 
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This suggests a dose connection between :\ISO and the polynomial hier
archy, PH, for which NP and coNP are the two lowest levels above poly
nomial time. Recall that tlw lew~ls of the polynomial hierarchy are df~fined 

. ,~p Jifi P·. . Ef! 'TPL•)' 1 1111 • l f ll I as .00 = () = I lM!-,, i = ·' •--J, anc i IS t W set 0 pro J f~IILS \V lOS(' 

complement is in L';' (sef~ Sect. 2.3). 
\Vc next show that the data complexity of MSO is well approximated hy 

the polynomial hierarchy (although MSO does not capture PH: for example, 
Hamil tonicity is not .\!SO-expressible). 

Proposition 7.35. For each level E;' OT nr of the polynomial hiemn:h:lf, then· 
e:J:i8t8 a pr-oblem complete for· that level which is c:r,pn~s8ible in i\ISO. 

Proof. We show how to express a variant of QBF ( quantifil'd Boolf'an for
mulae), which Wf~ used in the proof of PSPACE-complf~Umcss of the combirwd 
complexity of FO. We define the problem E;-SAT as follows. Its input is a 
formula of the form 

(3 ... =:J)(v ... v)(=:J ... :J) ... ~- (7.12) 

where ~ is a propositional Boolean formula in conjunctive normal form. such 
that each conjunct contains three propositional variables. The quantifier prdix 
starts with a block of existential quantifiers, followed by a block of universal 
quantifiers, followed by a block of existential quantifiers, and so on such that 
there an~ i blocks of quantifiers. The output is "Fs" if th(' formula (7.12) is 
true. 

The problem !I;-SAT is defined similarly, except that in (7.12), the first 
block of quantifiers is universal. vYe use the knm\m fact that L',-SAT is com
plete for Er, and n-SAT is cornp!Pte for IIf. 

\Ve now show how to encock an instance <P (7.12) of E;-SAT as a structure 
Q{,J,. Its universe is the set of variablf~s used in (7.12). It has four binary re
lations Ro, R t. R2. R:>, and i + 1 unary relations E t. U2. E:; ..... Each relation 
E~,; or U, is interpreted as the set of variablE's quantifi<'d hy the kth block of 
quantifiers. Rdations R0 • R 1 , R2. R:; erH:ode th<' formula ~: relation R; cOIT<'

sponds to all the conjuncts of~ in which exactly i variables appear positively. 
That is, R0 has all the triples ( x. y, z) such that ( --1.1· V -,_If V is a conjunct 
of rp, R1 has all the triplf~s (x, y, z) such that (:r V "'Y V is a conjunct of .p. 
and so orr. 

Next, we find an MSO sentence if/ such that 2L,. f= if/ iff (/J is true. This 
sentence is of the form 

where each X; corresponds to tlw set of variables set to tnJe in the ith quanti
fier block. The formula rp' says that the variab!P assignment of the quantifif'r 
prefix of![/ makes ~ true. For example, for each triple (.r. y. -~) in H 1 , it would 
state that either y or z belongs to sornf' of the X; 's. or .r belongs to 1wither 
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of them, and similarly for R0 , R2 , and R3. We leave the details to the reader. 
The proof for IIi-SAT is almost identical: the sentence P must start with a 
universal MSO quantifier. D 

We shall return to complexity of SO in Chap. 9. For the combined com
plexity of MSO, see Exercise 7.21. 

Even though the complexity of MSO is quite high, for many interesting 
structures, in particular, strings and trees, the connection with automata pro
vides nice bounds in terms of parameterized complexity. 

Corollary 7.36. Over strings and trees (ranked and unranked}, evaluating 
MSO sentences is fixed-parameter linear. In particular, over strings and trees, 
the data complexity of MSO is linear. 

Proof. Suppose we have a sentence P and a structure Qt (string or tree). We 
convert Pinto a deterministic automaton, by Theorems 7.21, 7.30, and 7.34, 
and run that automaton over Q(, which takes linear time. D 

Can Corollary 7.36 be extended to a larger class of structures? The answer 
to this is positive, and it uses the concept of bounded treewidth we first 
encountered in Section 6.7. Recall that a class C of a-structures is said to be 
of bounded treewidth if there is a number k such that for every Q( E C, the 
treewidth of its Gaifman graph is at most k. (See Sect. 6.7 for the definition 
of treewidth.) 

Theorem 7.37 (Courcelle). Let C be a class of structures of bounded 
treewidth. Then evaluating MSO sentences over C is fixed-parameter linear. 
In particular, the data complexity of MSO over C is Unear. 

Proof sketch. We outline the idea of the proof. For simplicity, assume that 
our input structures are graphs. Given a graph 9, compute, in linear time, its 
tree decomposition, consisting of a tree T and a set Bt for each node t ofT. 
Since the treewidth is fixed, say k, each Bt is of size at most k + 1, and thus 
all the graphs generated by Bt 's can be explicitly enumerated. This allows 
us to express MSO quantification over the original graph g in terms of MSO 
quantification overT. Thus, we are now in the setting where MSO sentences 
have to be evaluated over trees, and this problem is fixed-parameter linear, 
which can be shown by converting MSO sentences into tree automata, as in 
Corollary 7.36. D 

Fixed-parameter linearity implies that the complexity of the model
checking is of the form !(II P II)· II Qt II· What can be said about the function f? 
Even over strings, to achieve fixed-parameter linearity, one has to convert P to 
an automaton. We have seen this conversion in the proof of Theorem 7.21, and 
it was based on computing all rank-k MSO-types. One can also convert MSO 
sentences into automata directly, with existential quantifiers corresponding to 



136 7 Monadic Second-Order Logic and Automata 

nondeterministic guesses. For such a conversion, the main problem is nega
tion, since complementing nondeterministic automata is not easy: OIH' has to 
make them deterministic first, and then reverse the roles of accepting and 
rejecting states. Going from a nondPterrninistic: automaton to a deterministic 
one entails an exponential blow-up. 

\Vhen we try to apply this wasoning to an MSO sentence of tlw form 

(3 ... 3)('V ... 'V)(3 ... 3) ... p. 

we see that at each quantifier alternation, one needs to mak<~ the automat011 
deterministic. Hence, the size of the resulting automaton will be bounded by 
(roughly) 

where n is the size of the automaton corresponding to p, and k is the number 
of alternations of quantifiers. That is, the size of tlw autornaton is actually 
nonelementar·y in terms of II <P 11. \Ve recall that a function .f : N ~ N is 
dernentary if for some fixf~d /, 

f(n) < 
" } 2· I times 

2 for all n. 

In fact, it is known that converting MSO formulae into automata is inlwrently 
nonelernentary. Thus, even though over some classes of structures l\lSO is 
fixed- parameter linear, the function of the parameter (that dqwnds on the 
MSO sentence) is extremely large. Exercise 7.22 shows that the complexity 
cannot bP lowered unless NP collapses to PT!tv1 E. 
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For connections between automata theory, logical definability, and circuit 
complexity, see Straubing [225]. 

In the proofs of Proposition 7.12 and Theorems 7.21 and 7.26 we used 
the composition method already encountered in Chap. 3. The composition 
techniques used here are a special case of the Feferman-Vaught Theorem [79]. 
For more on the composition method, see a recent survey by Makowsky [177], 
as well as Exercises 7.25 and 7.26. 

Tree automata are treated in several books and surveys [38, 90]. Theorem 
7.30 is due to Thatcher and Wright [230]. The corresponding result for un
ranked trees seems to be a part of folklore, and can be found in several papers 
dealing with querying XML, e.g., Neven [186]. 

Proposition 7.35 also appears to be folklore. Completeness of Ef-SAT and 
/If-SAT is due to Stockmeyer [223] (it is also known that the quantifier-free 
formula can always be taken to be 3-CNF [59]). Theorem 7.37 was proved by 
Courcelle [44]. Linearity of finding a tree decomposition of small treewidth is 
from Bodlaender [24]. The nonelementary complexity of the translation from 
MSO to automata is due to Stockmeyer and Meyer [224]. 

Sources for exercises: 
Exercises 7.2-7.5: Courcelle [45, 46] 
Exercise 7.11: Schwentick [215] 
Exercise 7.12: Cosmadakis [42] 
Exercise 7.13: Otto [190] 
Exercise 7.14: Matz, Schweikardt, and Thomas [180] 
Exercise 7.16: Thomas [231] 
Exercises 7.18 and 7.19: Thomas [232, 233] 
Exercise 7.20: Blumensath and Gradel [23] 

Exercise 7.22: 
Exercise 7.23: 

Exercise 7.25: 
Exercise 7.26: 
Exercise 7.27: 

7. 9 Exercises 

Bruyere et al. [26], Benedikt et al. [21] 
Benedikt and Libkin [20] 
Frick and Grohe [85] 
Grandjean and Olive [105] 
Schwentick [216], Lynch [174] 
Makowsky [177] 
Courcelle and Makowsky [ 4 7] 
Seese [218] 

Exercise 7 .1. Prove Theorem 7. 7. 

Exercise 7.2. Prove that the following properties of an undirected graph G are 
expressible in MSO: 

• G is planar; 
• G is a tree. 
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Exercise 7.3. Prove that the following properties of an undirect<>d graph G are 
expressible in ::JMSO: 

• G is not planar; 
• G is not a tree; 
• G is not chordal (recall that a chord of a cycle C: is an <~dge (a. b) such that n, b 

are nodes of C, but the edge (a, b) is not inC; a graph without loops is chordal 
if it has no cyc:le of length at least 4 without a chord). 

Exercise 7.4. Consider a different representation of graphs as first-order structures. 
Given a graph G, we create a structure 2(G = (A c. Pn) whose universe is tlw disjoint 
union of nodes and edges of G, and Pc; is a ternary rdation that consists of pairs 
(a,e,b), where e is the edge (a, b) in G. 

Prove that over such a representation of graphs, Hamiltonicity is l\ISO-clefinabk 

Exercise 7.5. Corollary 7.24 and Exercise 7A show that the expressive power of 
MSO is different over two representation of graphs: one with the universe consisting 
of nodes, and the other one with the universe consisting of both nodes ancl edges. 

Prove that if we restrict the class of graphs to be on(~ of the following: 

• graphs of bounded degree, or 
• planar graphs, or 
• graphs of treewidth at most k, for a fixed k. 

then the expressive power of MSO over tlw two different rqm~sent.ations of graphs 
is the same. 

Exercise 7.6. Prove that ::JMSO can express queri(~S that are not Gaifrnan-local 
and violate the BNDP. 

Exercise 7.7. Prove that for each fixed k, directed reachahility is expres:o;ihlP in 
::JMSO over graphs whose in-degrees and out-clegn~es do not excped k. 

Exercise 7.8. Prove Theorem 7.16. 
Conclude that undirected reachability is m Vl\ISO r-1 :=Jl\JSO. while din'ct<'d 

reachability is in Vl\ISO - :31\lSO. 

Exercise 7.9. Prove Proposition 7.20. 

Exercise 7.10. Use Ajtai-Fagin games to prove that there is no :31\ISO sentPnce if> 
such that, if a graph G is a disjoint union of two cycles, thPn C f= if> iff the cycles 
are of the same size. 

Exercise 7.11. Prove that graph connectivity is not definable in :31\ISO+ <. 

Exercise 7.12. Prove that non-3-colorability of graphs cannot be Pxpresswl m 
::JMSO. 

Exercise 7.13. Prove that the number of second-order quantifif'rs in 31\JSO giws 
rise to a strict hierarchy. 

Exercise 7.14. Prove that the alternation depth of second-order quantifiers in !\ISO 
gives rise to a strict hierarchy. 
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Exercise 7.15. Prove the composition result used in the proof of Theorem 7.21. 
That is, if s1, s2, t1, t2 E E* are such that A1., 1 =~1so Mt 1 and !v1s 2 =~180 !vlt2 , then 
Ms 1 -s2 =~iSO Mtt·t2· 

Exercise 7.16. Prove that over strings, every MSO sentence is equivalent to an 
::JMSO sentence with a single second-order quantifier. 

Exercise 7.17. Complete the proof of Theorem 7.30, and prove Theorem 7.34. 

Exercise 7.18. Consider a restriction of MSO on binary trees, in which we only 
allow second-order quantifications over antichains: sets of nodes X such that for 
s, 8 1 EX, 8 -=J 8 1 , neither 8-< 8 1 nor 8 1 -< s holds. Such a logic is called the antichain 
logic. 

Prove that every regular tree language is definable in the antichain logic. 

Exercise 7.19. Next, consider a restriction of MSO on binary trees, in which we 
only allow second-order quantifications over chains: sets of nodes X such that for 
8, s' E X, s -=J s', either s -< s' or s' -< s holds. 

Prove that there are regular tree languages that are not definable in this restric
tion of MSO. 

Exercise 7.20. Let s 1 , ... , sn. E E*. We construct a string [51 over the alphabet 
(E U { #} )", whose length is the maximum of the lengths of s;'s, and whose ith 
symbol is a tuple (c1, ... , en), where each ck is the ith symbol of 8k, if the length 
of Sk is at lea.'it i, or# otherwise. We say that a setS C::: (E*t is regular if the set 
{[.5] I s E S} c::: ( E u { #} r is regular. 

Consider the infinite first-order structure 9.n whose universe is E*, and the pred
icates include -< (the prefix relation), a unary predicate La for each a in E, such 
that La(x) holds iff the last symbol of xis a, and a binary predicate el such that 
d ( s, s') holds iff the length of s equals the length of 8 1 • 

We call a subset S of ( E* )" definable in 9.n if there is an FO formula 'P ( x 1 , ... , Xn) 
in the vocabulary of 9.n such that S = { s I 9.n f= 'P( .5)}. 

Prove the following: 

(a) A subset of (E*t is definable in 9.n iff it is regular. 
(b) A subset of E* is definable in 9.n by a formula that does not mention the equal 

length predicate iff it is star-free. 
(c) Generalize (a) to binary trees. 

Exercise 7.21. Prove that the combined complexity of MSO is PSPACE-complete. 

Exercise 7.22. Prove that if the model-checking problem for MSO on strings can 
be solved in time /(II <P II)· p(l s 1), for a polynomial p and an elementary function/, 
then PTIME = NP. 

Exercise 7 .23. Define complexity class NL!N as the class of problems accepted by 
nondeterministic RAMs in linear time. Consider a different encoding of strings as 
finite structures. A string s = St ... sn E {0, 1} * is encoded as follows. Partition 8 

into m pieces of length i ·log n, where m = 11,;;" 1. Let 9s ( i) be the number encoded 
by the ith piece of the partitioned string. We define a structure Ms whose universe 
is {I, ... , m}, and the vocabulary consists of two unary functions, one interpreted 
as 9s, and the other one as successor. 

Prove the following: 
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• A set of strings 8 is in NLL'\ iff there exists a sentence<!> of the form 

where Fi 's are unary function symbols, and cp is quantifier-free, such that :-,· = 
{s I M8 f= <!>}. 

• Every set of strings in !\"LIN is definable by an 31\ISO sentt'nce in the pwsencc 
of a built-in addition relation. 

Exercise 7.24. Using thf' fact that the MSO theory of finite trees is decidable 
(Rabin [202)), prove that the MSO theory of finite forests is decidable. 

Exercise 7.25. Define Th~180 (2l) as the sPt of all l\ISO[k] sPntmces tnw in 2l. 
Notice that Th~1s0 (2l) is a finite object. 

\Ve call an m-ary operation F on structures of the same vocabulary l\JSO-smooth 
if Th~180 ( F(2l1, ... , 2trn)) is uniquely determined by, and can he computed from, 
Th~tso (2l1 ), ... , Th~1s0 (2lm), for every k. Prove that the disjoint union of structnrf'S. 
root joining of trees, and concatenation of words an~ MSO-smooth. 

Exercise 7.26. A class C of structures is MSO-indurtive if it is the smallest class of 
structures that can be construct<~d from a fixf~d finite set of structures using a fixed 
finite set of MSO-smooth operations. Such a construction naturally yields, for each 
structure 2l E C, its parse tree T21. 

Prove that the following are MSO-induc:tive classes of structnres: 

• words; 
• forests; 
• graphs of treewidth at most I, for a fixed I. 

Also prove that for a fixed MSO sentence <!>, checking whetllf'r 2l f= 1> can b<' 
solved in time linear in the size of T~1 , if 2l E C. 

Exercise 7.27. Consider representation of graphs from Exercise 7.4. Prove that if 
C is a class of finite graphs, and its l\ISO theory in that representation is decidable, 
then C is of bounded treewidth. 

Hint: you will have to use decidability of the MSO theory of graphs of hounded 
treewidth, undecidability of the MSO theory of grids (Cartesian products of suc
cessor relations), and the fact, due to Robertson and Seymour [204], that a class of 
graphs of unbounded treewidth has arbitrarily large grids as its minors. 

Exercise 7.28: Is every query in (MSO+ <)im definable in the expansion of 
MSO with unary generalized quantifiers (see t lw definition in the~ next chaptPr) 
Q,:c cp(:r.;ij) such that 2l f= Q.,:c cp(:r,u) holds iff lcp(2l.u)l mod m =()'I 
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Logics with Counting 

We continue dealing with extensions of first-order logic. We have seen that the 
expressive power of FO on finite structures is limited in a number of ways: it 
cannot express counting properties, nor is it capable of expressing properties 
that require iterative algorithms, as those typically violate locality. 

In this chapter we address FO's inability to count. As we saw earlier, 
nontrivial properties of cardinalities are not expressible in FO: for example, 
a sentence of quantifier rank n cannot distinguish any two linear orders of 
cardinality over 2n. Comparisons of cardinalities, such as testing if I A I> I B I, 
are inexpressible too. 

We first introduce two possible ways of extending FO that add counting 
power to it: one is to use counting quantifiers and two-sorted structures, the 
other is to use generalized unary quantifiers. We shall mostly concentrate on 
counting quantifiers, as unary quantifiers can be simulated with them. We 
shall see a very powerful counting logic, expressing arbitrary properties of 
cardinalities, and yet we show that this logic is local. We also address the 
problem of complexity of some of the counting extensions of FO. 

8.1 Counting and Unary Quantifiers 

Suppose we want to find an extension of FO capable of expressing the PARITY 

query: if U is a unary predicate in the vocabulary a, and mE STRUCT[a], is 
I U2J.I even? How can one do it? 

One approach is to add enough expressiveness to the logic to find cardinal
ities of some sets: for example, sets definable by other formulae. Thus, if we 
have a formula cp( x ), we want to find the cardinality of cp(m) = {a I m f= cp( a)}. 
The problem is that I cp(m) I is a number, and hence the logic must be ade
quately equipped to deal with numbers. To be able to use I cp(m) I, we introduce 
counting quantifiers: 

3ix cp(x) 
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is a formula with a new free variable i, which states that there are at least i 
elements a of A such that 'P(a) holds. 

The variable i must range over some numerical domain (which, as we shall 
see, is different for different counting logics). On that numerical domain, we 
should have some arithmetic operations available (e.g., addition and multipli
cation), as well as quantification over it, so that sentences in the logic could 
be formed. 

Without yet giving a formal definition of the logic that extends FO with 
counting quantifiers, we show, as an example, how parity is definable in it: 

:::Ji:::Jj ((i = j + j) 1\ 3ixip(x) 1\ (Vk (k > i)--+ --dk:r 't)(;r))) . 

This sentence says that we can find an even number i (since it is of the form 
2j) such that exactly i elements satisfy 'P( x): that is, at least i elements satisfy 
ip, and for every k > i, we cannot find k elements that satisfy <p. 

Note that we really have two different kinds of variables: variables that 
range over the domain of l<t, and variables that range over some numerical 
domain. Such a logic is called two-sorted. Formally, a structure for such a 
logic has two universes: one is the non-numerical universe (we shall normally 
refer to it as first-sort universe) and the numerical, second-.mrt universe. We 
now give the formal definition of the logic FO(Cnt ). 

Definition 8.1 (FO with counting). Given a vocabular·y CJ, a CJ-stnu:ture 
for FO with counting, FO( Cnt), is a structure of the fo1'1n 

( { ao, ... , an-d, {0, ... , n- 1 }, (Ri)'21 , +. X, min, max) 

where ( { a0 , ... , an-I}, (Ri)'li) is a structure from STRUCT[CJ] {Ri mnges over 
the symbols in CJ), + and x are ternary relations { ( i, j, k) I i + j = k} and 
{ (i, j, k) I i-j = k} on {0, ... , n-1}, min denotes 0 and max denotes n-1. We 
shall assume that the universes { ao, ... , a,_ 1 } and { 0 .... , n - 1} are disjoint. 

Formulae ofFO(Cnt) can have free variables of two sods, mnging over· the 
two universes. We normally use i, j, k, f, j for second-sort variables. FO( Cnt) 
extends the definition of FO by the following rules: 

• min, max are terms of the second sort. Also, every second-sort variable i 
is a term of the second sort. 

• Ift1,t2,t3 are terms of the second sort, then +(tJ,t2,t;l) and x(ft,f2J:l) 
are formulae {which we shall nor·mally write as t1 +t2 = f:l and t1 ·f2 = t:l)· 

• If 'P(x, Z) is a formula, then 3i 'P(x, Z) is a formula. The quantifier 3i binds 
the second-sort variable i. 

• If 'P(Y, x, Z) is a formula, then lj;(x, i, Z) = 3iy't)(y, :l, f) is a formula. The 
quantifier 3iy binds the first-sort var·iable y but not the second-sort variable 
z 0 
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For the semantics of this logic, only the last item needs explanation. Sup

pose we have a structure Ql, and we fix an interpretation a for x (from 

{ ao, ... , an-d), iQ for i, and io for i (from {0, ... , n ~ 1} ). Then Ql f= 
1/J(a,io,zo) iff 

l{bE{aa, ... ,an-d I Qtf=<p(b,a,fcJ)}I 2: io. 

If we have a cr-structure Ql, there is a two-sorted structure Qt' naturally 
associated with Qt. Assuming A = { a 0 , ... , an-l}, we let the numerical domain 
of Qt' be {0, ... , n ~ 1 }, with min and max interpreted as 0 and n ~ 1, and 

+ and x getting their usual interpretations. Hence, for Ql E STRUCT[cr], we 
shall write Ql f= <p whenever <p is an FO( Cnt) formula, instead of the more 

formal Qt' f= <p. 

Let us see a few examples of definability in FO(Cnt ). First, the usual linear 

ordering on numbers is definable: i:::; j iff :=lk (i + k = j). Note that this does 
not imply definability of ordering on the first-sort universe; in fact we shall 
see that with such an ordering, FO(Cnt) is more powerful than FO(Cnt) on 
unordered first-sort structures (similarly to the case of FO, shown in Theorem 
5.3, and MSO, shown in Corollary 7.13). 

We can define a formula :=l!ix<p(x, · · ·) saying that there are exactly i ele
ments satisfying <p: 

:=l!ix<p(:r, · · ·) = :=lix<p(x, · · ·) 1\ Vk ((k > i)-+ --,:=Jkx<p(x, · · · )). 

We can also compare cardinalities of two sets. Suppose we have two formulae 
<p(x) and 1/J(x); to test if I <p(Ql) 1>11/;(Ql) I, one could write 

:=li (:=~ix<p(:r) 1\ --,:=Jix'lj!(x)). 

One can also write a formula for the majority predicate MA.J ( <p, 1j;) testing if 
the set <p(Ql) contains at least half of the set 1/!(Ql): 

Note that the definition of FO ( Cnt) allows us to use formulae of the form 
t 1 (Z) {=, >, 2:} t 2 (Z), where t 1 and t 2 are terms. For example, (i + i 2: j) is 
~k ( k = i + i 1\ k 2: j). 

We now present another way of adding counting power to FO that does 

not involve two-sorted structures. Suppose we want to state that I <p(Ql) I is 
even. We define a new quantifier, QEvEN, that binds one variable, and write 
QEvENx <p(x). In fact, more generally, for a formula with several free variables 

<p(x, f]), we can construct a new formula QEVENx <p(x, f]), with free variables fl. 
Its semantics is defin!~d as follows. If a is the interpretation for f], then 

Ql F QEVENX <p(:r, a) -¢=} I {b I Ql F <p(b, a)} I mod 2 = 0. 
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Using the same approach, we can do cardinality comparisons. For example, 
let Qu be a quantifif~r that binds two variables; then for two formulae y] (:r, m 
and 'P2(z, Y), we have a new formula 7j;(.ij) := Qlf.r. ? ( i?t (:r, //). 1?2 ( z. yj)) such 
that 

The quantifier QH is known as the Hartig, or equicardinality, quantifier. An
other example is the Rescher quantifier Qn. The formation ruin is tlw same 
as for the Hartig quantifier, and 

2ll= Qnx.z (~?J(:r,a),cp2(z,a)) 
{c}l{bl2li=~?J(b,r1)}1 > l{bl2ll=~?2(b.r1)}1. 

What is common to these definitions? In all the cases, we construct. sets of the 
form ~?(2l,a) ={hE A 12ll= ~?(b,a)} ~A, and then make some cardinality 
statements about those sets. This idea admits a nice gerwralization. 

Definition 8.2 (Unary quantifiers). Let CJ/: be a vocabnla.ry of k unar;t; H'

lation symbols U1 , ... , U~;, and let K. ~ STRUCT[CJ/n be a class of str"u.ctun:s 
closed under· isomorphisms. Then QK: is a unary quantifier and FO ( Q" ) e:J:
tends the set of for-rn.ulae of FO with the following additional nde: 

if 1/Jt (:r1, Yt ), ... , !)!i.(:r~;, :lh) are fommlae, 
then QK:Xt ... xk('lh (:rt. J}t), ... , lj!~;-(1'k: Jik)) is a fonnula. 

(8.1) 

Here QK: binds x; in the ith for·mula, fm· each i = l .... , k. A fr-ee occnr-rcnce 
of a variable y in l/J;(.r:1 • JJ;) r-emains free in this new for-mula 1mless y = .r,. 
The semantics of QK: is defined as follows: 

2l I= CJK:.r 1 ... :ri.(1b 1 (.r 1 , at) .... , tJ'k(.r~;. ilk)) 
<=? (A. (2l. aJ), ... , '~i'd2l, ak)) E K.. 

(8.2) 

In this definition, 0:1 is a tuple of parameter-s that g·ives the interpr·etation for· 
those fn;e variables of '1/J; (:r:.;, :i]i) which an: not equal to .r;. 

If Q i8 a set of unary quantifiers, then FO(Q) is the e:J:tcnsion of FO with 
the for·mation r-ule above for each QIC E Q. 

The quantifier- rank of fommlae with unar·y quant·ifiers is defined by the 
additional r-ule: 

qr( Q,c.rl, ... , .rk(1h (:rt, :iJJ), .... 1h, (:r,. :th))) 
= max{ qr(«'i (.T,, :t7i)) I i ::; A:} + 1. 

(8.3) 

The three examples sePn earlier are all unary quantifiers: for QE\ EN, tlw 
class K. consists of structures (A, U) such that I U I is <:ven; for QH, it consists 
of structures (A, U1 , U2 ) with I U1 1=1 V2 1, and for Qn, it consists of stru<"1 ures 
(A. Ut. U2) with I U1 l>lll2 I· Note that t.hP usual quantifiers ::3 and V ar<' 
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examples of unary quantifiers too: the classes of structures corwsponding to 
them consist of (A, U) with U f 0 and U = A, respectively. 

We shall see that the two ways of adding counting power to a logic - by 
means of counting quantifiers, or unary quantifiers - are essentially equivalent 
in their expressiveness. Formulae with counting quantifiers tend to be easier 
to understand, but the logic becomes two-sorted. Unary quantifiers, on the 

other hand, let us keep the logic one-sorted, but then a new quantifier has to 
be introduced for each counting property we wish to express. 

8.2 An Infinitary Counting Logic 

The goal of this section is to introduce a very powerful counting logic: so 
powerful, in fact, that it can express arbitrary properties of cardinalities, even 
nonrecursive ones. Yet we shall see that this logic cannot address another 
limitation of FO, namely, expressing iterative computations. We shall later 
see another logic that expresses very powerful forms of iteration, and yet is 
unable to count. Both of these logics are based on the idea of expanding FO 
with infinitary connectives. 

Definition 8.3 (Infinitary connectives and .Coow)· The logic .C=w i8 de

fined as an extension of FO with infinitary connectives V and 1\: if IPi 's ar·e 

formulae, fori E I, where I i8 not necessarily finite, and the free variables of 
all the i.p; '8 are among x, then 

vi.p; and 
iEJ 

are formulae. Their free variables are tho8e variables in x that occur freely in 
one of the i.p '8. 

The semantics is defined as follows: 2l f= V !.pi ( ii) if for some i E I, 'it is 
iEf 

the case that 2l f= i.p; ( ii), and 2l f= 1\ rp( ii) if 2l f= IPi ( ii) for all i E I. 
iEl 

This logic per se is too powerful to be of interest in finite model theory, in 
view of the following. 

Proposition 8.4. Let C be a class of finite structures closed under isomor

phism. Then there is an Loow sentence <f>c such that 2l E C iff 2l f= <f>c. 

Pmof. Recall that by Lemma 3.4, for every finite 23, there is a sentence Pp, 

such that 2l f= Pp, iff 2l ~ 23. Hence we take <f>c to be 

v Pp,. 
'BEC 

Clearly, 2l f= <f>c iff 2l E C. 0 
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However, we can make logics with infinitary connectives useful by putting 
some restrictions on them. Our goal now is to define a two-sorted counting 
logic .C~w ( Cnt). We do it in two stages: first, we extend Lx:w with some 
counting features, and second, we impose restrictions that make the logic 
suitable in the finite model theory context. 

The structures for this logic are two-sorted, but the second sort is no longer 
interpreted as an initial segment of the natural numbers: now it is the whole 
set N. Furthermore, there is a constant symbol for each k E N (which we also 
denote by k). Hence, a structure is of the form 

({al, ... ,an},N,(R~), {k}w~J), (8.4) 

where again ({a1 , ... ,a11 },(R?)) is a finite a-structure, and R;'s range over 
symbols in a. 

We now define .Coow ( Cnt), an extremely powerful two-sorted logic, that 
extends infinitary logic .Coow· Its structures are two-sorted structures (8.4), 
and the logic extends .Cocw by the following rules: 

• Each variable or constant of the second sort is a term of the second sort. 

• If cp is a formula and x is a tuple of free first-sort variables in cp, then 
#x.cp is a term of the second sort, and its free variables are those in cp 
except x. 

The interpretation of this term is the number of tuples a over the 
finite first-sort universe that satisfy cp. That is, given a structure ~ with 
the first-sort universe A, a formula cp(x, y, i) and the interpretations band 
iQ for y and f, respectively, the value of the term #].cp( :r, b.1{1) is 

• Counting quantifiers 3ixcp, with the same semantics as before, except that 
i could be an arbitrary natural number. 

The logic .Coow ( Cnt) is enormously powerful: it can defin<~ not only every 
property of finite models (since it contains .CX;w), but also ever·y predicate or 
function on N. That is, P <;;; Nk is definable by 

v (8.5) 

Note that the definition is also redundant: for example, ::li::r cp can be 
replaced by #:z:.cp ;::::: z. However, we need counting quantifiers separately, as 
will become dear soon. 

Next, we restrict the logic by defining the rank of a formula, rk(cp). Its 
definition is similar to that of quantifier rank, but there is one important 
difference. In a two-sorted logic, we may have quantification over two different 
universes. In the definition of the rank, we disregard quantification over N. 
Thus, rk(cp) and rk(t), where tis a term, are defined inductively as follows: 
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• rk(t) = 0 if t is a variable, or a term k for k E N. 

• rk( <p) = 0 if <p is an atomic formula of vocabulary a (i.e., an atomic first-
sort formula). 

• rk(t1 = t2) = max{rk(h), rk(t2)}, where t1 and t2 are terms. 

• rk(....,<p) = rk(<p) . 

• rk(#x.<p) = rk(<p)+ lxl. 

• rk(V <pj) = rk(;\ <p.i) = sup.i rk( <pj ). 

• rk(\ix <p) = rk(:Jx <p) = rk(:Jix <p) = rk(<p) + 1. 

• rk(\ii <p) = rk(:Ji <p) = rk( <p). 

Note that if <pis an FO formula, then rk(<p) = qr(<p). 

Definition 8.5 . .C~w(Cnt) is defined as the restriction of .Coow(Cnt) to for
mulae and terms that have finite rank. D 

This logic is clearly closed under the Boolean connectives and both first
and second-sort quantification. It is not closed under infinitary connectives: 
for example, if Pi, i > 0, are .C~w(Cnt) sentences such that rk(Pi) = i, then 
Vi Pi is not an .C~w(Cnt) sentence. 

Note also that (8.5) implies that every subset of Nk, k > 0, is definable 
by an .C~w(Cnt) formula of rank 0. Thus, we assume that +, ·, -, ::;, and in 
fact every predicate on natural numbers is available. To give an example, we 
can express properties like: there is a node in the graph whose in-degree i and 
out-degree j satisfy PT > P.i where Pi stands for the ith prime. This is done by 
:Jx:Ji:Jj (i = #y.E(y, x)) 1\ (j = #y.E(x, y)) 1\P(i, j), where Pis the predicate 
on N for the property PT > P.i. 

Known expansions of FO with counting properties are contained in 
.C~w(Cnt). 

Proposition 8.6. For every FO, FO(Cnt), or FO(Q) formula, where Q is a 
collection of unary quantifiers, there exists an equivalent .C~w(Cnt) formula 
of the same rank. 

Proof The proof is trivial for FO and FO(Cnt). For FO(Q), assume we have 
a formula 

where K is a class of a;:-structures Ql = (A, U1 , ... , Uk) closed under isomor
phism. Let II be the set of all 2k mapping 1r : { 1, ... , k} --" { 0, 1}, and for a 
structure Ql E K, let 

hr(i)=l j:7r(j)=0 
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With each structure SJ, we then associate a tuple II(SJ) = (n(SJ))rrEn, with 
n's ordered lexicographically. Since K is a class of unary structures closed 
under isomorphism, 2t E K and II(SJ) = II('B) imply '13 E K. 

This provides a translation of (8.6) into .C~w ( Cnt) as follows. Let 
PK( no, ... , n 2k _ 1 ) be the predicate on N that holds iff ( n0 , ... , n 2 , _I) is of 
the form II(SJ) for some 2t E K. Then (8.6) translates into 

where no, ... , 1r2k _ 1 is the enumeration of II in the lexicographic ordering, 
and 

i:rr(i)=l j:rr(j)=O 

Thus, if b1 , ... , bk interpret ih, ... , fA, respectively, in a structure '13, then the 
value of #x-'1/Jrr(x, b1 , ... , bk) in '13 is precisely 

Therefore, (8.7) holds for b1 , ... , bk in '13 iff the O"i;-structure 

(B,'l/JI('B,bl), ... ,'l/Jk('B,bk)) is in K. This proves the equivalence of 
(8.6) and (8.7). Finally, since Px:_ is a numerical predicate, it has rank 0, and 
hence the rank of (8.7) is max{rk(¢1), ... , rk(?fk)} + 1 = rk('lj;), which proves 
the proposition. D 

In general, .C~w ( Cnt) can be viewed as an extremely powerful counting 
logic: we can define arbitrary cardinalities of sets of tuples over a structure, and 
on those, we can use arbitrary numerical predicates. Compared to .C~w ( Cnt), 
a logic such as FO( Cnt) restricts us in what sort of cardinalities we can 
define (only those of sets given by formulae in one free variable), and what 
operations we can use on those cardinalities (those definable with addition 
and multiplication). 

We now introduce what seems to be a drastic simplification of .C~w ( Cnt). 

Definition 8.7. The logic .C~w(Cnt) is defined as .C~w(Cnt) where counting 
terms #x.t.p and quantification over N are not allowed. D 

On the surface, .C~w ( Cnt) is a lot simpler than .C:'x:w ( Cnt), mainly be
cause counting terms for vectors, #x.t.p, are very convenient for defining com
plex counting properties. But it turns out that the power of .C~w ( Cnt) and 
.C~w ( Cnt) is identical. 

Proposition 8.8. There is a translation t.p ----+ t.p 0 of .C~w ( Cnt) formulae into 
.C~w(Cnt) formulae such that t.p and t.p 0 are equivalent and rk(t.p) = rk(ip 0 ). 
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Proof. It is easy to eliminate quantifiers over N without increasing the rank: 
3i cp( i, · · · ) and Vi cp( i, · · · ) are equivalent to 

V cp(k, .. ·) and 1\ cp(k, ... ), 
kEN kEN 

respectively. Thus, in the formulae below, we shall be using such quantifiers, 
assuming that they are eliminated in the last step of the translation from 
.C:'x,w(Cnt) to .C~w(Cnt). 

To eliminate counting terms, assume without loss of generality that every 
occurrence of #x.cp is of the form #x.cp = #fl.'¢ or #x.cp = i, where i is 
a variable or a constant (if #x.cp occurs inside an arithmetic predicate P, 
we replace P by its explicit definition, using infinitary connectives). Since 
#x.cp = #fl.'¢ is equivalent to 3i (#x.cp = i) 1\ (#fl.'¢ = i), whose rank is 
the same as the rank of #x.cp = #fl.'¢, and #x.cp = k, for a constant k, is 
equivalent to 3i ( #x.cp = i 1\ i = k), we may assume that all occurrences of 
#-terms are of the form #x.cp = i, where i is a second-sort variable. 

The proof is now by induction on the formula. The only nontrivial case is 
'1/J(fl, lJ = ( #x.cp(x, fl, lJ = i). Throughout this proof, we assume that i is in j. 

By the hypothesis, there exists an .C~w(Cnt) formula cp0 which is equiva
lent to cp and has the same rank. We must now produce an .C~w(Cnt) formula 
'¢ 0 equivalent to 'ljJ such that rk('¢ 0 ) = rk(cp)+ I xI· The existence of such a 
formula will follow from the lemma below. 

Lemma 8.9. Let cp(x,fl,lJ be an .C~w(Cnt) formula. Then there exists an 
.C~w ( Cnt) formula "Y(fl, lJ of rank rk( cp) + lxl such that "Y is equivalent to 
#x.cp = i. 

Proof of the lemma is by induction on I x 1. If x has a single component x, 
"Y(if, lJ is defined as 

3l ((l = i) 1\ (3!lx cp(x, fl,lJ)) , 

which has rank rk( cp) + 1. The quantifier 3l denotes an infinite disjunction, as 
explained earlier. 

We next assume that x = zx0 . By the hypothesis, there is an .C~w(Cnt) 
formula a(x0 ,iJ,j,l) equivalent to (l = #z.cp(z,x0 ,fl,lJ) such that rk(a) = 
rk(cp)+ I zl. We define 

(3(fl,j,k,l) = 3!kxo a(xo,iJ,j,l). 

Then rk(f3) = rk(a) + 1 = rk(cp)+ I xl. The formula f3(fl,j, k, l) holds iff there 
exist exactly k elements x0 such that the number of vectors x with x0 in the 
last position that satisfy cp(x, · · ·) is precisely l. Note that if f3(fl, j, k, l) and 
f3(fl, j, k', l) hold, then k' must equal k. 

Thus, to check if #x.cp = i, one must check if 
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2: (k .z) = 1. 
!1( ·· · .k./) holdH 

This is done as follows. Let "(p(fJ,,]) be defined as: 

p 

A f)(i], J, i8, )s) 
s=l 

p 

1\ \li,j (-J(i],j,i,j)-+ v (i = i,l\j = j,) 
s=l 

1\ A ( '( i8 = is') V -,(js = )s')) 
8op8' 

1\ il . )1 + ... + ip. )p = i 

That is, 'Yp says that there are precisely p pairs (is, )s) that satisfy !i(iJ, j, k. I). 
and I:~=l is · Js = i. When p = 0, we define "fv(iJ, .7J as (i = 0) 1\ 
Vi',j' (-,;J(i],.f,i',j')). We can see that rk('Yp) = rk((j). We finally define 

'Y(iJ,j) = v "(p(iJ,,]). 
pEN 

It follows that 'Y is an L:~w(Cnt) formula of rank that is equal to rk(;i), and 
hence to rk( r.p )+ I x I, and that 'Y is equivalent to #x.r.p = i. This completes 
the proof of the lemma and the proposition. 0 

We next consider L::':cw(Cnt)+ <;that is, L::':cw(Cnt) over ordered struc
tures. We shall see in the next section that, as for FO, there is a separation 

As the first step, we show that L::':cw(Cnt)+ <defines every property of finite 
structures. Intuitively, with <, one can say that a given element of A is t.hP 
first, second, etc., element of A. Then the unlimited counting power allows us 
to code finite structures with numbers. 

Proposition 8.10. Every property of finite ordered structnr·es is definable in 
C:';.,w(Cnt). 

Proof We show this for sentences in the language of graphs. Let C be a class 
of ordered graphs. We assume without loss of generality that the sf't of nodes 
of each such graph is a set of the form {0, ... , n }. Then the membership in C 
is tested by the following C"xw ( Cnt) sentence of rank :i: 

( ( J.:=#::.(:::<:r))) V V.r\/y E(x, y) +--+ V 1\ I=#::.(:::< y) ' 
GEC (k.I)E Ec 

where EG stands for the set of edges of G. 0 
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We finish this section by presenting a one-sorted version of ..C~w(Cnt) 
that has the same expressiveness. This logic is obtained by adding infinitary 
connectives and unary quantifiers to FO. 

Let QA11 be the collection of all unary quantifiers; that is, all quantifiers 
QK where K ranges over all collections of unary structures closed under iso
morphism. We define a logic ..Coow ( QAu) by extending ..Coow with the formation 
rules (8.1) for each QK E QAIJ, with the semantics given by (8.2), and quan
tifier rank defined as in (8.3). We then define ..C~w(QAII) as the restriction of 
..Coow ( QAII) to formulae of finite quantifier rank. This logic turns out to express 
the same sentences as ..C~w(Cnt). The proof of the proposition below is left 
as an exercise for the reader. 

Proposition 8.11. For every ..C~w(Cnt) formula ¥J(x) without free second
sort variables, there is an equivalent ..C~w(QAII) formula 'lj;(x) such that 
rk(¥J) = qr('¢), and conversely, for every ..C~w(QAu) formula 'lj;(x), there is 
an equivalent ..C~w(Cnt) formula ¥J(x) with rk(¥J) = qr('¢). 0 

8.3 Games for .C~w(Cnt) 

We know that the expressive power of FO can be characterized via 
Ehrenfeucht-Fralsse games. Is there a similar game characterization for 
..C~w(Cnt)? We give a positive answer to this question, by showing that bijec
tive games, introduced in Sect. 4.5, capture the expressiveness of ..C~w(Cnt). 
We first review the definition of the game. 

Definition 8.12 (Bijective games). A bijective Ehrenfeucht-Fralsse game 
is played by two players, the spoiler and the duplicator, on two structures 
Ql, 23 E STRUCT[a']. If I A l#l B I, the spoiler wins the game. If I A 1=1 B I, 
in each round i = 1, ... , n, the duplicator selects a bijection fi : A ----+ B, and 
the spoiler selects a point a; E A. The duplicator responds by b; = f (a;) E B. 
The duplicator wins the n-round game if the relation { (a;, b;) I 1 ~ i ~ n} 
is a partial isomorphism between Ql and 23. If the duplicator has a winning 
strategy in then-round bijective game on Ql and 23, we write Ql =~ij 23. 

Note that it is harder for the duplicator to win the bijective game. First, if 
I A Iii B I, the duplicator immediately loses the game. Even if I A 1=1 B I, in each 
round the duplicator must figure out what his response to each possible move 
by the spoiler is, before the move is made, and there must be a one-to-one 
correspondence between the spoiler's moves and the duplicator's responses. 
In particular, any strategy where the same element bE B could be used as a 
response to several moves by the spoiler is disallowed. 

Theorem 8.13. Given two structures Ql, 23 E STRUCT[a], and k 2 0, the 
following are equivalent: 
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2. 21 and 23 agree on all £~,) Cnt) sentences of mnk k. 

Pr·oof. Both implications 1 -> 2 and 2 -> 1 are prow~d by induction on k. We 

start with the easier implication 1 --+ 2. By Proposition 8.8, assume that thc~n· 

is no quantification over the numerical domain, and that all quantifiers arc of 
the form ::Ji.r. For the base case k = 0, the proof is the same' as in the casP of 

Ehrenfeucht-Frai"ssc games. 
We now assume that tlw implication holds for k, and Wf' prm·e it for k + l. 

Suppose 21 =~~ 1 23. First consider a sentence of the form <P = =:Jn:np(:r) for 
a constant n E N. Suppose 21 f= <J>, and let c 1 , ••• , c11 lw distinct elements 

of 21 such that 21 F i;J( C;)' i = 1 .... ' n. Since 21 = z~ l 231 there is a bijection 

.f : A -> B such that (21, a) =Z.'1 (23, .f(o)) for all o E A; in particular. 

(21, ci) =~ij (23, f(c;)) for all i :::; n. By thE~ hypothesis, (21.c;) and (23 . .f(c; )) 
agree on sentences of rank k; henCE' 21 f= i;J( C1 ) implies 23 f= zp(f( c.;)). Since .f 
is a bijection, all .f(c;)'s are distinct, and thus 23 f= =:Jn:tip(.r). The ccmverse, 

that 23 f= <J> implies 21 f= <I>, is proved in exactly the same way, using the 

bijection f- 1• 

Since every sentence of rank k + 1 can be obtained from sentences of the 

form =:Jn:r:ip(x) by using the Boolean and infinitary COil!H'ctives. we see that 

21 f= <P {=} 23 f= <J> for any rank k + 1 sentence <P. 

For the other direction, we use a proof similar to the proof of the 

Ehrenfeucht-Frai"ssc theorem given in Exercise 3.11. vVe want to define Pxplic

itly formulae specifying rank-k types in L:~w ( Cnt). ThP number of types can 
be infinite, but this is not a problem since we can use infinitary connectives, 

and rank-k types will be given by formulae of rank k. 
\Ve let ip~·"' (x) b£~ an enumeration of all the formulae that define distinct 

atomic types of :r with I :f I= m; that is, all consistent conjunctions of thC' form 

01 (:f) 1\ ... 1\ (I!\! ( :Z). 

where n; (:f) enumerate all (finitely many) atomic and negatf•d atomic formulaE' 

in :r. 
Next, inductively, let { ip;•+ 1 ·"'(::f) I i E N} be an ermnH:'ration of all the 

formulae of the form 

)I 

( ::JI[ ·. A.m+l(.~ )/\ 1\::JI[ .. !..mtl(.~ ))/\(If v ~k.mtl(·-:. l) ·1YIP; 1 .r:,y ··· ·pYIP;, .r,y 71 cr;, .r.y . (8.8) 
.r~J 

as p ranges over N and (1 1 , ... , lp) ranges over p-tnples of positive integers. 

Intuitively, each zp~:.m+J (:l, y) defines the rank-k m + !-type of a tuple (.1, y). 
1 

Hence rank-k + 1 types of the form (8.8) say that a given .:f c:an lw C'xtended 

top different rank-k types in such a way that for each i.J, there are precisely 11 

elerm~nts y such that ip:;m+J (:i, y) defines the i1th rank-k of the tuple (.?. y). 

l\ote that if the formula (8.8) is tnw in (21. i1), then I A I= /1 + ... + 11,. 
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It follows immediately from the definition of formulae cp~,rn that for every 
~'a E Am, and every k;:::: 0, there is exactly one cp~,m such that~ f= cp~'m(a). 

Next, we prove the following lemma by induction on k. 

Lemma 8.14. For every m, every two structures~'~' and every a E Am, bE 
Brn, suppose there is a formula cp~'m(x) such that~ f= cp~'m(a) and~ f= 
cp~'m(b). Then (~,a) =~iJ (~,b). 

Proof of the lemma. The case k = 0 is the same as in the proof of the 
Ehrenfeucht-Fra'isse theorem. For the induction step, assume that the state
ment holds for k, and let cp~+l,m(x) be given by (8.8). If~ f= cp~+l,rn(a) 
and ~ f= cp~+l,rn(b), then both A and B have exactly h + ... + lp elements. 
Furthermore, for each j :::; p, let A1 = {a E A I ~ f= cp~,m+1(aa)} and 

J 

Bj = {b E B I ~ f= cp~,m+1(bb)}. Then I Aj 1=1 Bj I= lj, and hence there 
J 

exists a bijection f : A -+ B that maps each A1 to B1. For any a E A, if j 
is such that~ f= cp~,m+1(aa), then~ f= cp~,m+l(bf(a)), and hence by the in-

J J 

duction hypothesis, (~, aa) =~iJ (~, bf(a)). Thus, the bijection f proves that 
~ _bij ~ 

(~,a) =k+I (~,b). 

The implication 2 -+ 1 of Theorem 8.13 is now a special case of Lemma 
8.14, since rk(cp~'m) = k. 0 

8.4 Counting and Locality 

Theorem 8.13 and Corollary 4.21 stating that (~,a) !::::>(3k_ 1);2 (~,b) implies 

(~,a) =~ij (~,b), immediately give us the following result. 

Theorem 8.15. Every .C~w(Cnt) formula cp(x) without free second-sort vari
ables is Hanf-local (and hence Gaifman-local, and has the BNDP). 0 

Thus, despite its enormous counting power, .C~w(Cnt) remains local, and 
cannot express properties such as graph connectivity. Combining Theorem 
8.15 and Proposition 8.6, we obtain the following. 

Corollary 8.16. If cp(x) is an FO(Cnt) formula without free second-sort 
variables, or an FO( Q) formula, where Q is an arbitrary collection of unary 
quantifiers, then cp(x) is Hanf-local (and hence Gaifman-local, and has the 
BNDP). 

Furthermore, we obtain the separation 

(8.9) 

since (.C~w(Cnt)+ <)expresses every property of ordered structures (includ
ing nonlocal ones, such as graph connectivity), by Proposition 8.10. 
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Theorem 8.15 says nothing about formulae that may have fn~!~ nuuwrical 

variables. Next, we show how to extend the notions of Hanf- and Gaifman

locality to such formulae. 

Definition 8.17. An £~w(Cnt) formula cp(.r, 1) is Hanf-local if ther·e e:r:ists 

d ~ 0 such that for· alll(1 E Nlll, any two structures 2l. !B, and !IE Al''l. 
bE Blxl, 

(2l,a)'=;d(!B,b) implie.s (2t F= c;(a,l(i) S> lB F= c;rJ.7ii)). 

Furthermore, cp(:r, i) is Gaifman-local if the·re ·is d ~ 0, sw:h that frn all 

Z!1 E Nlll, ever·y structure 2l, and a 1, a2 E A I rl, 

a1 :::.:::;~ a2 ·implies 2t F= c;(a1. t:i1) f-c, c;(a2.1i1l· 

The locality mnk lr(-) and the Hanf-locality mnk hlr(-) an~ defined a.'i be

fore: these are the smalle.'it d that witnesses Gaifrnan-localitu ( Hanf-localdu. 

respectivelu) of a formula. 

In other words, the formula must be Hanf-local or Gaifman-local for any 

instantiation of its free second-sort variables. \vith the locality rank being 

uniformly bounc!f~d for all such instantiations. 

A simple extension of Theorem 4.11 shows: 

Proposition 8.18. If an £~w ( Cnt) formula c;(:l.1) is Hanf-local, then it is 

Gaifrnan-local. [] 

Furthermore, we can show Hanf-locality of all £~w· ( Cnt) formulaE' (not 
just those without free numerical variablf~s) by using !'Ssentially t ll<' samf' 

argument as in Theorem 4.12. 

Theorem 8.19. Every £~w(Cnt) fonn:u.la cp(:f.1) is Hanf-local, and hence 

Gaifman-local. Fur·thermoTe, hlr(cp) :::; (~~' ~ I )/2, and lr(c;) :; (3'+- 1 ~ I )/2. 

wheTe k = rk( c;). 

Proof. We give the proof for Hanf-locality; it is by induction on the stmctun• 

of the formulae. For atomic formulae and Boolean connectives, it is t Jw samP 

as the proof of Theormn 4.12. For infinitary cormectives, the argmrwnt is tlw 
same as for 1\ and V. By Proposition 8.8, the only remaining cas<' is that 

of counting quantifiers: c;(:f, 1) = ~jy ~;(y, .7:.1). WP assume j is in T. Let 

rk(~) = k:, so that rk(cp) = k: + 1. Let d = hlr(l/'). It suffices to show that 
hlr(ip):::; 3d+ 1. 

Fix an interpretation 2(1 for f(and j 0 for j). Assume (2l, 17)'::::;:lrl+l (!B. b). By 

Corollary 4.10, there is a bijection f :A---+ B such that (2l. ac) ::::;d (!B. bf(c)) 
for every c E A. Assume 2l f= cp(a, 1); then we ran find c 1 , •.•• 1"10 such 

that 2l F lj;(c,, a, 1), 1 = 1, ... ,jo. Since hlr(tb) = d, by the hypotlw

sis, (2l,aq) '=;d (!B,bf(ct)) implies lB f= 1/'(f(o).b.f), 1 = l. .... jo. Tlms. 

2) f= c;(b, 1), since f is a bijection. The convers!~, that lB f= ip(b.l) implies 

2l f= cp(a.l), is identical. This proves hlr(cp) :::; :~d +I. D 
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8.5 Complexity of Counting Quantifiers 

In this section we revisit the logic FO(Cnt), and give a circuit model that 
corresponds to it. This circuit model defines a complexity class that extends 
AC0 ; the class is called TC0 , where TC stands for threshold circuits. There 
are different ways of defining the class TC0 ; the one chosen here uses majority 
circuits, which have special gates for the majority function. 

Definition 8.20. Majority circuits are defined as the usual Boolean circuits 
except that they have additional majority gates. Such a gate has 2k inputs, 
XJ, ... , Xn, ]11, ... , Yn, fork> 0. The output of the gate is 1 if 

n 

LXi > LYi, 
i=l i=l 

and 0 otherwise. 
A circuit family C has one cir·cuit C, for each n, where n is the number 

of inputs. The size, the depth, and the language accepted by C, are defined in 
exactly the same way as for Boolean circuits. The class nonuniform TC0 is 
defined as the class of languages (subsets of {0, 1}*) accepted by polynomial
size constant-depth families of majority circuits. 

We now extend FO(Cnt) to a logic FO(Cnt)AII· This logic, in addition to 
FO( Cut), has the linear ordering < on the non-numerical universe, and, fur
thermore, the restriction of every predicate P <;:; Nk to the numerical universe 
{0, ... ,n -1}; that is, Pn {0, ... ,n -1}k. 

Theorem 8.21. The class of structur·es definable by an FO(Cnt)AII sentence 
is in nonuniform TC0 . Consequently, the data complexity of FO(Cnt )All is 
nonuniform TC0 . 

Proof. As in the proof of Theorem 6.4, we code formulae by circuits. We first 
note that if a linear order is available on the non-numerical universe A, there 
is no need for the numerical universe {0, ... , n- 1 }, where n =I A I, since 
we can interpret min, max,<, and the arithmetic operations directly on A, 
associating the ith element of A in the ordering < with i E N. Thus, counting 
quantifiers will be assumed to be of the form 3yxcp(x, · · · ), stating that there 
exist at least i elements x satisfying cp, where y is the ith element of A in the 
ordering <. 

Recall that for each structure 2l with I A I = n, its encoding enc(2l) 
starts with on 1 that represents the size of the universe. For each formula 
cp(x1, ... ,xm), and each tuple b = (61 , ... ,bm) in A"', we construct a circuit 
C~(b) with the input enc(2l) which outputs 1 iff 2l f= cp(b). 

If cp(b) is an atomic formula of the form S(b), where S E r7, then we simply 
output the corresponding bit from enc(2l). If cp is a numerical formula, we 
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output 1 or 0 depending on whether cp(b) is true. For Boolean connectives, we 
simply use V, A or -, gates. Thus, it remains to show how to handle the case 
of counting quantifiers. 

Let cp(x1 , ... ,xm) = :Jx1 y '1/J(y,x). That is, there exist .r1 elements y 
satisfying cp (since structures are ordered, we associate an element x 1 with its 
ranking in the linear order). 

Let bE Am be given, and let a0 , ... , an~J enumerate all the elements of A. 
Let Ci be the circuit C~;(a,,Gr We then collect the n outputs of such circuits, 

and for each of the first n inputs (which are the first n zeros of enc(2l)), we 
produce 1 for the first a1 zeros, and 0 for the remaining n -~ a 1 zeros. This 
can easily be done with small constant-depth circuits. We then feed all tlw 2n 
inputs to a majority gate as shown in Fig. 8.1. 

Co 

MAJ 

1 1 1 0 

Cn~l 
al 

Fig. 8.1. Circuit for the proof of Theorem 8.21 

0 

It is clear from the construction that the family of circuits defined this 
way has a fixed constant depth (in fact, linear in the size of the formula), and 
polynomial size in terms of 112lll· This completes the proof. D 

As with nonuniform AC0 , the nonuniform version of TC0 can define even 
noncomputable problems, since every predicate on N is available. The uni
form version of TC0 is defined as FO(Cnt)+ <: that is, FO(Cnt) with or
dering available on the non-numerical universe. Thus, we restrict ourselves 
to addition and multiplication on natural numbers, and other functions and 
predicates definable with them (e.g., the BIT predicate). 

Uniform TC0 is a proper extension of uniform AC0 : for example, parity 
is in TC0 but not in AC0 . It appears to be a rather modest extension: all we 
add is a simple form of counting. In particular, TC0 is contained in PTIME, 
and in fact even in DLoc. Nevertheless, we still do not know if TC0 ~ NP. 

We know, however, that FO(Cnt) is subsumed by .C~w(Cnt), and that 
.C~w ( Cnt) is local -- and hence it cannot express many PTIME problems such 
as graph connectivity, acyclicity, etc. Would not this give us the desired separa
tion? Unfortunately, it would not, since we can only prove locality ofFO(Cnt) 
but not FO(Cnt)+ <. We have seen that for FO, its extension with order, 
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that is, (FO+ <)inv, is local too. The same result, however, is not true for 
FO(Cnt). We now show a counterexample to locality of (FO(Cnt)+<)inv· 

Proposition 8.22. Ther·e exist q·uer·ies expressible in (FO(Cnt)+ <)inv which 
are not Gaifrnan-local. 

Proof. The vocabulary a contains a binary relationE and a unary relation P. 
We call a a-structure good if three conditions are satisfied: 

1. E has exactly one node of in-degree 0 and out-degree 1, exactly one node 
of out-degree 0 and in-degree 1, and all other nodes have both in-degree 
1 and out-degree 1. 

That is, the relation E is a disjoint union of a chain 
{(ao, at), (at, a2), ... , (a~.:~l· ak)} and zero or more cycles. 

2. P contains a0 , does not contain a~.;, and with each a E P, except a0 , it 
contains its predecessor in E (the unique node b such that (b, a) E E). 
Thus, P contains an initial segment of the successor part of E, and may 
contain some of the cycles in E. 

3. fPI <::; log n, where n is the size of the universe of the structure. 

We claim that there is an FO(Cnt) sentence Pgood that tests if a structure 
Qi E STRUCT[a] is good. Clearly, conditions 1 and 2 can be verified by FO 
sentences. For condition 3, it suffices to check that the predicate j <::; log k is 
definable. Since j <::; log k iff 2J <::; k, and the predicate i = 21 is definable even 
in FO in the presence of addition and multiplication (see Sect. 6.4), we see 
that all three conditions can be defined in FO(Cnt). 

We now consider the following binary query Q: 

If Qi is good, return the transitive closure of E restricted to P. 

The result will follow from two claims. First, Q is definable in FO(Cnt)+ <. 
Second, Q is not Gaifman-local. The latter is simple: assume, to the contrary, 
that Q is Gaifrnan-local and let d = lr(Q). Let k = 4d + 5, and n = 2'. Take 
E to be a successor (chain) of length n, with P interpreted as its initial k 
elements. Notice that this is a good structure. Then in P, we can find two 
elements a, b with isomorphic and disjoint d-neighborhoods. Hence, (a, b) ~d 
(b. a), but the transitive closure query would distinguish (a, b) from (b, a). 

It remains to show that Q is expressible in FO( Cut)+<. First, we assume, 
without loss of generality, that in a given structure 1.7i, elements of P precede 
elements of A- P in the ordering <. Indeed, if this is not true of <, we can 
always define, inFO, a new ordering < 1 which coincides with < on P and on 
A- P, and, furthermore, a< 1 b for all a E P and b rJ_ P. 

Let S c;;;; P, with S = {s1, ... , sm}· Let each SJ be the i;th element in 
the ordering<; that is, ==J!irr (x <::; sJ) holds. Define a8 as the pth element 
of A in the ordering<, where BIT(p, i 1), .... BIT(p, im) are all true, and for 
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every i rt {it, ... , irn}, the vahw of BIT(p. i) is false. Since IPI ~ log 11. such 
an clement as exists for every S c:;; P. l'vioreover. since BIT is definable, tlwre 
is a definable (in FO( Cnt)) predicate Code(u .. I') which is tnw iff t' is of the 
form as for a set S, and 11. E S. 

The query Q will now be definable by a formula ::lz U'(.r. y, .z ), where 1.' 

says that z codes the path from :t to y. That is, it says the following: 

• Code( x. z) and Codf~(y .. ? ) hold. 

• If xu is the predecessor of :r and y0 is the successor of y, then Code(.r11 .. ~) 

and Code(y0 • z) do not hold. 

• For every other element u I :r. y such that Cocle(u, .:, ) holds, it is the case 
that Code("u 1• 2) and Code( u2 • 2) hold, \vhere u 1 and v 2 are the predeces
sor and the successor of u. 

• Code(a0 • z) holds iff o0 = :r. and Code( a,. z) does not hold. Here a 11 and 
ak are the dements of in-degree and out-degree 0, n:sjwctively. 

Clearly, all these conditions can be cxpn~ssed in FO( Cnt). 
Given the special form of E, one can easily verify that this dl~fines the 

transitive closure restricted to P. 0 

As a corollary of Proposition 8.22, we get a separation 

FO(Cnt) ~ (FO(Cnt)+ <)im·· 

since all FO( Cnt )-expressible qw~ries are Gaifman-local. by Corollary 8.1G. 

8.6 Aggregate Operators 

Aggregate operators occur in most practical database query languages. They 
allow one to apply functions for entire columns of relations. For example. if we 
havf' a ternary relation R whosl~ tuples are (d. e. s), whew dis the department 
name, e is the employee name, and s is his/her salary. a typical aggregate 
query would ask for the total salary for each department. Such a query would 
construct, for each department d, the set of all t u pies { ( e 1 • s 1 ) , •••• ( c 11 • s 11 )} 

such that (d, ei. s;) E R for i = 1, .... n, and thm output (d. I:;'o·l s, ). \Ve 
view this as applying the aggregate function SUM to the rrrulti8et { s 1 •...• s"} 
(it is a multiset since some of the 8; 's can lw tlw same, but we have to sum 
them all). 

Logics with counting seen so far are not well suited for proving results 
about languages with aggregations, as they cannot talk about Pntire columns 
of relations. Nevertheless, we shall show here that aggregate operators can lw 
simulated in £~""' ( Cnt ), thereby giving us f~xpressibility bounds for practical 
database query languages. 

\Ve first define the notion of an aggregate operator. 
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Definition 8.23. An aggregate operator is a collection :F 
{fo, h, h, ... , fw} of functions, wher·e each fn, 0 < n < w, takes an 
n-element multiset {bag) of natural number·s, and returns a number in N. 
Further·more, fo and f w are constants; f w is the fixed value associated to all 
infinite multisets. 

For example, the aggregate SUM will be represented as :FsuM 

{fo, h, h .... , fw}, where fo = fw = 0, and 

fn ( {a 1 , ... , an}) = a 1 + ... + an. 

Definition 8.24 (Aggregate logic). The aggregate logic Laggr is defined 
as the following extension of L.~w ( Cnt). 

For· every possible aggregate operator· :F, a numerical term t(x, if) and a 

formula cp( x, if), we have a new numerical term 

t'(x) Aggr:Ff/ (t(:r, if), cp(x, if)). 

Variables if become bound in Aggr :FY ( t(x, if), cp(x, if)). 
The value t' (a) is calculated as follows. If there are infinitely many b such 

that cp(a,b) holds, then t'(a) = fw· If there is no b such that cp(a, b) holds, 

then t' (a) = fo. Otherwise, let b1 , •.. , bm enumerate all the b such that cp( a, b) 
holds. Then 

t'(a) = frn({t(a,bi), ... ,t(a,bm)}). 

Note that the argument of fm is in general a multiset, since some of t(a, bi) 
may be the same. The rank oft' is defined as max(rk(t), rk(cp))+ I fll. 

For example, the query that computes the total salary for each department 
is given by the following .C,.ggr formula cp( d, v): 

(::Jds R(d,e,s)) !\ (v = Aggr:Fsu•(e,s)(s,R(d,e,s))). 

The above query assumes that some of the columns in a relation could 
be numerical. The results below are proved without this assumption, but it 
is easy to extend the proofs to relations with columns of different types (see 
Exercise 8.16). 

It turns out that this seemingly powerful extension does not actually pro
vide any additional power. 

Theorem 8.25. The expressive power of Laggr and L.~w(Cnt) is the same. 

Pr·oof. It suffices to show that for every formula cp(x) of .C,.ggr, there exists an 
equivalent formula cp0 (x) of L.:'xcw(Cnt) such that rk(cp0 ) ::; rk(cp). We prove 
this theorem by induction on the formulae and terms. We also produce, for 
each second-sort term t(x) of Laggr, a formula ljJ1(x, z) of L.:'xcw(Cnt), with z 
of the second sort, such that Ql F 1/Jt (a, n) iff the value oft( a) on Ql is n. Below 
we show how to produce such formulae lj;1• 
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For a second-sort term t which is a variable i, \Ye define ~'t ( i, ;; ) to lw 
(z = i). If tis a constant c, then if't(;;) = (z =c). 

For a term 
t' (:i) = Aggr F1J (t(:c, !7). :p(:?, :z7)). 

1/'t' ( :i. z) is defined as 

where :P':x (.C) tests if the number of :il satisfying :p(.C. m is infinite, and i/,1 

produces the value of the term in the case when the nurnbn of such .t7 is 
finite. 

The formula :p~ (:?) can be dr~fined as 

v V f\:pf(Y.c) 
'J:y 1 of 2nd sort Cc;;N. C' infinitP r·E(' 

where :p~(i,y;) = ==J:y1, ... ·Yi-J,ifi+l· ... ·Ym i.p 0 (.f.i]). 
The formula l/" ( :r. z) is defined as the disjunction of ·3.t7\::0 (.f . . iJ) 1\ c~ = Ill) 

and 

v 
c.(l't-711 ) .... (c,,n,) 

Z=C 

(\ ==J!f!l,IJ (:p0 (:f, m (\~~~(:f. jj. cJ)) 
(\ ... 

1\ 3!nlfJ ( :p 0 (5'. fJ) 1\ i/Jt (.T, .iJ. q)) 
I 

1\ V;i} (\ ( i.p 0 (:?. m 1\ (!.·I (.1 .. iJ. (J) ---7 v ( () = C;)) 
nE~l /::-::-! 

where tlw disjunction is takrm over all tuples ( c 1• n!) . .... ( c1• 111), I > 0. 11; > 0, 
and values c E N such that 

nt tiruc~ fl/ t irrH:'S 

IndPed, this formula asserts either that :p(.r. ·) does not hold and t lwn 
;; == fo, or that c1, .... CJ are Pxactly the vahH~s of thP tern1 I(.? . .t7) \vhen 
ip(:r, fj) holds, and that r!j 's are the multiplicities of the C; \. 

A straightforward analysis of the produced formula<~ shows that rk( 1/'t') -:=; 
max( rk( :p0 ). rk(i,i·1)) plus the number of first -sort Yaria hies in :z7: that is. 
rk(l/'t') -:=; rk(t'). This compl<~tE~s thr• proof of the theon:m. D 

Corollary 8.26. Ever'y quer-y c.Tpr-c.ssiblc in L,1w is Hrznf-localand Ga:ifrrum
loml. 

Thus, practical databasE~ query languages \vith aggregate functions still 
cannot express queries such as graph connectivity or transitive closure. 
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8.7 Bibliographic Notes 

Extension of FO with counting quantifiers was proposed by Immerman and 
Lander [ 135]; the presentation here follows closely Etessami [ 68]. Generalized 
quantifiers are used extensively in logic, see Vaananen [237, 238]. 

The infinitary counting logic .C~w ( Cnt) is from Lib kin [166], although a 
closely related logic with unary quantifiers was studied in Hella [121]. Propo
sition 8.8 is a standard technique for eliminating counting terms over tuples, 
see, e.g., Kolaitis and Vaananen [149], and [166]. 

Bijective games were introduced by Hella [121], and the connection be
tween bijective games and .C~w ( Cnt) is essentially from that paper (it used 
a slightly different logic though). Locality of .C~w(Cnt) is from [166]. 

Connection between FO(Cnt) and TC0 is from Barrington, Immerman, 
and Straubing [16]. The name TC0 refers to threshold circuits that use thresh
old gates: such a gate has a threshold i, and it outputs 1 if at least i of its inputs 
aw set to 1. The equivalence of threshold and majority gates is well known, 
see, e.g., Vollmer [247]. Proposition 8.22 is from Hella, Libkin, and Nurmonen 
[123]. Our treatment of aggregate operators follows Gradel and Gurevich [98]; 
the definition of the aggregate logic and Theorem 8.25 are from Hella et al. 

[124]. 

Sources for exercises: 
Exercise 8.6: Libkin [166] 
Exercises 8.7 and 8.8: Libkin [167] 
Exercises 8.9 and 8.10: Libkin and Wong [170] 
Exercise 8.11: Immerman and Lander [135] 
Exercises 8.12 and 8.13: Barrington, Immerman, and Straubing [16] 
Exercises 8.14 and 8.15: Nurmonen [189] 
Exercise 8.16: Hella et al. [124] 

8.8 Exercises 

Exercise 8.1. Show that none of the following is expressible in .C~w ( Cnt): transi

tive closure of a graph, testing for planarity, acyclicity, 3-colorability. 

Exercise 8.2. Prove Proposition 8.10 for arbitrary vocabularies. 

Exercise 8.3. Prove Proposition 8.11. 

Exercise 8.4. Prove Proposition 8.18. 

Exercise 8.5. Prove Theorem 8.19 for Gaifman-locality. 

Exercise 8.6. Extend Exercise 4.11 to counting logics. That is, define functions 
HanLrank£, Gaifman..rank£ : N ----. N, for a logic .C, as follows: 

Hanf..rankL:(n) = max{hlr(cp) I cp E .C, rk(cp) = n}, 
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GaifmaruankL: ( n) max{ lr( <P) I <P E £, rk( cp) = n J. 
Assume that we deal with purely relational vocabularies. Prove that for every 11 > l, 

HanLrankL: ( n) = 2" - l - 1 and Gaifman_rankL: (n) = 2" - l, when .C is one of the 

following: FO(Cnt), FO(Q) for any Q, £:C"'(Cnt). 

Exercise 8. 7. Extend £::C'"' ( Cnt) by additional atomic formulae 1 d(.l'. ,i}) (whPn' 

lxl=lyl), such that~ F '·d(a,b) iff u ~~~b. Let £*;;'~(Cnt) lJP the resulting logic 
where every occurrence of ld satisfies d::; I'. Prove that C~L(Cnt) is Hanf-local. 

Exercise 8.8. Extend £:.U"'(Cnt) by adding local second-order quantification: that 
is, second-order quantification restricted to Nd (a), wlwre a is thP intf~rprPtation of 
free first-order variables. Such an extension, like the one of Exercisf' 8. 7, must haw 
the radii of neighborhoods, over which local second-orc!Pr quantification is clone. 

uniformly bounded in infinitary formulae. 
Complete the dPfinition of this logic, and prove that it captures precisely all the 

Hanf~local queries. 

Exercise 8.9. Let ~ k be the class of preordcrs in which (~wry equivalen(·p class 

has size at most k. The f'quivalence associated with a pn•order ;:2; is 

.c ~ y ~ ( :r ;:$ .IJ) A (if ;:$ .r) . 

ProvE~ that graph connectivity is not in (£:C'"'(Cnt)+ ~ k);,,. 

Exercise 8.10. The goal of this exercise is to provf' a stat.f~rrwnt much stronger than 

that. of Exercise 8.9. Given a preorder ;:$, Jet [:r:] be tl1P equivalf'nce class of J' with 
respect to ~. Let g : N ---> N be a nondecn~asing function which is not bound<•d bv 
a constant. Let ~ 9 be the class of preorders ;:$ such that on an n-dement set, for 
at most g(n) elements we have l[x]l = 2, and for the remaining at !Past n- y(n) 

elements, l[x]l = 1; furthermore, if I[J:]I = 2 and l[u]l = l, then .l'--< y. In othn words, 
such preorders are lirwar orders everywhere, except at most g( n) initial elem<'nts. 

Prove the f(Jliowing: 

1. There are functions g for which (£.:C'"'(Cnt)+ ~ 9 );"' contains nonlocal queries. 

2. For every g, every quE~ry in (C,'""'(Cnt)+ ~ 9 )im has thf' BNDP. 

Exercise 8.11. Define Ehrenfeucht-Fralssi- garrH·s for FO(Cnt), and provP their 
correctness. 

Exercise 8.12. Consider the logic FO(MA.J) defined as follows. A universe of rr

structun~ is orden~d, and is thus associated with {0, ... , n - J }. Fl!rthermon•, for 
each k > 0, and a formula <P(:f, z), with I k, we have a n<'w formula 

u{z) MA.J .f cp(.r. z). 

binding x, such that~ F v(i:') iff I cp(~J) I 2 ±· I A 1'- RPcall that cp(~- i') stands for 

{bl ~ F= cp(b.i')}. 

Prove the following: 

• Over ordered structures, the logics FO(MA.J) and FO(Cnt) express all thP sanw 

qJH~ries. 
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• In the definition of FO(MAJ), it suffices to consider k :S 2: that is, the majority 
quantifier MAJ (x1, x2) (j)(x1, x2, z). 

• Over ordered structures with the BIT predicate, the fragment of FO(MAJ) in 
which k = 1 (i.e., only new formulae of the form MAJ x (j)(x, Z) are allowed) is 
as expressive as FO(Cnt). 

Exercise 8.13. Prove the converse of Theorem 8.21: that is, any class of structures 
in nonuniform TC0 is definable in FO(Cnt)AII· 

Exercise 8.14. Consider the generalized quantifier Dn defined as follows. If (j)(x, Z) 
is a formula, then 'lj;(Z) = Dnx (/)(X, Z) is a formula, such that !2l F (/)(a) iff I (j)(!Zl, a) I 
mod n = 0. 

Next, consider strings over the alphabet {0, 1} as finite structure (see Chap. 7), 
and prove that none of the following properties of strings so ... Sm- 1 is expressible 
in FO(Dn): 

M · · "'m-1 > m • aJonty: L...i=O s; _ 2 ; 
• m mod p = 0, for every prime p that does not divide n; 
• (L:;:-;;1 s;) mod p = 0, again for every prime p that does not divide n. 

Exercise 8.15. Consider the generalized quantifier Dn from Exercise 8.14. Consider 
ordered structures (in which we can associate elements with numbers), and define 
an additional predicate y = nx over them. Prove that even in the presence of such 
an additional predicate, FO(Dn) cannot express the predicate y = (n + 1)x. 

Exercise 8.16. Aggregate operators in database query languages normally oper
ate on rational numbers; for example, one of the standard aggregates is AVG = 
{fa, /1, h ... ,Jw}, where fa= fw = 0, and fn( {a1, ... ,an})= (a1 + ... + an)/n. 

Define .C~ggr as an extension of Laggr where the numerical domain is Q, each 
q E Q is a numerical term, and all aggregate operators :F on Q are available. 

Prove the following: 

1. For every .C~ggr formula (j)(x) without free numerical variables, there exists an 
equivalent .C~w(Cnt) formula of the same rank. 

2. Conclude that .C~ggr is Hanf-local and Gaifman-local. 

Next, extend all the results to the case when different columns of O"-relations 
could be of different types: some of the universe of the first sort, and some numerical. 

Exercise 8.17: Prove that transitive closure is not expressible in FO(Cnt)+<. 
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Turing Machines and Finite Models 

In this chapter we introduce the technique of coding Turing machines in vari
ous logics. It is precisely this technique that gave rise to numerous applications 
of finite model theory in computational complexity. We start by proving the 
earliest such result, Trakhtenbrot's theorem, stating that finite satisfiability 
is not decidable. For the proof of Trakhtenbrot's theorem, we code Turing 
machines with no inputs. By a refinement of this technique, we code nonde
terministic polynomial time Turing machines in existential second-order logic 
(==JSO), proving Fagin's theorem stating that ==JSO-definable properties of finite 
structures are precisely those whose complexity is NP. 

9.1 Trakhtenbrot's Theorem and Failure of Completeness 

Recall the completeness theorem for FO: a sentence (_[) is valid (is true in all 
models) iff it is provable in some formal system. In particular, this implies 
that the set of all valid FO sentences is r.e. (recursively enumerable), since 
one can enumerate all the formal proofs of valid FO sentences. We now show 
that completeness fails over finite models. 

What does it mean that P is valid? It means that all structures Ql, finite 
or infinite, are models of P: that is, Ql f= P. Since we are interested in finite 
models only, we want to refine the notions of satisfiability and validity in the 
finite context. 

Definition 9.1. Given a vocabulary cr, a sentence P in that vocabulary is 
called finitely satisfiable if there is a finite structur·e Ql E STRUCT[cr] such 
that Ql f= P. 

The sentence P is called finitely valid ifQl f= P holds for all finite structures 
Ql E STRUCT[cr]. 

Theorem 9.2 (Trakhtenbrot). For ever·y r-elational vocabulary cr wdh at 
least one binary relation symbol, it is ·undecidable whether a sentence P of 
vocabulary CJ is finitely satisfiable. 
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In the proofthat we give, the vocabulary o- contains several binary relation 
symbols and a constant symbol. But it is easy to modify it to prov<~ the result 
with just one binary relation symbol (this is done by roding spyeral relations 
into one; see Exercise 9.1). 

Before we prov<~ Trakhtenbrot's theorem, w<~ point out two corollaries. 
First, as we nwntioned earlier, completeness fails in the finite. 

Corollary 9.3. For· any vocabular-y containing at least one binar·y r-elation 
symbol, the set of finitely valid sentences is not n~r;m·sivel:IJ c'fliUirnernblc. 

Pmof. Notice that the set of finitdy satisfiable sentences is recursively <'Illi
merable: one simply <~numerates all pairs (2l. <P). where 2l is finite, and outputs 
<P whenever 2l I= <P. Assume that the set of finitely valici sentences is r.e. Since 
,<];> is finitely valid iff <P is not finitely satisfiable, we conclude that the set 
of sentences which are not finitely satisfiable is r.e., too. However, if both a 
set X and its complement X are r.e., then X is recursive: hence, we conclude 
that the set of finitely satisfiable sentences is recursive. which contradicts 
Trakhtenbrot's theorem. D 

Another corollary statf~s that one cannot have an analog of the Li:iwenlwim
Skolern theorem for finite models. 

Corollary 9.4. Ther-e is no recur-sive function f such that if <P has a finite 
model, then it has a model of size at most f ( 1>). 

Indeed, with such a recursiw~ function <mP would IH~ able to d<~cid<' flnit<' 
satisfiability. 

'"e nmv prove Trakhtenbrot"s theorem. The idea of tlw proof is to ("()OP 
Turing machirws in FO: for every Turing machine J\1, we construct a sPntence 
<PJ\I of vocabulary o- such that cJ>AI is finitely satisfiable iff M halts 011 the 
empty input. The latter is well known to be undecidablE~ (this is an easy 
exercise in computability tlwory). 

Let J\1 = ( Q. E, L1, 6, qo, Q,, CJr) be a clet crministic Turing machiiH' \vith 
a one-way infinite tap<~. Hen• Q is the set of states, ~· is the input alphab!'t, 
L1 is the tape alphabet, q0 is the initial state, Q" ( Q r) is tlw set of accepting 
(rejecting) states, from which there are no transitions, and 6 is the transition 
function. Since we are c:ociing the problem of halting 011 the empty input. we 
can assume without loss of generality that L1 = { 0. l}, with 0 playing the role 
of the blank symbol. 

vVe define O" so that its structures wpresent computations of !1/. 1\Iorc 
precisely, 

where 
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• < is a linear order and min is a constant symbol for the minimal dement 
with respect to <; hence the finite universe will be associated with an 
initial segment of natural numbers. 

• To and T1 are tape predicates; Ti(P, t) indicates that position pat time t 
contains i, for i = 0. 1. 

• lfq's are head predicates; Hq(p, t) indicates that at timet, the machine is 
in state q, and its head is in position p. 

The sentence PM states that<, min, T;'s, and Hq's are interpreted as incli
cated above, and that the machine eventually halts. Note that if the machine 
halts, then Hq(p, t) holds for some p, t, and q E Qa U Q,., and after that the 
configuration of the machine does not change. That is, all the configurations 
of the halting computation can be represented by a finite O"-structure. 

We define <1> 1\I to be the conjunction of the following sentences: 

• A sentence stating that < is a linear order and min is its minimal element. 

• A sentence defining the initial configuration of J\;J (it is in state q0 , the 
head is in the first position, and the tape contains only zeros): 

• A sentence stating that in every configuration of A1, each cell of the tape 
contains exactly one element of L1: 

'ip'it (To(p, t) +-+ --,T1 (p, t)). 

• A sentence imposing the basic: consistency conditions on the predicates 
H,/s (at any time the machine is in exactly one state): 

Vt3!p ( V Hq (p, t)) 1\ --,==Jp3t ( v Hq(p, t) 1\ Hq'(p, t)). 
qECJ q.q' ECJ. rr1'q' 

• A set of sentences stating that T; 's and Hq's respect the transitions of 
l\1 (with one sentence per transition). For example, assume that b(q, 0) = 
(q', 1, €); that is, if l'vf is in state q reading 0, then it writes 1, moves the 
head one position to the left and changes the state to q'. This transition 
is represented by the conjunction of 

and 
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p =min 1\ f[9 ,(p. t + 1) 
( 

T1 (p, t + 1) ) 

\:lp\:lt 1\ To (p, t) ----+ 1\ Vp' (p -=f p' ____, C II,,(p,t)) (,~0, T,(riJ 1 1) H T,(p'.l )) ) 

\Ve use abbreviations p - 1 and t + I for the predecessor of p and the 
successor oft in the ordering <; these are, of course. FO-definab]('. The 
first sentence above ensun~s that the tape content in position p changes 
from 0 to 1, the state changes from q to q', the rest of tlw tap(' remains 
the same, and the head moves to position p -- 1, assuming p is not the first 
position on the tape. The second sentence is very similar, and handles th(' 
case when p is the initial position: then the lwad does not move and staF; 
in p. 

• Finally, a sentence stating that at som(~ point, M is in a halting stat(': 

3p3t v 
If <].> M has a finite modeL then such a model reprC'sents a computation 

of .AI that starts with the tape containing all zeros, and ends in a halting 
state. If, on the other hand, 1U halts on the empty input, tlwn the set of all 
configurations of tlw halting computations of !\I cockd as rPlations <. T, 's, 
and Hq's, is a model of <PM (necessarily finite). Thus. l\I halts on the empty 
input iff <PM has a finite model. Since testing if M halts on the' empty modd 
is undecidable, then so is finite satisfiability for <PM. D 

9.2 Fagin's Theorem and NP 

Fagin's theorem provides a purely logical characterization of the complexity 
class NP, by nH"ans of coding computations of nondNenninistic polynomial 
timP Turing machines in a fragment of second-order logic. BeforP stating th<' 
result, we give the following general definition. Recall that by propert i(•s. WC' 

mean Boolean queries, name]~,-, collections of structures closed under isomor
phism. 

Definition 9.5. Ld K be a romple:rity class, .C a lo_qir:, and C a dass of .finitrc 
.stnJ,ctm·r;s. We say that .C captun~s K on C if the follo'llrinq hold: 

1. Thrc data complexit:q of .C on C is K; that is, for evcr·y £-sentence <P. t,cshnq 
if 21 I= </> is in K. pmvided 21 E C. 

2. For- ever·y pr-oper-ty P of stnu:tv,r'es frmn C that mn be tested with r'om
ple:r;ity K, there is a sentenr:e </>p of .C such that ~Zl I= <l>p i.ff 21 has the 
proper·ty P, for· every 21 E C. 
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If C is the class of all finite structnr·es, we say that L captures K. 

Theorem 9.6 (Fagin). 3SO captures NP. 

Before proving this theorem, we make several comments and point out 
some corollaries. Fagin's theorem is a very significant result as it was the 
first machine-independent characterization of a complexity class. Normally, we 
define complexity classes in terms ofresources (time, space) that computations 
can use; here we use a purely logical formalism. Following Fagin's theorem, 
logical characterizations have been proven for many complexity classes (we 
already saw them for uniform AC0 and TC0 , and later we shall see how to 
characterize NLoG, PTIME, and PSPACE over ordered structures). 

The hardest open problems in complexity theory concern separation of 
complexity classes, with the "PTIME vs. NP" question being undoubtedly the 
most famous such problem. Logical characterizations of complexity classes 
show that such separation results can be formulated as inexpressibility results 
in logic. Suppose that we have two complexity classes K1 and K2 , captured 
by logics £ 1 and £ 2 . To prove that K1 i= K2 , it would then suffice to separate 
the logics £ 1 and £ 2 ; that is, to show that some problem definable in £ 2 is 
inexpressible in £1, or vice versa. 

Since the class coNP consists of the problems whose complements are in 
NP, and the negation of an 3SO sentence is an 'v'SO sentence, we obtain: 

Corollary 9. 7. 'v'SO captures coNP. D 

Hence, to show that NP i= coNP, it would suffice to exhibit a property 
definable in 'v'SO but not definable in 3SO. While we still do not know if 
such a property exists, recall that we have a property definable in 'v'MSO 
but not definable in 3MSO: graph connectivity. In fact, for reasons obvious 
from Fagin's theorem and Corollary 9. 7, 3MSO is sometimes referred to as 
"monadic NP", and 'v'MSO as "monadic: coNP". Hence, Proposition 7.14 tells 
us that 

monadic NP i= monadic coNP. 

Note that separating 'v'SO from 3SO would also resolve the "PTIME vs. NP" 
question: 

'v'SO i= 3SO =? NP i= coNP =? PTIME i= NP 

(if PTIME and NP were the same, NP would be closed under the complement, 
and hence NP and coNP would be the same). 

As another remark, we point out that the above remark concerning the 
separation of 3SO and 'v'SO is specific to the finite case. Indeed, by Fagin's 
theorem, 3SO i= 'v'SO over finite structures iff NP i= coNP, but over some 
infinite structures (e.g., (N,+,·)), the logics 3SO and 'v'SO are known to be 
different. 
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We now prove Fagin's theorem. First, we show that every ::ISO sentence P 
can be evaluated in NP. Suppose Pis ::IS\ ... 35, i.p, where 'P is FO. Given 
2!, the nondeterministic machine first guesses 5 1 , ... , Sn, and then checks if 
i.p(Sl, ... , Sn) holds. The latter can be done in polynomial time in 1/2! II plus 
the size of sl' ... 'Sn, and thus in polynomial time in 112! II (see Proposition 
6.6). Hence, <P can be evaluated in NP. 

Next, we show that every NP property of finite structures can be expressed 
in ::ISO. The proof of this direction is very close to the proof of Trakhtenbrot's 
theorem, but there are two additional elements we have to take care of: time 
bounds, and the input. 

Suppose we are given a property P of a-structures that can be tested, 
on encodings of a-structures, by a nondeterministic polynomial time Turing 
machine M = (Q, E, Ll, o, qo, Qa, Q,.) with a one-way infinite tape. Here Q = 
{ q0 , ... , Qrn-l} is the set of states, and we assume without loss of generality 
that E = {0, 1} and L1 extends E with the blank symbol "-". We assume that 
1\1 runs in time nk. Notice that n is the size of the encoding, so we always 
assume n > 1. We can also assume without loss of generality that JI.I always 
visits the entire input; that is, that nk always exceeds the size of the encodings 
of n-element structures (this is possible because the size of enc(2t), defined in 
Chap. 6, is polynomial in 112! II). 

The sentence describing acceptance by JI.I on encodings of structures from 
STRUCT[a] will be of the form 

(!U) 

where tJt is a sentence of vocabulary a U { L, T0 , T1 , T2} U { Hq I q E Q}. Here 
Lis binary, and other symbols are of arity 2k. The intench~d interpretation of 
these relational symbols is as follows: 

• L is a linear order on the universe. 

With L, one can define, in FO, the lexicographic linear order '5,~,; on k
tuples. Since fvf runs in time nk and visits at most nk cells, we can model 
both positions on the tape (j}) and time (i) by k-tuples of the elements of the 
universe. 

With this, the predicates Ti 's and Hq 's are defined similarly to the proof 
of Trakhtenbrot's theorem: 

• To, T1 , and T2 are tape predicates; T; (if, i) indicates that position il at 
time [contains i, for i = 0, 1, and T2 (jf, i) says that if at time t contains 
the blank symbol. 

• Hq 's are head predicates; Hq(p, i) indicates that at time F, the machim' is 
in state q, and its head is in position 11. 
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The sentence !J.r must now assert that when M starts on the encoding of 21, 
the predicates T/s and Hq's correspond to its computation, and eventually llf 
reaches an accepting state. Note that the encoding of 2l depends on a linear 
ordering of the universe of A. We may assume, without loss of generality, 
that this ordering is L. Indeed, since queries are closed under isomorphism, 
rhoosing one particular ordering to be used in the representation of enc(2l) 
does not affect the result. 

We now define !J.r as the conjunction of the following sentences: 

• The sentence stating that L defines a linear ordering. 

• The sentence stating that 

in every configuration of M, each cell of the tape contains exactly one 
element of .d; 

at any time the machine is in exactly one state; 

- eventually, Af enters a state from Qa. 

All these are expressed in exactly the same way as in the proof of Trakht
enbrot's theorem. 

• Sentences stating that Ti 's and Hq 's respect the transitions of A f. These 
are written almost as in the proof of Trakhtenbrot's theorem, but one has 
to take into account nondeterminism. For every a E L1 and q E Q, we have 
a sentence 

V CX(q.a,q 1 ,b,movc)' 

(q',b.movc)E8(q,a) 

where rnove E {£,r} and a(q,a,q',b,rnove) is the sentence describing the 
transition in which, upon reading a in state q, the machine writes b, makes 
the move rnove, and enters state q'. Surh a sentence is written in exactly 
the same way as in the proof of Trakhtenbrot's theorem. 

• The sEmtenr,e defining the initial configuration of Af. Suppose we have 
formulae 1.(j1) and ~ (j}) of vocabulary O" U { L} such that 2l f= L(j}) iff the pth 
position of enc(2l) is 1 (in the standard encoding of structures presented 
in Chap. 6), and 2l f= ~(j}) iff p exceeds the length of enc(2l). Note that 
we need L in these formulae since the encoding refers to a linear order on 
the universe. With sur,h formulae, we define the initial configuration by 

In other words, at time 0, the tape contains the encoding of the structure 
followed by blanks . 

.Just as in the proof of Trakhtenbrot's theorem, we conclude that (9.1) 
holds in 2l iff M accepts enc(2l). It thus remains to show how to define the 
formulae 1.(j1) and ~ (j}). 
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'Ve illustrate this for the case of a = { E}, with E binary (to keep the no
tation simple; extension to arbitrary vocabularies is straightforward). Assume 
that the universe ofthe graph is { 0, .... n - 1}, where ( i. j) E L iff i < j. Tlw 
graph is then encoded by the string 0"1· s, where sis a string of length n 2 , 

such that it has 1 in position u · n + ·u, for 0 <::: u,v <::: n- 1, iff (u,t•) E E. 
That is, the actual encoding of E starts in position ( n + 1). Already from 
here, one can see that in the pres<~nce of addition and multiplication (given 
as ternary relations), t. is definable. Indeed, f)= (p 1 •... • pk) represents the 
position PI · nk-J + ]J2 · nk-'2 + ... + Pk-1 · n + JJA. HencP, 1 (j}J is equivalent to 
the disjunction of I;~= 1 p; · nk-- i = n and 

k 

:3u<:::(n-l):3v<:::(n-1) ((n+l)+H·n+v=8p;·nJ.' 1\ E(u.l')). 

With addition and multiplication, this is a definable property. and addition 
and multiplication themselves can be introduced by means of additional Pxis
tential second-order quantifiers (since one can state inFO that a given relation 
properly represents addition or multiplication with resJwd to the ordPring I~). 

"''hile this is certainly enough to conclude that 1 is ddinable, \VP now 
sketch a proof of ddinability of L without any additional aritlmwtic. Instead, 
we shall only refer to the linear ordering L, and we shall use the associat<~d 
successor relation (i.e., we shall rder to :r + 1 or :r- 1). Assume k = :). That 
is, a tuple f) represents the position p 1n 2 + Ji21l + p;; on tlw tape. The first 
position where the encoding of E starts is n + l (positions 0 to n reprPSPnt 
the si7,e of the universe) and the last one is n2 + n. Hence, if p 1 > l, then 
t. is fal8e. Assume p 1 = 0. Then we are talking about the position P:2n + Jl:;. 

Positions 0 ton -·1 have ;~eros, so if ]J2 = 0, thPn again 1 is false. If Ji;J # 0, then 
(p2 -1 )n + (P:1 - 1) + (n + l) = Ji211 + p;;, and hence the position cotT<'sponds to 
E (p2 - 1, p;1 - 1). If p;1 = 0, then this position corresponds to E (p2 -- 2. 11 -- l). 
Hence, the formula 1.(p1 .p2 .]J:J) is of the form 

[ ( (Pt = 0)) 1\ ( (P:l # 0) 1\ E(p2- Lp; -· I)) l 
/\(p2 > 1) V (P:l = 0) 1\ E(p"2- 2. n- 1) 

V [ (p1 = 0) 1\ (p2 '= 1) 1\ (p;; = 0)] V [ (p 1 = I ) 1\ ... ] . 

where for the case of p 1 = l a similar case analysis is done. Clearly, with the 
linear order L, both 0 and n- 1, and tlw predecessor function arP ddinahle. 
and hence L is FO. (The details of writing clown L for arbitrary 1.: are l<'ft as 
an exercise to the reader, see Exercise 9.4.) Tlw formula ~(ii) simply says that 
f), considered as a number, excef~ds n 2 + 11 + l. This completes th<~ proof of 
Fagin's theorem. 0 

VVe now show several more corollaries of Fagin's thPorem. The first onP is 
Cook's th<~orem stating that SAT, propositional satisfiability, is NP-mmpletP. 
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Corollary 9.8 (Cook). SAT i8 NP-complete. 

Proof. Let P be a problem (a class of O"-structures) in NP. By Fagin's theorem, 
there is an 3SO sentence <P = 351 ... 3Sn I{J such that 2t is in P iff 2t f= <P. 
Let X= {Si(a) I i = 1, ... 'n, a E Aarity(S,l}. We construct a propositional 
formula n~ with variables from X such that 2t f= <P iff n~ is satisfiable. 

The formula ct~ is obtained from I{J by the following three transformations: 

• replacing each 3x 1j;(x, ·)by VaEA 1j;(a, ·); 

• replacing each \h: 1j;(x, ·)by 1\o.EA 1j1(a, ·);and 

• replacing each R(a), for REO", by its truth value in 2t. 

In the resulting formula, the variables are of the form Si (a); that is, they come 
from the set X. Clearly, 2t f= <P iff n~ is satisfiable, and n~ can be constructed 
by a deterministic logarithmic space machine. This proves NP-completeness 
of SAT. D 

The logics 3SO and \ISO characterize NP and coNP, the first level of the 
polynomial hierarchy PH. Recall that the levels of PH are defined inductively: 
LT = NP, and L'f+ 1 = NPE~. The level !If is defined as the set of comple
ments of problems from L'f. Also recall that L'~ is the class of SO sentences 
of the form 

(3 ... 3)(\i ... \1)(3 ... 3) ... ip, 

with k quantifier blocks, and II l is defined likewise but the first block of 
quantifiers is universaL 

We now sketch an inductive argument showing that L'~ captures L'f, for 
every k. The base case is Fagin's theorem. Now consider a problem in L'f+1 . 

By Fagin's theorem, there is an 380 sentence <P (corresponding to the NP ma
chine) with additional predicates expressing L'f properties. We know, by the 
hypothesis, that those properties are definable by L'i formulae. Then pushing 
the second-order quantifier outwards, we convert <Pinto a L'i+l sentence. The 
extra quantifier alternation arises when these predicates for L'f properties are 
negated: suppose we have a formula 3 ... 3ip(P), where P is expressed by a 
formula 3 ... 31[1, with 1j1 being FO, and P may occur negatively. Then putting 
the resulting formula in the prenex form, we have a second-order quantifier 
prefix of the form (3 ... 3)(\i ... \f). For example, 3 ... 3 --,(3 ... 31/;) is equiva
lent to 3 ... 3\i ... \i -,1j;. Filling all the details of this inductive proof is left to 
the reader as an exercise (Exercise 9.5). 

Thus, we have the the following result. 

Corollary 9.9. For each k 2 1, 

• L'l. capture.s L'[', and 

• IIJ. capturr-.s !If. 
In particular·, SO capture.s the polynomial hierarchy. 



17 4 9 Turing Machines and Finite Models 

9.3 Bibliographic Notes 

Trakhtenbrot's theorem, one of the earliest results in finite model theory, was 
published in 1950 [234]. 

Fagin's theorem was published in 1974 [70, 71]. His motivation came from 
the complementation problem for spectra. The spectrum of a sentence <P is the 
set { n E N I <P has a finite model of size n}. The complementation problem 
(Asser [14]) asks whether spectra are dosed under complement; that is, where 
the complement of the spectrum of <P is the spectrum of some sentence l[t. 

If CJ = { R 1, ... , Rn} is the vocabulary of <P, then the spectrum of <P can 
be alternatively viewed as finite models (of the empty vocabulary) of the 
:JSO sentence :JR1 ... :JR" <P (by associating a universe of si~e n with n). 
Fagin defined generalized spectra as finite models of :JSO sentences (i.e., the 
vocabulary no longer needs to be empty). The complementation problem for 
generalized spectra is then the problem whether NP equals coNP. 

The result that :JSO and \t'SO are different on (N. +, ·) is due to Kleene 
[146]. In fact, over (N, +,·),the intersection of :JSO and \1'80 collapses to FO, 
while over finite structures it properly contains FO. 

Cook's theorem is from [39] (and is presented in many texts of complexity 
and computability, e.g. [126, 195]). 

The polynomial hierarchy and its connection with SO are from Stockmeyer 
[223]. 

Sources for exercises: 
Exercises 9.6 and 9. 7: Gradel [97] 
Exercise 9.8: Jones and Selman [140] 
Exercise 9.9: Lautemann, Schwentick, and Therien [162] 
Exercise 9.10: Eiter, Gottlob, and Gurevich [63] 
Exercise 9.11: Gottlob, Kolaitis, and Schwentick [95] 
Exercise 9.12: Makowsky and Pnueli [178] 
Exercise 9.13: (a) from Fagin [72] 

(b) from Ajtai [10] 
(see also Fagin [7 4]) 

9.4 Exercises 

Exercise 9.1. Prove Trakhtenbrot's theorem for an arbitrary vocabulary with at 
least one binary relation symbol. 

Hint: use the binary relation symbol to code several binary relations, used in our 
proof of Trakhtenbrot's theorem. 

Exercise 9.2. Prove that Trakhtenbrot's theorem fails for unary vocabularies: that 
is, if all the symbols in a are unary, then finite satisfiability is decidable. 

Exercise 9.3. Use Trakhtenbrot's theorem to prove that order invariance for FO 
queries is undecidable. 
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Exercise 9.4. Give a general definition of the formula i from the proof of Fagin's 
theorem (i.e., for arbitrary IJ and k). 

Exercise 9.5. Complete the proof of Corollary 9.9. 

Exercise 9.6. Show that there is an encoding schema for finite IJ-structures such 
that the formulae i from the proof of Fagin's theorem can be assumed to be 
quantifier-free, if the successor relation and the minimal and maximal element with 
respect to it can be used in formulae. 

Exercise 9.7. Use the encoding scheme of Exercise 9.6 to prove that every NP 
can be defined by an ==JSO sentence whose first-order part is universal (i.e., of the 
form V ... V V', where 1/J is quantifier-free), under the assumption that we consider 
structures with explicitly given order and successor relations, as well as constants 
for the minimal and the maximal elements. 

Prove that without these assumptions, universal first-order quantification in ==JSO 
formulae is not sufficient to capture all of NP. What kind of quantifier prefixes does 
one need in the general case? 

Exercise 9.8. Prov<~ that a set X c;; N is a spectrum iff it is in NEXPTIME. 
Explain why this does not contradict Fagin's theorem. 

Exercise 9.9. Consider the vocabulary IJE = ( <. (Pa)aEE) used in Chap. 7 for 
coding strings as finite structures. Recall that a sentence <!> over such vocabulary 
defines a language (a subset of E*) given by { s E E* I Ms f= <!>}. 

Consider a restriction ==JSOmatch of ==JSO in which existential second-order vari
ables range over matchings: that is, binary relations of the form {(xi, y;) I i S k} 
where all Xi's and y;'s are distinct. 

Prove that a language is definable in ==JSOmatch iff it is context-free. 

Exercise 9.10. LetS be a set of quantifier prefixes, and let ==JSO(S) be the fragment 
of ==JSO which consists of sentences of the form ==JR 1 ... '3Rn '!J, where 'P is a prenex 
formula whose quantifier prefix iR inS. We call ==JSO(S) regular if over strings it only 
defines regular languages. 

Prove the following: 

• ==JSO(V*==JV*) is regular; 
• ==JSO(==J*W) is regular; 
• if ==JSO(S) is regular, then it is contained in the union of ==JSO(V*==JV*) and 

==JSO(==J*W); 
• if ==JSO(S) is not regular, then it defines some NP-complete language. 

Exercise 9.11. We now consider ==JSO(S) and ==JMSO(S) over directed graphs. Prove 
the following: 

• ==JSO(==J*V) only defines polynomial time properties of graphs; 
• ==JSO(W) and ==JMSO(==J*W) in which at most one second-order quantifier is used 

only define polynomial time properties of graphs; 
• each of the following defines some NP-complete problems on graphs: 

·· ==JSO(==JW), where only one second-order quantifier over binary relations is 
used: 
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- =JMSO(V=J) and =JMSO(VVV), where only one sPccmd-order quantifier is used; 

- =Jl\ISO(W), where only two second-order quantific~rs <UP used. 

Exercise 9.12. Define SO(k, m) as the union of El and IJf where all quantification 
is over relations of arity at most rn. That is, SO(k, m) is the restriction of SO to at 
most k - 1 alternations of quantifiers, and quantification is over relations of arity 
m. This is usually referred to as the alternation-arity hierarchy. 

Prove that the alternation-arity hierarchy is strict: that is, there is a constant r· 
such that 

SO(k. m) ~ SO(k +c. m +c) 

for all k. m. 

Exercise 9.13. Define =JSO(m) as the restriction of class of =JSO to second-order 
quantification over relations of arity at most m. Prove the following: 

(a) If =JSO(m) = =JSO(m + 1), then =JSO(k) = =JSO(m) for every k:;:, m. 
(b) If a contains an m-ary relation symbol P, then the class of structures in which 

P has an even number of tuples is not =JSO(m- I)-definable. 
(c) Conclude from (a) and (b) that, if a contains an m-ary rdation symbol P, then 

=JSO(i) ~ =JSO(j) over a-structures, for l~very 1 S i < j S m. 

Exercise 9.14: Now consirkr just the arity hierarchy for SO: that is, SO( 111) IS 

defined as ukEN SO(k. m). Is the arity hierarchy strict? 

Exercise 9.15: \Ve call a sentence categorical if it has at most one model of 
each finite cardinality. Is it true that every spectrum is a spc~ctrum of a categorical 
sentence? 



10 

Fixed Point Logics and Complexity Classes 

Most logics we have seen so far are not well suited for expressing many 
tractable graph properties, such as graph connectivity, reachability, and so 
on. The limited expressiveness of FO and counting logics is due to the fact 
that they lack mechanisms for expressing fixed point computations. Other 
logics we have seen, such as MSO, 3SO, and \ISO, can express intractable 
graph properties. 

Consider, for example, the transitive closure query. Given a binary relation 
R, we can express relations R0 , R 1 , R 2 , R~', ... , where Ri contains pairs (a, b) 
such that there is a path from a to b of length at most i. To compute the 
transitive closure of R, we need the union of all those relations: that is, 

oc 

How could one compute such a union? Since relation R is finite, starting with 
some n, the sequence Ri, i 2': 0, stabilizes: Rn = R"+ 1 = Rn+2 = .... Indeed, 
in this case n can be taken to be the number of elements of relation R. Hence, 
Rcxo = R 11 ; that is, Rn is the limit of the sequence Ri, i > 0. But we can also 
view R" as a fixed point of an operator that sends each Ri to Ri+ 1 . 

In this chapter we study logics extended with operators for computing 
fixed points of various operators. We start by presenting the basics of fixed 
point theory (in a rather simplified way, adapted for finite structures). We 
then define various extensions of FO with fixed point operators, study their 
expressiveness, and show that on ordered structures these extensions capture 
complexity classes PTIME and PSPACE. Finally, we show how to extend FO 

with an operator for computing just the transitive closure, and prove that this 
extension captures NLoG on ordered structures. 
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10.1 Fixed Points of Operators on Sets 

Typically the theory of fixed point operators is presented for complete lattices: 
that is, partially ordered sets (U, --<) where every - finite or infinite subset 
of U has a greatest lower bound and a least upper bound in the ordering --<. 
However, here we deal only with finite sets, which somewhat simplifies the 
presentation. 

Given a set U, let p(U) be its powerset. An operator on U is a mapping 
F : p(U) --7 p(U). We say that an operator F is monotone if 

X<;;;; Y implies F(X) <;;;; F(Y), 

and inflationary if 
X c F(X) 

for all X E p(U). 

Definition 10.1. Given an operator· F : p(U) --7 p(U), a set X <;;;; U is a 
fixed point ofF if F(X) =X. A set X <;;;; A ·is a least fixed point ofF if it 
is a fixed point, and for every other fixed point Y of F we have X <;;;; Y. The 
least fixed point ofF will be denoted by lfp(F). 

Let us now consider the following sequence: 

(10.1) 

We call F inductive if the sequence (10.1) is increasing: Xi <;;;; xi+t for all i. 
Every monotone operator F is inductive, which is shown by a simple induction. 
Of course X 0 <;;;; X 1 since X 0 = 0. If X; <;;;; x+t, then, by monotonidty, 
F(Xi) <;;;; F(Xi+l ); that is, Xi+ 1 <;;;; Xi+2 . This shows that )C <;;;;xi+ I for ail 
i EN. 

If F is inductive, we define 

:X 

x= uxi. (10.2) 
i=O 

Since U is assumed to be finite, the sequence (10.1) actually stabilizes after 
some finite number of steps, so there is a number n such that xx =X". 

To give an example, let R be a binary relation on a finite set A, and 
let F : p(A2 ) --? p(A2 ) be the operator defined by F(X) = R U (R oX). 
Here o is the relational composition: R oX = {(a, b) I (a, c) E R, (c. b) E 

X, for some c E A}. Notice that this operator is monotone: if X <;;;; Y, then 
R oX <;;;;RoY. Let us now define the sequence Xi, i :2: 0, as in (10.1). First, 
X 0 = 0. Since Ro0 = 0, we have X 1 = R. Then X 2 = RU (Ro R) = RUR2 ; 

that is, the set of pairs (a, b) such that there is a path of length at most 2 from 
a to b. Continuing, we see that Xi = R U ... U R;, the set of pairs connected 
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by paths of length at most i. This sequence reaches a fixed point xx, which 
is the transitive closure of R. 

We now prove that every monotone operator has a least fixed point, which 
is the set x= (10.2), defined as the union of the increasing sequence (10.1). 

Theorem 10.2 (Tarski-Knaster). Every monotone opemtor F: k.J(U) --+ 

~J( U) ha.s a least fi:ced point lfp( F) which can be defined a.s 

lfp(F) n{Y 1 y = F(Y)}. 

Furthermore, lfp(F) = x= = ui Xi, for the .sequence xi defined by {10.1). 

Pmof. Let W = {Y I F(Y) ~ Y}. Clearly, W # 0, since U E W. We first 
show that S = n W is a fixed point of F. Indeed, for every Y E W, we hav<~ 
S ~ Y and hence F(S) ~ F(Y) ~ Y; therefore, F(S) ~ n W = S. On the 
other hand, since F(S) ~ S, we have F(F(S)) ~ F(S), and thus F(S) E W. 
Hence, S = n W ~ F(S), which proves S = F(S). 

Let W' = {Y I F(Y) = Y} and S' = n W'. Then S E W' and hence 
S' ~ S; on the other hand, W' ~ W, so S = n W ~ n W' = S'. Hence, 
s = S'. Thus, s = n{Y I y = F(Y)} is a fixed point of F. Since it is the 
intersection of all the fixed points ofF, it is the least fixed point of F. This 
shows that 

lfp(F) = n{Y 1 y = F(Y)} = n{Y 1 F(Y) ~ Y}. 

To prove that lfp( F) = x=, note that the sequence Xi increases, and 
hence for some n EN, xn = xn+l = ... = x=. Thus, F(X=) = x= and 
xoc is a fixed point. To show that it is the least fixed point, it suffices to prove 
that Xi ~ Y for every i and every Y E W. We prove this by induction on i. 
Clearly X 0 ~ Y for all Y E W. Suppose we need to prove the statement for 
xi+t. Let YEW. We have xi+t = F(X'). By the hypothesis, Xi~ Y, and 
by monotonicity, F(Xi) ~ F(Y) ~ Y. Hence, Xi+ 1 ~ Y. This shows that all 
the X"s are contained in all the sets of W, and completes the proof of the 
theorem. D 

Not all the op<~rat.ors of interest are monotone. We now present two differ
ent. constructions by means of which the fixed point of non-monotone operators 
can be chofined. 

Suppose F is inflationary: that is, Y ~ F(Y) for all Y. Then F is induc
tive; that is, the sequence (10.1) is increasing, and hence it reaches a fixed 
point X ex;. Now suppose G is an arbitrary operator. With G, we associate an 
inflationary operator Ginfl defined by Gintl(Y) = YUG(Y). Then X 00 for Ginfl 
is called the infiationar·y fixed point of G and is denoted by ifp( G). In other 
words, ifp(G) is the union of all sets Xi where X 0 = 0 and xi+l = XiUG(X;). 

Finally, we consider an arbitrary operator F : ~J(U) __., p(U) and the 
sequence (10.1). This sequence need not be inductive, so there are two possi
bilities. The first is that this seqmmce reaches a fixed point; that is, for some 
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n E N we have X" = xn+l' and thus for all m > 71, xm = X 11 • If there is 

such an n, it must be the case that n 'So 21V1, since tlwre are only 211 '1 subsets 

of U. The second possibility is that no such n exists. 
We now define the par-tial fi:red point ofF as 

{
X" 

pfp(F) = 0 
if X"= xn+l 

if X 11 oF xn+ I for all I! 'So 2jl Tj. 

The definition is unambiguous: since xn = X II+ I implies that thP sequence 
(10.1) stabilizes, then X"= xn+t and xm = X'"+ 1 imply that X"= X'". 

\Ve leave the following as an easy exerc:ise to the reader. 

Proposition 10.3. IfF is monotone, then lfp(F) = ifp(F) = pfp(F). [] 

10.2 Fixed Point Logics 

We now show how to add fixed point operators to FO. Suppose we have a 

relational vocabulary O", and an additional relation symbol R ti a of arity k. 
Let VJ(R, ;r1 , ... , :rk) be a formula of vocabulary O" U { R}. We put the symbol 

R explicitly as a pararnctm, since this formula will give rise to an opPrator on 
a-structures. 

For each 2l E STRUCT[D"], the formula VJ(R . .f) giv1~s rise to an op<~rator 
F''P : \:7( A k) ---+ p( A k) defined as follows: 

{a 1 2t F= VJ(X/IUi)}. (10.3) 

Here the notation cp(X jR, a) means that R is interpn~t<'d as X in cp; mon' 
precisely, if 2l' is a (aU { R} )-structure expanding 2l. in which R is intcrprd.<'d 

as X, then 2l' f= cp(a). 
The idea of fixed point logics is that we add formulae for computing fixed 

points of operators F'P. This already gives us formal ddinitions of logics lFP 
and PFP. 

Definition 10.4. The logics IFP and PFP anc defined as extensions of FO 
with the following fonnation r·ules: 

• (For· IFP ): if cp( R, :r) is a formula, wher-e H is k-rwy, and tis a tnple of 

ter·m.s, when; I X I= I n = k' then 

[ifp R. rVJ( R. :f)] ( i) 

is a fonnula, whose fr-ee variables an; those of f. 
• (For· PFP ): if cp( R, .f) is a form·ula, wher·e R is k-ary, and tis a htple of 

ter-rn.s, where I X I= I n = k' then 

[pfp H. r'P ( R. :1)] ( i) 

is a fonnula, whose fr·ee var·iables are those of f. 
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The semantics is defined as follows: 

• (FodFP ): 2l F [ifPn.xct?(R, x)](a) iff a E ifp(F'P) . 

• (For· PFP): 2l F [PfPn.:rct?(R,x)](a) iff a E pfp(F'P). 

Why could we not define an extension with the least fixed point in exactly 
the same way? The reason is that least fixed points are guaranteed to exist 
only for monotone operators. However, monotonicity is not an easy property 
to deal with. 

Lemma 10.5. Testing if F'P is monotone is undecidable for FO formulae cp. 

Proof. Let <P be an arbitrary sentence, and cp(S, x) = (S(x) --+ <P). Suppose <Pis 
valid. Then cp(S, x) is always true and hence F'P is monotone in every structure. 
Suppose now that 2l f= ,<f> for some nonempty structure 2l. Then, over 2l, 
cp(S. :r) is equivalent to -,S(.r, ), and hence F'P is not monotone. Therefore, }~ 
is monotone iff <P is true in every nonempty structure, which is undecidable, 
by Trakhtenbrot's theorem. D 

Thus, to ensure that least fixed points are only taken for monotone op
erators, we impose some syntactic restrictions. Given a formula cp that may 
contain a relation symbol R, we say that an occurrence of R is negative if 
it is under the scope of an odd number of negations, and is positive, if it is 
under the scope of an even number of negations. For example, in the formula 
3x,R(x)V,Vy\lz-,(R(y)/\,R(z)), the first occurrence of R (i.e., R(x)) is neg
ative, the second ( R(y)) is positive (as it is under the scope of two negations), 
and the last one ( R( z)) is negative again. We say that a formula is positive 
in R if there are no negative occurrences of R in it; in other words, either all 
occurrences of R are positive, or there arc none at all. 

Definition 10.6. The logic LFP extends FO with the following fonnation 
rule: 

• if cp(R, x) is a formula positive in R, wher·e R is k-ary and£ is a tuple of 
terms, wher·e 1 xl=l tl= k, then 

is a formula, whose fr·ee variables are those of£. 

The semantics is defined as follows: 

2l F [lfPu.rct?(R, x)](ii') iff a E lfp(F'P). 

Of course, there is something to be proven here: 
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Lemma 10. 7. If tp(R, x) is positive in R, then F"' is monotone. 0 

The proof is by an easy induction on the structure of the formula (which 
includes the cases of Boolean connectives, quantifiers, and lfp operators) and 
is left as an exercise to the reader. 

We now give a few examples of queries definable in fixed point logics. 

Transitive Closure and Acyclicity 

Let E be a binary relation, and let tp( R, :r, y) lw 

E(x,y)V3z (E(x,z)I\R(z,y)). 

Clearly, this is positive in R. Let 4;(u,v) be [lfPR .. r.y'P(R,.r.y)](u. u). What 
does this formula define? 

To answer this, we must consider the operator F;,. For a set X, we have 
F'P(X) = EU (Eo X). We have seen this operator in the previous section, and 
know that its least fixed point is the transitive closure of E. Hence, ~'(u, P) 
defines the transitive closure of E. This also implies that graph connectivity 
is LFP-definable by the sentence 'hNv 4{u, v). 

As the next example, we again consider graphs whose edge relation is E', 
and the formula a(S,.r) given by 

'Vy (E(y,.r)---.. S(y)). 

This formula is again positive in S. The operator F~, associated with this 
formula takes a set X and returns the set of all nodes a such that all thP 
nodes b from which there is an edge to a are in X. Let us now iterate this 
operator. Clearly, Fa(0) is the set of nodes of in-degree 0. Then F:,(F;,(0)) is 
the set of nodes a such that all nodes b with edges ( b, a) E E have in-degrPe 
0. Reformulating this, we can state that F~,(Fn(0)) is the set of nodes a such 
that all paths ending in a have length at most 1. Following this, at the ith 
stage of the iteration we get the set of nodes a such that all the paths Pnding 
in a have length at most i. ·when we reach the fixed point, we have nodes 
such that all the paths ending in them are finite. Hence, the formula 

tests if a graph is acyclic. 

Arithmetic on Successor Structur-es 

As a third example, consider structures of vocabulary (min, suec:), where sueT 
is interpreted as a successor relation on the universe, and min is the mini
mal element with respect to succ. That is, the structures will bP of tlw form 
({0, ... ,n- 1}, 0, {(i.i + 1) I i + 1 s; n -1}). We show how to define 

+ = {(i,j. k) I i + .i =A:} and x = {(i,j. k) I i · j = h:} 
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on such structures. For +, we use the recursive definition: 

x+O=x 
X+ (y + 1) = (:1: + y) + 1. 

Let R be ternary and f'h(R,x,y,z) be 

(y=min/\z=x) V 3n3v (R(x,n,v) !\ succ(n,y) !\ succ(v,z)). 

Intuitively, it states the conditions for (x, y, z) to be in the graph of addition: 
either y = 0 and .T = z, or, if we already know that x + ·u = v, and y = 
n + 1, z = v + 1, then we can infer x + y = z. This formula is positive in R, 
and the least fixed point computes the graph of addition: 

IP+(:r, y, z) = [lfpRx.y,z/h(R, x, y, z)](x, y, z). 

Using addition, we can define multiplication: 

X·O=O 
X· (y + 1) =X· :tJ +X. 

Similarly to the case of addition, we define f3x ( 8, x, y, z) as 

(y=min/\z=min) V 3n3v (8(x,11,v) !\ succ(u,y) !\ IP+(x,v,z)). 

This formula is positive in 8. Then 

IPx(x,y,z) = [lfPs.x.y.J3x(8,x,y,z)](x,y,z) 

defines the graph of multiplication. Since it uses IP+ as a subformula, this 
gives us an example of nested least fixed point operators. 

Combining this example with Theorem 6.12, we conclude that BIT is LFP
definable over successor structures. 

A Game on Graphs 

Consider the following game played on a graph G = (V, E) with a distin
guished start node a. There are two players: player I and player II. At each 
round i, first player I selects a node b; and then player II selects a node ci, 
such that (a,bl), as well as (b;,c;) and (c;,bi+ 1), are edges in E, for all i. The 
player who cannot make a legal move loses the game. 

Let 8 be unary, and define o:(8, x) as 

\fy (E(x,y)--+3z (E(y,z)!\8(z))). 

What is f~,(0)? It is the set of nodes b of out-degree 0; that is, nodes in which 
player II wins, since player I does not have a single move. In general, F"(X) 
is the set of nodes b such that no matter where player I moves from b, player 
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II will have a response from X. Thus, iterating F~,, we s<'P that the ith stage 

consists of nodes from which player II has a winning strategy in at most i -- l 

rounds. Hence, 
[lfp8 ".n( S', :r)] (a) 

holds iff player II has a winning strategy from node a. 

We conclude this section by a remark concerning free variables in fixed 
point formulae. So far, in the definition and all the exampl<~s we dealt with 

iterating formulae cp(R. :f) where :r matched the arity of R. However, in 

gfmeral one can imagine that cp has additional free variable's. For exam

ple, if we have a formula cp(R, :f. 17) positive in H, we can, for each tuple 

b, define an operator F~(X) ={a I Q! f= cp(XjR.a.l;)}, and a formula 

1/{{77) = [lfpn.zcp(R.:r,17)](i), with tlw semantics Q! f= i;) iff c'E lfp(F~:). 
It turns out, however, that fn~e variabks in fixed point formulae can always 

be avoided, at the expense of relations of higher arity. Indeed, the formula 

?j;({17) above is equivalent to [lfp11'.i'.,7cp'(R'.:f,17)]({.tJ), where H' is of arity 

I :Z I + I :tll, and cp' is obtained from cp by changing every occurTencC' of a 

subformula R(,'!) to R'(z,:t}). This is left as an exercise to the reader. Thus, 

we shall normally assume that no extra parameters an~ present in fixed point 
formulae. 

10.3 Properties of LFP and IFP 

In this section we study logics LFP and IFP. \VC' start by int roclucing a very 

convenient tool of simultaneous fixed points, which allows one to itPrate sev

eral formulae at once. \Ve then analyze fixed point computations, and show 

how to define and compan~ their stages (that is, s<:ts X' as in (10.1)). From this 

analysis we shall derive two important conclusions. One is that LFP = TFP on 

finite structures. The other is a normal form for LFP, shmving that nC'sted oc

currences of fixed point operators (which wP saw in the multiplication example 

in the previous section) can be eliminated. 
Let CJ lw a relational vocabulary, and R 1 , ... , R11 additional rdation sym

bols, with R; being of arity k;. Let :f; be a tuple of variahks of length /;,. 
Consider a sequence <1> of formulae 

(10.4) 

cp, (HI , ... ' F? 11 ' ;[II ) 

of vocabulary CJ U {R1 , ... , Rn }. Assume that all cp,'s are positive in all Hi's. 

Then, for a CJ-structure Q!, each cp; cl<~fincs an operator 

F; : v(A'l) x ... x p(A'") ___,\;(A'') 

given by 
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We can combine these operators Fi 's into one operator 

F: p(AA 1 ) X ... X p(A'") ---> p(A'') X ... X p(A'") 

given by 

F(X], ... ,Xn) = (P!(XI,···,Xn), ... ,Fn(XI,···,Xn)). 

A sequence of sets (X], ... ,Xn) is a fixed point ofF if F(X1 , ... ,X11 ) 

(X 1 , ... , Xn). Furthermore, if for every fixed point (Y1 , ... , Y,,) we have X 1 <;;;; 

Y1 , •.. , Xn <;;;; Yn, then we speak of the least fixed point of F. 
The product p(AA,) x ... x fp(Ak,) is partially ordered component-wise by 

<;;;;, and the operator F is component-wise monotone. Hence, it can be iterated 
in the same way as usual monotone operators on p(U); that is, 

X0 = (0, ... '0) 
x'+~ = F(X') 

~ CXJ ....... 

x= = UX' = 
i=l 

ex:> ·X 
(10.5) 

( U xt, ... , U x;,). 
i=l i=l 

.Just as for the case of the usual operators on sets, one can prove that xoo = 
lfp(F). We then enrich the syntax of LFP with the rule that if <Pis a family 
of formulae (10.4), and tis a tuple of terms of length k;, then 

is a formula with the semantics Q{ F [lfp R, ,<P]( a) iff a belongs to the ith 
component of x=. The resulting logic will be denoted by LFPsimult. 

As an example of a property expressible in LFPsimult, consider the follow
ing query Q on undirected graphs G = (V, E): it returns the set of nodes (a, b) 
such that there is a simple path of even length from a to b. 

Let T be a ternary relation symbol, and R, S binary relation symbols. We 
consider the following system <P of formulae: 

'·· _ (E(:r,y)/\-.(x=z)/\•(y=z)) 
cp 1(T,R,S,x,y,z)=v::J (E( ·)1\T( )/\ ( -~)) ::JU .T, U U, y, Z • X-"' 

(TRS···)- E(x,y) 
'P2 ' ' ,.r,y = V ::lu (S(x,u) 1\ E('u,y) 1\ T(x,u,y)) 

'P:>(T,R,S,:r,y) = ::lu (R(:r,u)/\R(1t,y)/\T(J:,u,y)). 

Notice that these formulae are positive in R, S, T. We leave it to the reader to 
verify that the simultaneous least fixed point of this system <P computes the 
following relations: 
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• T 00 (a, b, c) holds iff there is a simple path from a to b that does not pass 
through c; 

• R00 (a, b) holds iff there is a simple path from a to b of odd length; and 

• s=(a, b) holds iff there is a simple path from a to b of even length. 

Thus, [lfPs . .PJ(x, y) expresses the query Q. (See Exercise 10.2.) 

Simultaneous fixed points are often convenient for expressing complex 
properties, when several sets need to be defined at once. The question is then 
whether such fixed points enrich the expressiveness of thP logic. The answer. 
as we are about to show, is negative. 

Theorem 10.8. LFPsirnnlt = LFP. 

Proof. We give the proof for the case of a system <P consisting of two for
mulae, 'PI ( R, S, x) and 1P2 ( R, S, if). Extension to an arbitrary system is rather 
straightforward, and left as an exercise for the reader (Exercise 10.3). The idea 
is that we combine a simultaneous fixed point into two fixed point formulae, 
in which the lfp operators are nested. 

We need an auxiliary result first. Assume we have two monotone opmators 

F 1 : p(U) x p(V)----+ p(U) and F2 : p(U) x p(V)----+ g.J(V). 

Following (10.5), we define the stages of the operator (F1 • f2) as .,yo = 
(Xp,xg) = (0,0), Xi+l = (x~+ 1 ,x~+ 1 ) = (Ft(Xi).F2(Xi)), with tlw fixed 
point (X!, X2). 

Fix a set Y ~ U, and define two operators: 

F:{ : p(V) ----+ p(V). F:{ (Z) = F2(Y. Z): 

G1 : p(U)----+ p(U), G1 (Y) = F 1 (Y.lfp(FrJ). 

Clearly, F{ is monotone, and hence lfp(F{) is well-defined. Tlw operator G 1 

is monotone as well (since for y ~ y I' it is the case that lfp( F r) ~ lfp ( F]"))' 
and hence it has a least fixed point. 

To prove the theorem, we need the following lemma, which is sometirnPs 
referred to as the Bekic principle. 

Lemma 10.9. Xf"' = lfp(GJ). 

Before we prove the lemma, we show that the theorem follows from it. 
Since Xf"' = lfp(Gl), we have to express G1 inlfp, which canlw done, as G 1 

is defined as the least fixed point of a certain operator. In fact. it follows from 
the definition of G 1 that [lfPR.<P](i) is equivalent to 
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The roles of F 1 and F2 can be reversed; that is, we can define F{ (Z) = 
F1 (Z, Y): ~J(U)--+ p(U) and C2: p(V) --+ p(V) by G2(Y) = F2(lfp(F{), Y), 
and prove, as in Lemma 10.9, that X2 = lfp(C2 ). Therefore, 

[trPs.y IP2([1fpR.:r~Pl(R,S,x)] I R, s, m]m 
is equivalent to [lfp5 .p](t). 

It remains to prove Lemma 10.9. First, notice that lfp(F{;=) <;;;; X2, 

because F.;"(' (Xf) = Fz(Xf,X2) = X:;t. That is, Xf is a fixed point 
ofF{~, and thus it must contain its least fixed point. Hence, C 1 (X1) = 
F 1(X[,lfp(l<':zx;=)) <;;;; F1 (Xf",X2) = Xf. Since lfp(Cl) is the intersection 
of all the setS such that C 1 (S) <;;;; S, we conclude that lfp(Cl) <;;;; Xf. 

Next, we prove the reverse inclusion Xf <;;;; lfp(Cl). We use Z to denote 
lfp(CJ). We show inductively that for each i, X[<;;;; Z and X2 <;;;; lfp(Ff). 

This is dear for i = 0. To go from i to i + 1, calculate 

and 

Thus, 

X[ = u XI<;;;; lfp(CJ). 
i=O 

This completes the proof of Lemma 10.9 and Theorem 10.8. 0 

One can similarly define logics IFPsimult and PFPsimult, by allowing simul
taneous inflationary and partial fixed points. It turns out that for IFP and 
PFP, simultaneous fixed points do not increase expressiveness either. The 
proof presented for LFP would not work, as it relies on the monotonicity 
of operators defined by formulae, which cannot be guaranteed for arbitrary 
formulae used in the definition of the logics IFP and PFP. Nevertheless, a 
different techniqm~ works for these logics. We explain it now by means of an 
example; details are left as an exercise for the reader. 

Assume that the vocabulary a has two constant symbols c1 and c2 inter
preted as two distinct elements of a-structure. This assumption is easy to get 
rid of, by existentially quantifying over two variables, u and w, and stating 
that u o/c w; however, formulae with constants will be easier to deal with. 
Furthermore, we can assume without loss of generality that structures have 
at least two elements, since the case of one-element structures can be dealt 
with explicitly by specifying the value of a fixed point operator on them. 

Suppose we have two formulae, rp 1 (R1 , R2 , x) and rp2 (R1 , R2 , x), where the 
arities of R 1 and R2 are n, and the length of xis n. Let S be a relation symbol 
of arity n + 1, and let 1/-'(S, u, x) be the formula 
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v 

((u = c1) 

( ( 1L = C2) 

11 'Pl(S(c,,z)IR,(z). S'(c2.z)IH2(:::) . . r)) 
11 1P2 ( s( c1. z)l RJ(:::). s( c2. :::)1 1?2(.:) . .1)). 

where s ( c,' z) I R;. U?) indicates that every OCC\UTE'ncc of R, ( :::) is n~plan~d by 
S'(c.i, z). Then the fixed point inflationary or partial of this formula C' 

computes the simultaneous fixed point of the system { ip 1 , ip2 }: the fixed poillt 
corresponding to R; is the set of all n-tuples of the fixed point of l/' \vlwre the 
first coordinate is c,. 

This argument is generaliz(~cl to arbitrar~· systems of forrrmlae. tlwn~h~· 

giving us the following result. 

Theorem 10.10. TFP"inmlt = JFP and PFP"illlu 11 = PFP. 

\Ve now come back to single fixed point definitions and analyze them in 
detail. Suppose we have a formula ~,J(R, .r). Assume for nmv that ip is positive 
in H. To construct the least fixed point of cp on a strncture 2t. we inductiwly 
calculate X 0 = 0. X 7+ 1 = f~(X'), and then the fixf~d point is xx = U; X'. 
\Ve shall refer to X"s as stages of the fixed point computation, with X' being 
the ith stage. 

First, we note that each stage is definable by an LFP formula. if cp is 
positive in R. Indeed, for each stage ·i, we haw a formula (.F, ), such that 
ip1 (2t) is exactly Xi. These are d(~firwd inductively as follows: 

/l(:r0) = •(:r = .r) :r is a variable in .F11 
1(£,+,) = ~,J(;p;.IR.Y,+t). (10.6) 

Here the notation IP( 'Pi I R, :r;+J) means that every occmT<~uc<· R(.il) iu -;: 
is replaced by r.p; (:ij) and, furthermore, all tbe bound \'ariabl<'s in ip bav(~ 

been replaced by fresh ones. For example, consider tlH' formula ip( H .. r . .1J) 

E(.r. y) V .:Jz (E(:r, z) II R(z. y)). Following (10.6), we obtain the formulae 

ip0(.ro, Yo) = •(:I:o = .ro) 
~,J 1 (:rl, Y1) = E(:r1, yl) V :1::1 (E(.r1, .:, ) /1 r.p0 (::: 1 , !Jt )) 

<--> E(:r1, y,) 
;p1 (:c2, f/2) = E(:r2 . .IJ2) V .:lz2 (E(:r2 . . ::2) /\ c;;1 (:::2 . .112)) 

+--> E(.r2. Y2l V ..:!:::2 (E'(:r2. z2) 1\ E(:::2. !/2)) 

computing the stages of the transitive closure OJWrator. 

For an arbitrary ip, we can give formulae for computing stag<'s of the 
inflationary fixed point computation. Tlwse are given by 

r.p0 (:Zo) = •(::r = .r) 
ipi+ 1 (:ri+tl = ~Pi(:r.,,t) v ~P(c;;'IH . .r;+,). 

(10.7) 
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Thus, t~ach stage of the inflationary fixed point computation is definable 
by an IFP formula. 

What is more interesting is that we can write formulae that compare stages 
at which various tuples get into the sets X' of fixed point computations. 
Suppose we are given a formula ~P( R, x) that gives rise to an inductive operator 
F'_p, where R is k-ary and x has k variables. For example, if we are interested 
in inflationary fixed point computation, we can always pass from ~P(R, :f) to 
R(:r) V ~P(R, :r), whose induced operator is inductive. 

Given a structure Ql, we define I~P\'2( as the least n such that xn = x=. 
Furthermore, for a tuple a E Ak, we define \a\~ as the least number i such 

that a E xi in the fixed point computation, and I~P\'2( + 1 if no such i exists. 
Notice that if !p is positive in R, then the stages of the least and inflationary 
fixed point computation are the same. 

We next define two relations -<'P and -:5_'-P on A k as follows: 

The theorem below shows that these can be defined with least fixed points 
of positive formulae. 

Theorem 10.11 (Stage comparison). If !p is in LFP, then the binar·y 
r·elations -<'P and -:5_'-P ar-e LFP -definable. 

Pmof. The idea of the proof is as follows. We want to define both -<'P and 
-:5_'-P as a simultaneous fixed point. This has to be done somehow from y?, but 
in !p we may have both positive and negative occurrences of R. So to find 
some relations to substitute for the negative occurrences of R, we explicitly 
introduce the complements of -<'P and -:5_'-P: 

a f<'P r; = 1a1~ :::: \b\~, 

a fY b = 1a1~ > \b\~ or 1a1~ = \~P\'2! + 1. 

We shall be using formulae of the form 

~P(-<(fi)/R,:r) and ~P(-:5.Uf)/R,:r). 

This means that, for IP(-< Uf)/ R, :f), every positive occurrence R(z) of R is 
replaced by z -<'P :if, and every negative occurrence of R(z) of R is replaced by 
z -f,'P :if, and likewise for -:5_'-P. Note that all the occurrences of the four relations 
-<'P, -:5_'P, -f,'P, fc'P become positive. Also, we shall write 

~P(--, -<UJ) I R. :'i), 

meaning that every positiv(' occurrence R(z) of R is replaced by •(z -<'P :if), 
and every negative occurrence of R(z) of R is replaced by •(z -f,'P fj). These 
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will be used in subformulae ''P(---, --< (if) I R, x), again ensuring that all tlw 
occurrences of --<'P, :j'P, f<'P, t-_<r are positive. 

These four relations will be defined by a simultaneous fixed point. For 
technical reasons, we shall add one more relation: 

and show how to define ( --<. ::S, <l. f<, t-_) by a simultaneous fixed point. For 
readability only, we may omit the superscript 'P· We defirw the system tf/ of 
five formulae '1/Ji( --<, ::S, <l, f<, t-_, :r. y), i = L .... 5, as follows: 

'l/J1 = ::Jz ( x ::S z A z <1 if) , 
'l/J2 = 'P(--< (if) 1 R, x), 
'1/J:l = 'P( --<(x)l R, x) A ''P(f<(x)l R. if) (10.8) 

1\ ('P(::S(x)IR, iJ) V'Vz (''P(' t-_(.i)IR. i) Vip(--<(.J!)IR. i))). 

'l/J4 = ::Jz (x z,_ z A z <1 if) v 'P(01 R, if) v vz,'P(01 R. z). 
'1/Js = ''P(' f<(iJ)IR. x) 

where 'P(0 I R, ·) means that all occurrences of R are eliminated and n~placed 
by false. 

Note that all the occurrences of --<, ::S, <J, f<, t-_ in if/ are positive. We next 
claim that the simultaneous least fixed point of I]) indeed defines --< c;, :j'P, 

<J'P, f<'P' t-_'P. 
To prove the result, we have to show that ( --<c;. ::S"". <J'~". f<<F. t-_<r) satisfy 

(10.8), and that for each* E {--<'P,:j'P,<J'P, f<<r. t-_'~'}, if ii* bholds, then (a. b) 
is in the corresponding fixed point of tJi (10.8). This will be proved by induction 

~Q( 

on lbi'P· 
Below, we prove a few cases for both directions. The remaining cases are 

very similar, and are left as an exercise for the reader. 
First, we prove that <J'P satisfies (10.8). Consider a tuple (a. b) in this 

relation. The result is immediate if lal~ = I'PI'2l + l. If Ia!~ < I<PI'2l, tl!Pn 

the third conjunct in zj;3 (a, b) is equivalent to 'P(::S'~'(a)l R, b) and, therefore, 

'l/J3(a, b) holds iff lbl~ = lal~ + 1 iff a <J'P b. Finally, if ial~ = I'PI~1 ' then tlw 
third conjunct in 7J'3 is equivalent to the formula v z ( ''P(, z,_ .p (a) 1 R. z) v 
'P(--< 'P (a) I R, Z)) and, thus, V':l (a, b) holds iff b is not in the fixed point of lh 
iff lbl~ = I'PIQ( + 1 = tal~ + 1. 

Second, we prove by induction on lbl~ that, for every a, if ii <J"" bora f<"" b, 
then ( ii, b) is in the corresponding fixed point of if/. 

Induction Basis: lbl~ = 1. 

• The case for <J'P. This is the simplest c:ase, sim~e I hi~ 
a <J'P b holds for no ii. 

1 impliPs that 
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• The case for· f<'P. Since lbl~ = 1, we conclude that I(J(0/ R, b) holds. We 
have a f<'P b for all a, and since I(J(0 I R, b) is true, (a, b) is in the fixed 
point of 7/!4 for every a. 

Induction Step: Assume that lbl~ = k: + 1 and that the property holds for 
all c such that IC1~ ::.; k:. 

• The case for <J'P. Suppose that a <J'P b. Then liil~::.; k:. We show that the 

three conjuncts in 7/!:1 hold for (Ci, b) and, thus, we conclude that (Ci, b) is 
in the fixed point of 7/J:J. 

Since Iii I~ < lbl~, we have Iii I~ ::.; I1PI2l and, therefore, ifJ( -<,'P ( Ci) / R, Ci) 
holds. By the induction hypothesis, -<'P(Ci) =-<(a), so IP( -<(a)/ R, a) holds. 

Since lal~ < lbl~' 'IP(' f<'P (a) I R, b) holds. By the induction hypoth
esis, f<'P(a) =-/<(ii) and, hence, 'IP(' f<(Ci)/R, b) holds. 

To prove that the third conjunct in 'ljJ3 holds, we consider two cases. If 
lbl~::.; I1PI 21 , then ifJ(-!,'P(Ci)/R, b) holds. By the hypothesis, -!,'P(Ci) =-!,(r1) 
and, therefore, ip(-!,(ii)/ R, b) holds. Otherwise lbl~ = I1PI2l + 1 and liil~ = 
I1PI2l· In this case all the elements generated at stage liil~ + 1 are already 
in stage I iii~ and, therefore, the formula l;j z ( <ip(' 1- 'P (a) I R, Z) v IP(-< 
'P (a) I R, z)) holds. As in the previous cases, by the induction hypothesis 
we conclude that l;j z ( 'IP(' 1- (a) I R, z) v IP(-< (a) I R, z)) holds. 

• The case for f<'P. Suppose that a f<'P b, and that the second and third 
disjuncts in 'lj;4 do not hold. Then we show that the first disjunct in ~~4 
holds and conclude that (Ci, b) is in the fixed point of ljJ4 . 

Since ifJ(0/ R, b) and l;fz,I(J(0/ R, z) do not hold, we have lbl~ > 1 and 
the fixed point of 7/!4 contains at least one element. Thus, there exists c 
such that c <J'P b. 

Given that a f<'P b, we have a f','P c and IC1~ ::.; k:. Therefore, we have a 
tuple cwith IC1~ ::.; k such that both a f','P c and c<J'P b hold. Now using the 
equivalence from the previous case for c <J'P b, and applying the induction 
hypothesis to a f','P c, we conclude that (a, b) satisfies =:Jz (a 1- z !\ z <l b)' 
which finishes the proof. D 

Corollary 10.12 (Gurevich-Shelah). IFP = LFP. 

Proof. The inclusion LFP c::; IFP is immediate. For the converse, proceed by 
induction on the formulae. The only case to consider is ifPR.:riP(R, x). We can 
assume, without loss of generality, that ifJ defines an inductive operator (if 
not, consider R(x) V ifJ). Then [ifPR..riP(R,x)](t) is equivalent to 

IP( -<'P(t)/ R, t), 

which, by the stage comparison theorem, is an LFP formula. D 
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As another corollary of stage comparison, we establish a normal form for 
LFP formulae. Define a logic LFP 0 which extends FO with the following. If 
<P is a system of FO formulae cp; ( R1 , ... , R 11 , .i) positive in all the l?;"s, thm 
[lfp R, .P l ( x) is an LFP () formula. Note the difference lwtWH'n this and gerwral 
LFP: we only allow fixf~d points to be applicable to FO formulae, and we do 
not close those fixed points under the Boolean connectives and quantification. 
In other words, eVf~ry formula of LFPo is either FO, or of tlw form [lfp 11 , "'] (.?). 
where <P consists of FO formulae. 

Corollary 10.13. LFP = LFP0 . 

Proof. \Ve first show that LFP0 is closed under V, 1\, and -.. For V and 1\ 

this is easy: just introduce an extra relation to hold the union or intersection 
of two fixed points. For example, given 'Pl (R 1 . . 1) and cp2(H2 .. ?). we define 
a system <P that consists of formulae cp 1(R 1.R2 . .'3,.r), cp2(R 1.R2.S .. f), and 
cp:3 ( R 1• R 2 • S', .f) = ( R1 (.i) V R2 (.f)). Then lfp8 ,1, is the union of fixed points 

of cp 1 and ctJ2. 

The closure under negation follows from the stage comparison: 
-.[lfpR.r'PJ(t) is equivalent tot f,'P f. 

The closure of LFP0 under fixed point OJWrat.ors is immediate (one simply 
adds an extra formula to the system). Thus, LFP0 = LFP. [] 

10.4 LFP, PFP, and Polynomial Time and Space 

The goal of this section is to show that thP fixed point logics we introduced 
capture familiar complexity classes over ordered structures. A structure is 
ordered if one of the symbols of its vocabulary rr is <. interpreted as a linear 
order on the universe. Recall that we used a linear order for defining an 
encoding of a structure: indeed, a string on the tape of a Turing machine is 
naturally on!f~red from ldt to right. For capturing NP and the polynomial 
hierarchy, we did not need the assumption that the structures are ordered, 
since we could guess an order by second-order quantifiers. HowPV<'L fixed point 
logics are not sufficiently expressive for guessing a linear order (in fact. this 
will be proved formally). 

Theorem 10.14 (Immerman-Vardi). Both LFP and lFP r:aptnr·e PTih!F 

over· the class of or-der·ed structur·es. That is. 

LFP+ < = IFP+ < = PTihiE. 

Pmof. By the Gurcvich-Shelah theorem (Corollary 1 0.12), we can use IFP 
and LFP inten:hangl~ably. First., we shmv that LFP formulae can he Pvaluated 
in polynomial time. The proof is by induction oil the formulae. TlH' casl'S of 
the Boolean connectives and quantifiers are handled in exactly the same wa:v 



10.4 LFP, PFP, and Polynomial Time and Space 193 

as for FO (see, e.g., Proposition 6.6). For formulae of the form lfPn,:r<iJ, it 
suffices to observe the following: ifF : p(U) -+ p(U) is a PTIME-computable 
monotone operator, then lfp(F) can be computed in polynomial time in I U I· 
Indeed, we know that the fixed point computation stops after at most I U I 
iterations, and each iteration is PTIME-computable. Hence, every LFP formula 
can be evaluated in polynomial time. 

For the converse, we use the same technique as in the proofs of Trakhten
brot's and Fagin's theorems. Suppose we are given a property P of u-structures 
which can be tested, on encodings of u-structures, by a deterministic polyno
mial time Turing machine M = (Q, E, .1, 8, Qo, Qa, Qr) with a one-way infinite 
tape. We assume, without loss of generality, that there is only one accepting 
state, Qa, that E = { 0, 1}, and that .::1 extends E with the blank symbol. 
Let M run in time nk. As before, we assume that nk exceeds the size of the 
encodings of n-element structures. 

With the linear order <, we can again define the lexicographic linear order 
~k on k-tuples, and use the ordered k-tuples to model both positions of M and 
time. We shall define, by means of fixed point formulae, the 2k-ary predicates 
T(J, T1, Tz, (Hq)qEQ, where Ti(if, i) indicates that position if at time [contains 
i, for i = 0, 1, and blank, for i = 2, and Hq(if, t) indicates that at time ~ 
the machine is in state q, and its head is in position if. We shall provide a 
system l]t of formulae whose simultaneous inflationary fixed point is exactly 
(To, T1, T2, (Hq)qEQ ). Once we have such a system, the sentence testing P will 
be given by 

(10.9) 

Since IFP"imult = IFP and IFP = LFP, the formula (10.9) can be expressed 
in LFP. 

The system l]t contains formulae 'l/Ji(if,~To,TI,T2,(Hq)qEQ),i = 0,1,2, 
defining T/s, and '1/Jq(if, ~ T0 , T1, T2 , (Hq)qEQ), q E Q, defining Hq's. It has the 
property that the jth iteration for each of the relations it defines, Ri, contains 
{(if, t) I R(if, t) and r < j}, where r < j means that tis among the first j - 1 
k-tuples in the lexicographic ordering <k· That is, we build the relations T/s 
and Hq's in stages, where the jth stage represents the configuration at times 
up to j -1. 

The formulae '1/Ji are straightforward to write, and we only sketch a few of 
them. The formula '1/Jo is of the form 

Here L and ~ are formula from the proof of Fagin's theorem (L holds iff the 
pth position of the encoding of the input is 1, and ~ holds iff if is past the last 
position of the encoding of the input on the tape). Thus the first disjunet says 
that at time 0, the tape of M contains the encoding of the input structure. 
The formula o:o(t-1,if,T0 ,T1 ,(Hq)qEQ) lists conditions under which at the 
following time instant, ~ the position if will contain zero. It is similar to the 
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formulae we used for modeling III's transitions in the proof of Fagin's theorem. 
The formula 7jJ1 is similar to 7jJ0 . 

The formula 7/Jq0 is of the form 

and other 7/Jq's are of the form (t> 0) 1\ oq(t- l,p. T0 , T1 • (Hq)qEQ). where 
o'l again lists conditions under which at the next time instant, III will enter 
state q while having the head pointing at jJ. The first disjunct iu ~·,10 states 
that at time 0, M is in state q0 with its head in position 0. 

We leave it as a routine exercise to the reader to write the a;'s and o" 's, 
based on Af's transitions, and verify that that jth stage of the fixed point com
putation for the system tJt indeed computes the configuration of M for times 
not exceeding j- 1. Hence, the fixed point formula (10.9) checks membership 
in P, which completes the proof. 0 

Note that using inflationary fixed points instead of least fixed points in 
the proof of Theorem 10.14 gives us extra freedom in writing down formulae 
of the system tJt: we do not have to ensure that these are positive in T; 's and 
Hq 's. However, one can write those formulae carefully so that they would be 
positive in all those relation symbols. In that case, one can replace ifp with 
lfp in (10.9). Hence, the proof of Theorem 10.14 then shows that every LFP
definable property over ordered structures can be defined by a formula of the 
form 

::J:f [lfp R; .1/f] (:£), 

where tJt is a system of FO formulae positive in relation symbols R 1 • .•• , R 11 • 

This, of course, would follow from Corollary 10.13, stating that LFP = LFP0 , 

but notice that for ordered structures, we obtained the normal form result 
without using the stage comparison theorem. 

We have seen that for several logics, adding an order increases their ex
pressiveness; that is, .C ~ (.C+ <)inv for .C being FO, or one of its counting 
extensions, or MSO. The same is true for LFP,IFP, and PFP; the proof of 
this will be given in the next chapter when we describe additional tools such 
as finite variable logics and pebble games. At this point we only say that 
the query that separates these logics on ordered and unordered structures is 
EVEN: it is not expressible in any of the fixed point logics without a linear 
order, but is obviously already in LFP+ <, since it is PTIME-computable. 

We conclude this section by considering the partial fixed point logic, PFP. 
Over ordered structures, it corresponds to another well-known complexity 
class. 

Theorem 10.15. Over ordered structures, PFP captures PsPACE. 
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ThP proof, of course, follows the proofs of Trakhtenbrot's, Fagin's, and 
Immerman-Vardi's theorems. We only explain why PFP formulae can be eval
uated in PSPACE. Consider pfpR.:i'cp(R,x), where R is k-ary, and l<~t Xi's lw 
the stages of the partial fixed point computation on Qt with I A I= n. There are 
two possibilities. Either xrn+t = xrn for some m, in which case a fixed point 

k . 

is reached. Otherwise, for some 0 ::=; i, j ::=; 2" , i + 1 < j, we have X' = X 1 , 

and in this case the formula [pfp R xct?( R, x)] (i) would evaluate to false, since 
the partial fixed point is the empty set. Hence, one has to check which of 
these cases is true. For that, it suffices to enumerate all the subsets of Ak, 
one by one (which can be done in PSPACE), and proceed with computing the 

. k 
sequence X', checking whether a fixed point is reached. Since only 2" steps 
need to be made, the entire computation is in PSPACE. 

To show that PsPACE c;; PFP+ <, one modifies the proof of the 
Immerman-Vardi theorem, to simulate the accepting condition of a Turing 
machine by means of a partial fixed point formula. We leave the details to the 
reader (Exercise 10.9). 

10.5 DATALOG and LFP 

In this section we review a database query language DATALOG, and relate it 
to fixed point logics. 

Recall that FO is used as the basic relational query language (it is known 
under the name relational calculus in the database literature). Conjunctive 
queries, seen in Sect. 6. 7, constitute an important subclass of FO queries. 
They can be defined in the fragment of FO that only includes conjunction 1\ 

and existential quantification 3. There is another convenient form for writing 
conjunctive queries that in fact is used most often in the literature. Instead of 
?j;(x) = ==Jfl /\; a;(x, fl), one omits the existential quantifiers and replaces the 
1\ 's with commas: 

(10.10) 

Here Rv, is a new relation symbol; the meaning of (10.10) is that, for a given 
structure Qt, this new relation contains the set of all tuples a such that Qt f= 
?/!(a). 

Expressions of the form (10.10) are called rules; the part of the rule that 
appears on the left of the : · (in this case, Rv1 ( x)) is called its head, and the 
part of the rule on the right of the :- is called its body. A rule is converted into 
a conjunctive query by replacing commas with conjunctions, and existentially 
quantifying all the variables that appear in the body but not in the head. 

For example, the rule 

q(x:, y) E(x, z), E(z, v), E(v, y) 

is translated into ==Jdu (E(x, z) 1\ E(z, v) 1\ E( v, y)). 
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DATALOC programs contain several rules some of \cvhich may])(' r·er:ursive: 
that is, the same predicate symbol may appear in both the head and the body 
of a rule. A typical DATALOCi program would be of the following form: 

trcl(:r. y) 
trd(J:, y) 

E(:r,y) 
E(.r;, z),t.rd(z. y) 

( ](l.l1) 

This program computes the transitive closure of E: it says that (:r. y) is in 
the transitive closure if there is an edge (.r. y), or there is an C'dgc (.r, .: ) such 
that (z, y) is in the transitive' closure'. As with tlH' fixed point definition of the 
transitive closure, to evaluate this program we itC'rate this definition. starting 
with the empty set, until a fixed point is reached. 

Definition 10.16. A DATALOC pmgmrn over· vocabular·y a is a pair· (II. Q), 
wher·e II is a set of rules of the form 

P(:Y!) n1 (:r, fl) .... , n:,, (.f. m. (10.12) 

Here the relation symbol P in the head of rule {10.12) does not occur· in (J, 

and each et; is an atomic for·mula of the fum~ R(:l!, y), for REa, or· P'(:Y:. :{j), 
for P' that occurs as a head of one of the rules of IT. Pu.dherrnon~, Q is the 
head of one of the ntles of II. 

By DATALOG~ we mean the erten.~ion of DATALoc; when~ negated atorniie 
formulae of the fonn ·R(-), for R E a, can appear in the bodies of ndes 
{10.12). 

For example, the transitive closure program consists of the rules (10.11), 
and trcl is the output predicate Q. 

In the standard DATALOG terminology, relation symbols from o arP called 
extensional predicates, and symbols not in a that appear as heads of rules 
are called intensional predicates. These an~ the preclicatc~s compllled by the 
program, and CJ is its output. 

To define the semantics of a DATA LOG (or DATALOG ~) program (II. (J), 
we introduce the irnmediatr conseq'uence operator Fn. Let P1 •••• , 1\. list all 
the intensional predicates (with Q being one of them). Lf't n; beth<' arity of 
P; , i = l. .... k. Let 

r;(x) J(~~) .1 (··~~) fl .r:,yl ·····fill] .1'./JJ 
(10.13) 

P;(.i) I (·~ ~) I ( ~ .~ ) !1 .r, .1/1 · · · · • ~fm 1 :r, .1/1 

enumerate all the rules in II with P; as the h<~ad. 
Given a structure Ql and a tuple of sds }7 = (Y1 , ...• Yk), Y; C A"'. 

i = L ... ,k, we define F 11 (Y) = (Z1 , ...• Zk), where 

I 

Z; = {aEA"' I (2LY], .... Yk) F=~ ?Jf!i (~r{(a,:t/i)/\ ... 1\ 
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where formulae ~fi are the formulae from the rules (10.13) for the intensional 
predicate P;. In other words, a E Z.; can be derived by applying one of the 
rules of II whose head is P;, using Y as the interpretation for the intensional 
predicates. 

Since the formula above is positive in all the intensional predicates (even 
for a DATALOG~ program), the operator Fn is monotone. Hence, starting with 
(0, ... , 0) and iterating this operator, we reach the least fixed point lfp(Fn) = 
(P{'c, ... ; P;:c). The output of (II, Q) on~ is defined as Q= (recall that Q is 
one of the P;'s). 

Returning to the transitive closure example, the stages of the fixed point 
computation of the immediate consequence operator are exactly the same as 
the stages of computing the least fixed point of E(x, y) V::lz (E(x, z) 1\R(z, y) ), 
and hence, on an arbitrary finite graph, the program (10.11) computes its 
transitive closure. 

Analy11ing the semantics of a DATA LOG program (II, Q), we can see that 
it is simply a simultaneous least fixed point of a system tJr of formulae 

n!.(~J) P)- V'. ( j(~ ~) j (~ ~-)) y!, x, 1,. · ·, k = . ~YJ '"h a, YJ 1\ · · · 1\ lm1 a, Y.J · (10.14) 

That is, the answer to (II, Q) on~ is 

{a 1 ~ P= [lfPQ,w](a) }. 

Hence, each DATALOG or DATALOG~ program can be expressed in LFPsimnlt, 
and thus in LFP. 

What fragment of LFP does DATALOG~ correspond to? The special form 
of formulae 1/J; (10.14) indicates that there are some syntactic restrictions 
on LFP formulae into which DATALOG~ is translated. We can capture tlwse 
syntactic restrictions by a notion of existential least fixed point logic. 

Definition 10.17. The existential least fixed point logic, ::JLFP, over- vocab
ular·y (J, is defined as a r-estr-iction of LFP over- a, wher-e: 

• negation can only be applied to atomic for-mulae of vocabular·y a {i.e., 
for-mulae R(-), wher·e R E a), and 

• univer-sal quantification is not allowed. 

Theorem 10.18. ::JLFP = DATALOG~. 

Pmof. \Ve have seen one direction already, since every DATALOC~ query can 
be translated into one simultaneous fixed point of a system of FO formulae t/'; 

(10.14), in which no universal quantifiers arc used, and negation only applies 
to atomic a-formulae. Elimination of the simultaneous fixed point introduces 
no negation and no universal quantification, and hence DATA LOU~ <;:;; ::JLFP. 
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For the convers<~, w<~ translate each ::JLFP formula cp(.r 1 •...• • q.) into an 
equivalent DATALOG~ program (II'P. Q'P), which, on any structure 21, com
putes Q':;' = cp(21). Moreow~r, the translation ensures that no relation symbol 
that appears positively in cp is negated in I1 'P. The translation proc<'eds by 
induction on the structure of the formulae as follows: 

• If cp(:r) is an atomic or negated atomic formula (i.e .. R(.f) or ,J?(.f)). then 
II 'P contains OIH' rule Q 'P (;r!) : - cp (.f). 

• If cp = o 1\ (i, then 

• If cp = o V d, thell 

• If cp(:r) = ::lyn(y .. f), then 

• Let tp(:f) = [lfpn. 17n(R, :1/)](.f). By the induction hypotlwsis, we haw 
a program (IIn., C2n) for o; notice that R appears positively in n, and 
thus does not appear n<,gated in II". Hence, we can ddiw' tll<' following 
program, in which R is an intellsional predicate: 

H(.r)}. 

and which computes the least fixed point of n. 

Thus, DATALOG and DATALOG~ correspond to syntactic r<'strictions of 
LFP. But could they still be sufficient for capturing PT! rvm? 

Let. us first. look at a DATA LO<; program (II. Q), and suppose WP hav<' two 
rr-structun~s, 2t1 and 2t2 , on the same universe A, such that for <'Vf'ry symbol 
R E rr, we have R'1!. 1 c;; R 212 • Then a straightforward induction on the stages 
of the immediate consequence opm·at.or shows that (II. Q) [21 t] c;; ( I7. Q) [212], 
where by (II, Q)[2t] we denot<' the result of (II, Q) on 21. Hence, DATALOC 
only express<~S monotone properties, and thus cannot capture PT!l\!F (exercise: 
<'xhibit a non-monotone PTtM~; propm-ty). 

Queries expressihl<~ in DATALOG~ satisfy a slightly different monotonicit.v 
property. Suppose 2t is a substructure of 23; that is, A c;; IJ, and for each H E rr, 
R'l!. is the restriction of R 93 to A. Then (II, Q) [21] c;; (II. Q) [23]. wlH~r<' (1 1, Q) 
is a DATALOG-, program. Inde<~d, when you look at. the formulae (10.14), it is 
dear that if a witness a is found in 2t, it will be a witness for the existential 
quantifiers in 23. Since it is again not hard to find a PTlMt·; property that 
fails this notion of monotonicit.y, DATA LOG , fails to capture PTIME. Fmthn
morc, ev<m adding order preserves monotonic:ity, and hence DATALOC~ fails 
to capture PTrM E even over ordered structures. 
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But now assume that on all the structures, we have a succes
sor relation succ available, as well as constants min, max for the min
imal and maximal element with respect to the successor relation. It 
is impossible for (A, succm, min m, max 'X, ... ) to be a substructure of 
(B, succ'B, min'B, max'B, ... ), and hence the previous monotonicity argument 
does not work. In fact, the following theorem can be shown. 

Theorem 10.19. Over structures with successor relation and constants for 
the minimal and maximal elements, DATALOG~ captures PTIME. D 

The proof mimics the proofs of Fagin's and Immerman-Vardi's theo
rems, by directly coding deterministic polynomial time Turing machines in 
DATALOG~, and is left to the reader as an exercise. 

10.6 Thansitive Closure Logic 

One of the standard examples of queries expressible in LFP is the transi
tive closure. In this section, we study a logic based on the transitive closure 
operator, rather than the least or inflationary fixed point, and prove that it 
corresponds to a well-known complexity class. 

Definition 10.20. The transitive closure logic TRCL is defined as an exten
sion of FO with the following formation rule: if <p(x, if, Z) is a formula, where 
I xl=l ill= k, and t;_, £; are tuples of terms of length k, then 

[trclx,iJ'P(x, if, Z)](f;_, £;) 

is a formula whose free variables are z plus the free variables off;_,£;. 
The semantics is defined as follows. Given a structure ~' values a for· z 

and iii for£;, i = 1, 2, construct the graph G on Ak with the set of edges 

Then 
~ F= [trcl:r,iJVJ(x, if, ii)](ii1, ii2) 

iff ( ii1, ii2) is in the transitive closure of G. 

For example, connectivity of directed graphs can be expressed by the TRCL 
formula Vu'<lv [trclx,y(E(x,y) V E(y,x))](u,v). 

We now state the main result of this section. 

Theorem 10.21. Over ordered structures, TRCL captures NLoG. 
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Having seen a number of results of this type, one might be tempted to 
think that the proof is by a simple modification of the proofs of Trakhten
brot's, Fagin's, and Immerman-Vardi's theorems. However, in this case we are 
running into problems, and the problems arise in the "easy" part of the proof: 
TRCL ~ NLoG. 

It is well known that the transitive closure of a graph can be computed 
by a nondeterministic logspace machine. Hence, trying to show the inclusion 
TRCL ~ NLOG by induction on the structure of the formulae, we haw~ no 
problems with the transitive closure operator. The problematic operation is 
negation. Since NLoG is a nondeterministic class, acceptance means that some 
computation ends in an accepting state. The negation of this statement is that 
all computations end in rejecting states, and it is not clear whether this can be 
reformulated as an existential statement. Our strategy for proving Tlworcm 
10.21 is to split it into two statements. First, we define a logic POSTRCL in 
which all occurrences of the transitive closure operator are positive (i.e., occur 
under the scope of an even number of negations). In fact, one can always 
convert such a formula into an equivalent formula in which no trcl operator 
would be contained in the scope of any negation symbol. We then prove two 
results. 

Proposition 10.22. Over ordered structures, POSTRCL captures NLo<;. 

Proposition 10.23. Over ordered structures, POSTRCL = TRCL. 

Clearly, Theorem 10.21 will follow from these. Furthermore, they yield the 
following corollary. 

Corollary 10.24 (Immerman-Szelepcsenyi). 
complementation. 

NLoc: is closed under 
0 

This is in sharp contrast to other nondeterministic classes such as NP or 
the levels Ef' of the polynomial hierarchy, where closure under complemen
tation remains a major unsolved problem. In particular, for NP this is the 
problem of whether NP = coNP. 

We start by showing how to prove Proposition 10.22. With negation gone, 
this proof becomes very similar to the other capture proofs seen in this and 
the previous chapters. Indeed, the inclusion POSTRCL ~ NLoc; is proved 
by straightforward induction (since negation is only applied to FO formulae). 
For the converse, suppose we have a nondeterministic: logspace machine Jl./. In 
such a machine, we have one read-only tape that stores the input, enc(Ql), and 
one work tape, whose si:~~e is bounded by clog n for some constant c ( whPre 
n =I A 1). Let Q be the set of states. To model a configuration of Jl./, we need 
to model both tapes. The input tape can be described by a tuple of variables 
p, where pindicates a position on the tape, just as in the proof of Fagin's and 
Immerman-Vardi's theorems. 
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For the work tape, we need to describe its content, and the position of 
the head, together with the state. The latter (position and the state) can be 
described with I Q I variables (assuming clog n is shorter than the encoding 
of structures with ann-element universe). If the alphabet of the work tape is 
{0, 1}, there are 2clogn = nc possible configurations, which can be described 
with c variables. Hence, the entire configuration can be described by tuples .if 
of length at most c( a)+ IQI + c, where c( a) is a constant depending on a that 
gives an upper bound on the size of tuples p describing positions in the input. 

Then the class of structures accepted by M is definable by the formula 

(10.15) 

Here 'Pinit(s0 ) says that so is the initial configuration, with the input tape 
head pointing at the first position in the initial state, and the work tape 
containing all zeros; 'Pfinal ( 81 ) says that 81 is an accepting configuration (it is 
in an accepting state), and 'Pncxt(X, iJ) says that the configuration if is obtained 
from the configuration x in one move. It is a straightforward (but somewhat 
tedious) task to write these three formulae in FO, and it is done similarly to 
the proofs of other capture theorems. This proves Proposition 10.22. 

Before we prove Proposition 10.23, we re-examine (10.15). Let min and 
max, as before, stand for the constants for the minimal and the maximal 
element with respect to the ordering, and let min and max stand for the 
tuples of these constants, of the same length as the configuration description. 
Suppose instead of 'Pnext(X, iJ) we use the formula 'P~ext= 

'Pnext ( x, if) V ( x = min !\ 'Pi nit (if)) v ( 'Pfinat ( x) !\ if = max), 

allowing jumps from min to the initial configuration, and from any final 
configuration to max. Then (10.15) is equivalent to 

(10.16) 

Thus, every POSTRCL formula over ordered structures defines an NLoG prop
erty, which can be expressed by (10.15), and hence by (10.16). We therefore 
obtained the following. 

Corollary 10.25. Over ordered structures, every POSTRCL formula is equiv
alent to a formula of the form [trclx,iJ'P](min, max), where cp is FO. 

We now prove Proposition 10.23. The proof is by induction on the struc
ture of TRCL formulae, and the only nontrivial case is that of negation. By 
Corollary 10.25, we may assume that negation is applied to a formula of the 
form (10.16); that is, we have to show that 

• [trclx,iJ'P(x, if)](min, max), (10.17) 
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where <pis FO, is equivalent to a POSTRCL formula. 

Assume .r = k. For an arbitrary formula o(:f. m v.-ith I .ill= k. and a 

structure 2L IPt d~(?l, h) be the shortest distance between r7 and h in o(Ql) 

(viewed as a graph on A"'). If no path bet\v<'en a and b exisb. we assume 

d~ (?i, b) = 0e. We define 

Reach~(a) 

Thus. (10.17) holds in Ql iff 

(10.18) 

Notice that the maximal finite value of d~ (a, b) is I A I". Sine<' structmes are 

ordered, we can count up to I A I k using ( k + 1 )-tuples of variables: associating 

the universe A with { 0 ..... n-]}, we let a ( k+ l )-tuple ( c1 • ••. , q + 1 ) rcpresmt 

k k-- I 
I' I · II + !:2 · n -/ ... + q · II + r'h+ l . (10.19) 

As it will not cause any confusion, we shall use the uotation f for bot b tlw 
tuple and the number (10.19) it reprl'seuts. l\ote also that constants 0 =min 
and 1, as well as successor and predecessor t + J and f I, ar<' FO-definablf' 
in the presene<~ of order, so WI' shall usc them in formulae. Also uoticP that 
the maximum value of d;~ (a. b), I A I". is reprl'sentecl by Ul = ( 1. 0 .... 0). 

One usdul property of POSTRCL is that over ordered structurPs it can 

count: for a formula !3(.£) of POSTRCL, one can construct another POSTRCL 

formula count;> (Y) such that 2l f= count3 ( () if there are at least c t.uples il 

in f3(2l). Indeed, we can enumerate all the tuples a, and go ovPr <til of tlwrn, 
checking if j-J(a) holds. Since ;-3 can bP checb~d in NLoc;, thP who!<' algorithm 
has NLOG compl<~xity, and thus is definable in POSTHCL. Ow~ can also express 

this counting din~ctly: if li{r t i71 , .rAi'2) is ( (.r2 = .11 + J) 11 ( il:z = il1 ) ) v ( ( .f2 = 

:11 + 1) II j3(:r2 ) II (i72 = 1!1 + 1)), then 

expresses co unto (Y) (exercise: explain why). 

Our next goal is to provP the following lemma. 

Lemma 10.26. For· every FO fonnuln n(:T, .17), theTe c:r:ists a POSTHCL for·
rnula Pn(x, Z) such that for every 2l, 

iff I RPach~(a) I= C. 

Before proving this, notice that Lemma 10.26 immediately impli<~s Propo

sition 10.23, since by (10.18), (10.17) is equivalent to 
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:lz (p'P(min,Z) 1\ P'P(x,y)lb(jJ=max)(min,z)), 

which is a POSTRCL formula. 

Let r ~ (i"i, r) denote the cardinality of { b d~ (?1, b) <:::: C}, so that the 
cardinality of the set Reach~ (it) is r-~(ii, 10} 

Assume that there is a formula In ( x, 'if, Zl' Z2) such that Qt. F In (a, e, Cl' ?'2) 
means that if T~ (a, e) = Cl' then T~ (a, e + 1) = C2. With such a formula Ia' 

Pn ( x, z) is definable by 

since the above formula says that Ta(x, 10) = z. Thus, it remains to show how 

to define In. 
In preparation for writing down the formula In, notice that there is a 

POSTRCL formula d,(x, fl, z) such that Qt. F dn(a, b, r) iff d~(a, b)<::::?'. Indeed, 
it is given by 

Coming back to leo notice that r~(a, i" + 1) = C2 iff 

Hence, if we could write a POSTRCL formula expressing this condition, we 

would be able to express Ia in POSTRCL. 
Suppose we can express d~ (a, b) > e + 1 in POSTRCL. Then Ia is straight

forward to write, since we already saw how to count: we start with c2 and 

increment the count every time b with d~(a, b) > e + 1 is found; then trcl 
is applied to see if 10 is reached (we leave the details of this formula to the 
reader). 

Thus, our last task is to express the condition d;~ (a, b) > e+ 1 in POSTRCL. 
Even though we have a formula da(x, ;t], z) in POSTRCL (meaning da(x, fl) <:::: 
Z), what we need now is the negation of such a formula, which is not in 

POSTRCL. However, it is possible to express d~(a, b) > e + 1 in POSTRCL 
under the condition r~ (a, e) = c1 (which is all that we need anyway, by the 

definition of l<>l· 

If e = min, then d~(a, b) > 1 is equivalent to -.a( a, b). Otherwise, 

d~(a, b) > e + 1 iff one can find c tuples l different from b such that 

d~(a, iJ <:::: e and --.a(i, b) for all such l Now the distance formula (which 

itself is a POSTRCL formula) occurs positively, and to express d~(a, b) > i"+ 1, 

we simply count the number of f satisfying the conditions above, and com
pare that numlwr with c7. As we have seen earlier, such counting of .f's can 

b(~ done by a POSTRCL formula. Thus, Ia is expressible in POSTRCL, which 
completes the proof of Lemma 10.26 and Theorem 10.21. D 
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10.7 A Logic for PTIME? 

We have seen that LFP and IFP capture PTIME on the class of ordered struc
tures. On the other hand, for classes such as NP and coNP we have logics 
that capture them over all structures. The question that immediately arises is 
whether there is a logic that captures PTIME, without the additional restric
tion to ordered structures. If there were such a logic, answering the "PTII'viE 
vs. NP" question would become a purely logical problem: one would have to 
separate two logics over the class of all finite structures. 

However, all attempts to produce a logic that captures PTIME have failed 
so far. In fact, it is even conjectured that no such logic exists: 

Conjecture (Gurevich) There is no logic that captur·es PTIME over· the 
class of all finite structures. 

This is a very strong conjecture: since there is a logic for NP, by Fagin's 
theorem, it would imply that PTIME =/= NP! The conjecture described precisely 
what a logic is. We shall not go into technical details, but the main idea is 
to rule out the possibility of taking an arbitrary collection of properties and 
stating that they constitute a logic. For example, is the collection of all PTJME 
properties a logic? If we want the conjecture to hold, clearly the answer ought 
to be no. 

In this short section, we shall present a few attempts to refute Gurevich's 
conjecture and find a logic for PTIME - and show how they all failed. The 
results here will be presented without proofs, and the interested reader should 
consult the bibliographic notes section for the references. 

What are examples of properties not expressible in LFP or IFP over un
ordered structures? Although we have not proved this yet, we mentioned mw 
example: the query EVEN. We shall see later, in Chap. 11, that in general 
IFP cannot express nontrivial counting properties over unordered structures. 
Hence, one might try to add counting to IFP (it is better to use IFP, so 
that positiveness would not constrain us), and hope that such an extension 
captures PTIME. 

This extension of IFP, denoted by IFP ( Cnt), can be defined in the same 
way as we defined FO( Cnt) from FO: one introduces the additional universe 
{0, ... , n- 1 }, where n is the cardinality of the universe of a a-structure 2l, 
and extends the logic with counting quantifiers ::Jix. However, this extension 
still falls short of PTIME, and the separating example is very complicated. 

Theorem 10.27. Ther·e are PTIME properties which are not definable in 
IFP(Cnt). D 

Another attempt to expand IFP is to introduce generalized quantifier·s. 
already seen in Chap. 8. There, we only dealt with unary generali:wd quan
tifiers; here we present a general definition, but for notational simplicity dml 
with the case of one additional relation per quantifier. 



10.7 A Logic for PTIME? 205 

Let R be a relation symbol of arity k, R rf_ a-. Let C <;;; STRUCT[{R}] be a 
class of structures closed under isomorphism. This gives rise to a generalized 
quantifier Qc and the extension of IFP with Qc, denoted by IFP(Qc), which 
is defined as follows. If tp(x, if) is an IFP(Qc) formula of vocabulary a-, and 
lxl= k, then 

¢(if) = Qcx tp(x, fl) (10.20) 

is an IFP ( Qc) formula. The other formation rules are exactly the same as for 
IFP. The semantics of (10.20) is as follows: 

For example, if C is the class of connected graphs, then the sentence 
Qcx, y E(x, y) simply tests if the input graph is connected. 

If Q is a set of generalized quantifiers, then by IFP( Q) we mean the 
extension of IFP with the formulae (10.20) for all the generalized quantifiers 
in Q. 

There is a "simple" way of getting a logic that captures PTIME: it is 
IFP(Qp), where QP is the collection of all PTIME properties. However, this is 
cheating: we define the logic in terms of itself. But perhaps there is a nicely 
behaving set Q of generalized quantifiers such that IFP( Q) captures PTIME. 

The first result, showing that such a class - if it exists - will be hard to 
find, says the following. 

Proposition 10.28. Let Qn be a collection of generalized quantifiers of arity 
at most n. There there exists a vocabulary o-n such that over o-n -structures, 
IFP(Qn) fails to capture PTIME. 0 

The reason this result is not completely satisfactory is that the arity of 
relations in o-n depends on n. For example, Proposition 10.28 says nothing 
about the impossibility of capturing PTIME over graphs. And in fact there is 
a collection Qgr of generalized binary quantifiers (i.e., of arity 2) such that 
IFP(Qgr) expresses all the PTIME properties of graphs (why?). In fact, one 
can even show that there is a single ternary generalized quantifier Q:1 such 
that IFP(Q3 ) expresses all the PTIME properties of graphs (intuitively, it is 
possible to code Qgr with one ternary generalized quantifier), but Q3 itself is 
not PTIME-computable, and hence IFP(Q3 ) fails to capture PTIME on graphs. 

The existence of a generalized quantifier Q3 raises an intriguing possibility 
that for some finite collection Qfin of PTIME-computable generalized quanti
fiers, IFP( Qfin) captures PTIME on unordered graphs. However, this attempt 
to refute Gurevich's conjecture does not work either. 

Theorem 10.29. There is no finite collection Qfin ofPTIME-computable gen
eralized quantifiers such that IFP(Qfin) captures PTIME on unorder·ed graphs. 

Thus, given all that we know today, Gurevich's conjecture may well be 
true, as it has withstood a number of attempts to produce a logic for PTIME 
over unordered structures. 
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10.8 Bibliographic Notes 

Inductive operators and fixed point logics are studied extensively in 
Moschovakis [185] in the context of arbitrary models. The systematic: study 
of fixed point logics in finite model theory originated with Chandra and Hare! 
(33], who introduced the least fixed point operator in the context of database 
query languages to overcome well-known limitations of FO. The subject is 
treated in detail in Ebbinghaus and Flum [60], Immerman [133], Grohe [106]; 
see also a recent survey by Dawar and Gurevich (51]. All of tlwse references 
present the Tarski-Knaster theorem, least and inflationary fixed point logics. 
and simultaneous fixed points. 

The "even simple path" example is taken from Kolaitis (148], where it is 
attributed to Yannakakis. See also Exercise 10.2. 

The stage comparison theorem was proved in Moschovakis [185], and spP
cialized for the finite case in Immerman (130] and Gurevich and Shelah (119]: 
the proof presented here follows Leivant [165]. Corollary 10.12 is from Gure
vich and Shelah (119], and Corollary 10.13 from (130]. 

The connection between fixed point logics and polynomial time was discov
ered by several people in the early 1980s. Sazonov [212] showed in 1980 that a 
certain least fixed point construction - of recursive-theoretic flavor captures 
PTIME. Then, in 1982, Immerman [129], Vardi [244], and Livchak [172] proved 
what is now known as the Immerman-Vardi theorem. Both Imnwrman's and 
Vardi's papers appeared in the proceedings of the STOC 1982 conference; 
Livchak's paper was published in Russian and became known much later; 
hence Theorem 10.14 is usually referred to as the Immerman-Vardi theorem. 
In 1986, Immerman published a full version of his 1982 paper (sec [130]). 
Theorem 10.15 is from Vardi [244]. 

DATALOG has been studied extensively in the database literature, see, e.g., 
Abiteboul, Hull, and Vianu [3] for many additional results and references. 
Theorem 10.19 is from Papadimitriou [194]. 

Theorem 10.21 is from Immerman [130, 132]: the first of these papers 
showed that POSTRCL captures NLoG, and the other paper proved closure 
under complementation (see also Szelepcsenyi [226]). 

A number of references discuss Gurevich's conjecture in detail (e.g., Otto 
[191], Kolaitis [147], as well as [60]); they also discuss the notion of a "logic" 
suitable for capturing PTIME. Theorem 10.27 is from Cai, Fiirer, and Immer
man [30] (see also Otto [191], as well as Gire and Hoang [91] for extensions). 
Theorem 10.29 is from Dawar and Hella [52]. 

Sources for exercises: 
Exercise 10.10: Ajtai and Gurevich [13] 
Exercise 10.11: Immerman [130] 
Exercises 10.12 and 10.13: Gradel [97] 
Exercise 10.14: Immerman [131] 
Exercise 10.15: Gradel and McColm [101] 
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Exercise 10.16: Abiteboul and Vianu [5] 
Exercises 10.17 and 10.18: Afrati, Cosmadakis, and Yannakakis [8] 
Exercise 10.19: Gradel and Otto [102] 
Exercises 10.20 and 10.21: Grohe [107] 
Exercise 10.22: Shmueli [220] and Cosmadakis et al. [43] 
Exercise 10.23: Marcinkowski [179] 
Exercise 10.24: Gottlob and Koch [94] 
Exercise 10.25: Gurevich, Immerman, and Shelah [118] 
Exercise 10.26: Dawar and Hella [52] 
Exercise 10.27: Dawar, Lindell, and Weinstein [54] 

10.9 Exercises 

Exercise 10.1. Prove Proposition 10.3. 

Exercise 10.2. Prove that the simultaneous fixed point shown before Theorem 10.8 
defines pairs of nodes connected by a simple path of even length. 

Hint: use Menger's theorem in graph theory. 
Also show that this does not generalize to directed graphs. 

Exercise 10.3. Prove Theorem 10.8 for a system involving an arbitrary number of 
formulae. 

Exercise 10.4. Prove Theorem 10.10. 

Exercise 10.5. Prove Theorem 10.15. 

Exercise 10.6. Prove Theorem 10.19. 

Exercise 10.7. Prove that the combined complexity of LFP is EXPTIME-complete. 

Exercise 10.8. Consider an alternative semantics for DATALOG programs. Given a 
set of rules IT and a structure 2l, an instantiation f3 of all the intensional predicates 
is called a model of IT on 2l if every rule of IT is satisfied. Show that for any IT, 

there exists a minimal, with respect to inclusion, model Fruin· The minimal model 

semantics of DATALOG defines the answer to (IT, Q) on 2l as the interpretation of Q 
in Pmin· 

Prove that the fixed point and the minimal model semantics of DATALOG coin
cide. 

Exercise 10.9. Write down the formulae 1/J; and 'lj;q from the proof of the 
Immerman-Vardi theorem, and show that their simultaneous least fixed point com

putes the relations Ti and Hq. 

Exercise 10.10. Show that over finite structures, monotone and positive are two 

different concepts (they are known to be the same over infinite structures, see Lyndon 

[175]). That is, give an example of an FO formula r.p(P, ·) which is monotone in I', 
but not equivalent to any FO formula positive in P. 
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Exercise 10.11. Assume that the vocabulary a contains at least two distinct con
stants. Prove a stronger normal form result for LFP: every LFP formula is equivalent 
to a formula of the form [lfPR,x'P(R, x)](i}, where <pis an FO formula. 

Hint: use two constants to eliminate nested fixed points. 

Exercise 10.12. Consider a restriction of SO that consists of formulae of the form 

QR1 ... QRn Vx 1\ at, 
l 

where each Q is either ::3 or V, and each at is Horn with respect to R1 ..... R,. That 
is, it is of the form 

/'1 1\ · .. 1\ /'m -+ (-J, 

where each I'J either does not mention R; 's, or is of the form R; ( i1), and ;3 is either 
of the form R;(i1), or false. We denote such restriction by SO-HoRN. If all the 
quantifiers Q are existential, we speak of ::3S0-HORN. 

Prove that over ordered structures, SO-HORN and ::3S0-HORN capture PTIME. 

Exercise 10.13. The class SO-KROM is defined similarly to SO-HORl", except that 
each at is a disjunction of at most two atoms of the form R;(i1) or -.Ri('iJ), and 
a formula that does not mention the R;'s. ::3S0-KROM is defined as the restriction 
where all second-order quantifiers are existential. 

Prove that both SO-KROM and ::3S0-KROM capture NLoG over ordered struc
tures. 

Exercise 10.14. Define a variant of the transitive closure logic, denoted by 
DETTRCL, where the transitive closure operator trcl is replaced by the determinis
tic transitive closure. When applied to a graph (V, E), it finds pairs (a, b) which are 
connected by a deterministic path: on such a path, every node except b must be of 
out-degree 1. 

Prove that DETTRCL captures DLoG over ordered structures. 

Exercise 10.15. Prove that over unordered structures, DETTRCL ~ TRCL ~ LFP. 

Exercise 10.16. Consider the following language that computes queries over 
STRUCT[a]. Given an input structure m, its programs compute sequences of re
lations, and are defined inductively as follows: 

• 0 is a program that computes no relation. 
elf II(R1 , ... ,Rn) is a program that computes relations R], ... ,R,, where 

R], ... ,Rn f/:a,then 

II(R1, ... , Rn): R(x) : <p(x); 

where R !f: a U { R1 , ... , R,}, and <p is an FO formula in the vocabulary of a 
expanded with R1, ... , Rn, is a program that computes relations R1, .. . , R,, R, 
with R obtained by evaluating <p on the expansion of m with R 1, ...• R,, R. 

•If II(R1, ... ,Rn) is a program that computes relations R], .... R,, and 
II'(T1 , ... , Tk) is a program over STRUCT[a U {R1, ... , R,} U {S1, .... 5..}], 
where the arity of each S; matches the arity ofT,, then 

II(RI, ... ,R,); while change do II'(T1 ..... 11.) end: 
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is a program that computes (Rl, ... ,Rn,Tl, ... ,Tk) over u-structures. The 
meaning of the last statement is that starting with (0, ... , 0) as the interpreta
tion of the S;'s, one iterates II'; it computes the T;'s, which are then reused as 
S; 's, and so on. This is done as long as it changes one relation among the S; 's. 
If this program terminates, the values of the relations (T1, ... , Tk) in that state 
become the output. 

For example, the while loop 

while change do T(x, y) :- E(x, y) V :Jz (E(x, z) 1\ S(z, y)) end; 

computes the transitive closure of E. 
Prove that over ordered structures, such while programs compute precisely the 

PSPACE queries. 

Exercise 10.17. Let monotone PTIME be the class of all monotone PTIME prop
erties. Show that DATALOG, even in the presence of a successor relation, fails to 
capture monotone PTIME. 

Hint: Let O" = {R, S}, where R is ternary, and Sis unary. The separating query 
is defined as follows: Q is true in 2l iff the system of linear equations 

does not have a non-negative solution. 

Exercise 10.18. Prove that without the successor relation, DATALOG~ fails to cap
ture PTIME on ordered structures, even if one allows atoms -.(x = y). 

Hint: The separating query takes a graph, and outputs pairs of nodes (a, b) such 
that there is a path from a to b whose length is a perfect square. 

Exercise 10.19. Show how to expand DATALOG with counting, and prove that the 
resulting language is equivalent to the expansion of IFP with counting. 

Exercise 10.20. Prove that the expansion of IFP with counting captures PTIME 
on the class of planar graphs. 

Exercise 10.21. Prove that the class of planar graphs is definable in IFP. 

Exercise 10.22. You may recall that containment of conjunctive queries is NP
complete (Exercise 6.19). Prove that containment of arbitrary DATALOG queries is 
undecidable, but becomes decidable if all intensional predicates are unary. 

Exercise 10.23. We say that a DATALOG program II is uniformly bounded if there 
is a number n such that on every structure 2l, the fixed point of Fu is reached after 
at most n steps. 

Prove that uniform boundedness is undecidable for DATALOG, even for programs 
that consist of a single rule. 

Exercise 10.24. Consider trees represented as in Chap. 7, i.e., structures with two 
successor predicates, labeling predicates, and, furthermore, assume that we have 
unary predicates Leaf and Root interpreted as the set of leaves, and the singleton 
set containing the root. 
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Define monadic DATALOG as the restriction of DATALOG where all intensional 
predicates are unary. 

Prove that over trees, Boolean and unary queries definable in monadic DATA Lot; 

and in MSO are precisely the same. In particular, a tree language is definable in 
monadic DATALOG iff it is regular. 

Exercise 10.25. Prove that there exists a class C of graphs which admits fixed 
points of unbounded depth (i.e., for every n there is an inductive operator that 
reaches its fixed point on some graph from C in at least n iterations), and yet 
LFP = FO on C. 

Remark: this exercise says that it is possible for LFP and FO to coincide on a 
class of graphs which admits fixed points of unbounded depth. The negation of this 
was known as McColm's conjecture; hence the goal of this exercise is to disprove 
McColm's conjecture. McColm [181] made two conjectures relating boundedness of 
fixed points and collapse of logics; the second conjecture that talks about FO and 
the finite variable logic is known to be true (see Exercise 11.19). 

For the next three exercises, consider the following statement, known as the 
ordered conjecture (see Kolaitis and Vardi [153]): 

If C is an infinite class of finite ordered structures, then FO ~ LFP on C. 

Exercise 10.26. Prove that if the ordered conjecture does not hold, then PTil\1E f 
PSPACE. 

Exercise 10.27. Prove that if the ordered conjecture holds, then LINH f ETIM!O. 
Here LINH is the linear time hierarchy: the class of languages computed in linear 

time by alternating Turing machines, with a constant number of alternations, and 
ETIME is the class of languages computed by deterministic Turing machines in time 
20(nJ. 

Exercise 10.28: Does the ordered conjecture hold? 
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Finite Variable Logics 

In this chapter, we introduce finite variable logics: a unifying tool for study
ing fixed point logics. These logics use infinitary connectives already seen in 
Chap. 8, but here we impose a different restriction: each formula can use only 
finitely many variables. We show that fixed point logics LFP, IFP, and PFP 
can be embedded in such a finite variable logic. Furthermore, the finite vari
able logic is easier to study: it can be characterized by games, and this gives us 
bounds on the expressive power of fixed point logics; in particular, we show 
that without a linear ordering, they fail to capture complexity classes. We 
then study definability and ordering of types in finite variable logics, and use 
these techniques to relate separating complexity classes to separating some 
fixed point logics over unordered structures. 

11.1 Logics with Finitely Many Variables 

Let us revisit the example of the transitive closure of a relation. Suppose E 
is a binary relation. We know how to write FO formulae 'Pn(x, y) stating that 
there is a path from x to y of length n (that is, formulae defining the stages 
of the fixed point computation of the transitive closure). One can express 
'Pn(x,y), n > 1, as ::Jx1 ... ::lxn-1 (E(x,xl)l\ ... 1\E(xn-l,y)), and cpl(x,y) as 
E(x, y ). If we could use infinitary disjunctions (i.e., the logic C=w of Chap. 8), 
we could express the transitive closure query by 

V 'Pn(x, y). (11.1) 
n~l 

One could even define 'Pn(x, y) by induction, as we did in Chap. 10: 

'Pl(x,y) = E(x,y), 'Pn+l(x,y) = 3zn (E(x,zn) 1\cpn(Zn,y)), (11.2) 

where Zn is a fresh variable. The problem with either definition of the 'Pn 's 
together with (11.1) is that the logic C=w is useless in the context of finite 
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model theory: as we saw in Chap. 8, it defines every property of finite struc
tures (Proposition 8.4). 

However, if we look carefully at the definition of the 'Pn's given in (11.2), 
we can see that there is no need to introduce a fresh variable z, for each new 
formula. In fact, we can define formulae 'Pn as follows: 

'PI(x,y) = E(x.y) 

'Pn+l(x,y) = ::Jz (E(x,z)!dx (z=xllcp,(x,y))). 
( 11.3) 

In definition (11.3), each formula 'Pn uses only three variables, ;r, y, and z, by 
carefully reusing them. To define 'Pn(x, y), we need to say that there is a ::: 
such that E(x, z) holds, and 'Pn(z, y) holds. But with three variables, we only 
know how to say that cp,(x, y) holds. So once z is used in E(x, z), it is no 
longer needed, and we replace it by x: that is, we say that there is an :r such 
that x happens to be equal to z, and 'Pn(;:r;, y) holds: and we know that the 
latter is definable with three variables. 

With these formulae (11.3), we can still define the transitive closure by 
(11.1). What makes the difference now is the fact that the resulting formula 
only uses three variables. If one checks the proof of Proposition 8.4, one dis
covers that, to define arbitrary classes of finite structures in Cxw, one needs, 
in general, infinitely many variables. So perhaps an infinitary logic in which 
the number of variables is finite could be useful after all? 

The answer to this question is a resounding yes: we shall see that all 
fixed point logics can be coded in a way very similar to (11.3), and that the 
resulting infinitary logic can be analyzed by the same techniques we have seen 
in previous chapters. 

Definition 11.1 (Finite variable logics). The class of FO fommlae that 
use at most k distinct variables will be denoted by FO". The class of Lxw 
formulae that use at most k variables will be denoted by C':xw (r-eminder: L>Cw 
extends FO with infinitar·y conjunctions 1\ and disjunctions V ). Finally, we 
define the finite variable infinitary logic c~w by 

c~w u c~w· 
kEN 

That is, C~w has formulae of Coow that only use finitely many var·iables. 
The quantifier rank qr(·) of C~w formulae is defined as for FO for Boolean 

connectives and quantifiers; for- infinitary connectives, we define 

qr(V 'Pi) = qr(/\ cpi) = supqr(cp.;) . 
., 

Thus, in general the quantifier rank of an infinitary formula is an or
dinal. For example, if the 'Pn's arc FO formulae with qr(cp,) = n, then 
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qr(V,<w VJn) = w, and qr(::Jx Vn<w 'Pn) = w + 1. When we establish a normal 
form for .[~w, we shall see that over finite structures it suffices to consider 
only formulae of quantifier rank up tow. 

Let us give a few examples of definability in .C~w. We first consider linear 
orderings: that is, the vocabulary contains one binary relation <. With the 
same trick of reusing variables, we define the formulae 

~h(x) = (x = x) 

( 11.4) 

The formula ~f;n (a) is true in a linear order L iff the set { b I b <::: a} contains 
at least n elements. Indeed, ~h(x) is true for every x, and 7Pn+l(x) says that 
there is y < x such that there are at least n elements that do not exceed 
y. Thus, for each n we have a sentence 1}/n = 3x 1Pn(x) that is trw' in L iff 
ILI2 n. 

Now let C be an arbitrary subset of N. Consider the sentence 

V (wn 1\ •Wn+l)· 
nEC: 

This is a sentence of .C~w' as it uses only two variables, x and y, and it is 
true in L iff I LIE C. Hence, arbitrary cardinalities of linear orderings can be 
tested in .C~w. 

Next, consider fixed point computations. Suppose that an FO formula 
cp( R, x) defines an inductive operator; that is, either cp is monotone in R, 
or we are considering an inflationary fixed point. We have seen in Chap. 10 
that stages of the fixed point computation can be defined by FO formulae 
cpn(x); the formulae we used, however, may potentially involve arbitrarily 
many variables. To be able to express the least fixed point as V, cpn(x), we 
need to define those formulae cp" ( x) more carefully. 

Assume that cp, in addition to x = ( x 1 , ... , Xk), uses variables z1, ... , z1. 

We introduce additional variables y = (Yl, ... , Yk), and define cp0 ( x) as 
•(x1 = xi) (i.e., false), and then inductively cp"+1 (x) as cp(R,X) in which 
every occurrence of R( u 1, ... , uk), where u1 , ... , uk are variables among x 
and z, is replaced by 

(11.5) 

As usual, x = :il is an abbreviation for ( ( x 1 = yl) 1\ . .. 1\ ( x k = yk)) . Notice that 
in the resulting formula, variables from y cannot appear in any subformula of 
the form R(-). 

Th<~ effect of the substitution is that we use cp with R being given the 
interpretation of the nth stage, so Vn cp"(x) does compute the fixed point. 
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Furthermore, we at most doubled the number of variables in cp. Hence, if 
r.p E FO"', then both lfp R.i''P and ifp R.i''P are expressible in £~:.,. 

If we have a compleX: fixed point formula (e.g., involving nested fixed 
points), we can then apply the construction inductively, using the same sub
stitution (11.5), since r.pn need not be an FO formula, and can have infinitary 
connectives. This shows that every LFP or IFP formula is equivalent to a 
formula of £"/x,w (since for every fixed point, we at most double the number of 
variables). Hence, we have the following. 

Theorem 11.2. LFP, IFP, PFP <::; £":xow· 

Proof. We have proved it already for LFP and IFP; for PFP, the construction 
is modified slightly: instead of taking the disjunction of all the tp" 's, we define 
the sentence good, as \lx (r.pn(x) <-+ tp"+1 (x)) (indicating that the fixed point 
was reached). Then [pfpR.x'P](Y) is expressed by 

v· (ij) V ( goodn A r.p" ( x)) . 
nEN 

Indeed, if there is no n such that good, holds, then the partial fixed point 
is the empty set, and 'lj;(Y) is equivalent to false. Otherwise, let n 0 be the 
smallest natural number n for which good11 holds. Then, for all m 2': n 0 , we 
have \lx (r.p"0 (x) <-+ r.pm(x)), and hence 'ljJ(fl) defines the partial fixed point. 
Therefore, V' defines pfp R.:I''P, and it at most doubles the number of variables. 
Using this construction inductively, we see that PFP <::; .C~w· 0 

We now revisit the case of orderings. We have shown before that arbitrary 
cardinalities of linear orderings are definable in £~w; in other words, every 
query on finite linear orderings is £~w-definable. It turns out that this extends 
to all ordered structures. 

Proposition 11.3. Every quer·y over ordered finite CJ-structures is e1;pressiblc 
in £"/x,w. In fact, if rn is the maximum arity of a r·elation symbol in CJ, then it 
suffices to use £~t 1 . 

Proof. To keep the notation simple, we consider ordered graphs G = (V. E), 
with a linear ordering< on V (i.e., rn = 2, and in this case we show definability 
in £~w). Recall that we have an £?-x,w formula 1/Jn(x), that uses variablPs .r. y, 
and tests if there are at least n elements in V which do not exceed x in the 
ordering<. Hence, for each n we have an £?-x,w formula '1/J=n (:r) which holds iff 
xis the nth element in the ordering <. Now, for each G we define a formula 
xo as 

\lx\lz ( E(x, z) <-+ V ('1/J=;(x) 1\ ~J=J(z))) 1\ ==Jx '1/Jp(x) 1\ -,==Jx ~'p+l (1·). 
(i.j)EE 

viewing the universe V of cardinality pas {1, ... ,p}. Here V'=.i(z) is obtained 
from '1/J=.i ( x) by replacing x by z; that is, this formula uses variables ;:; and y. 



11.2 Pebble Games 215 

Note that xc E .C~w and G' f= xc iff G' is isomorphic toG (as an ordered 
graph). Finally, for a class P of ordered graphs, we let 

ifJp :_:::::: v XC· 
GEP 

Clearly, this formula defines P. D 

11.2 Pebble Games 

In this section we present Ehrenfeucht-Fralsse-style games which characterize 
finite variable logics. There are two elements of these games that we have not 
seen before. First, these are pebble games: the spoiler and the duplicator have 
a fixed set of pairs of pebbles, and each move consists of placing a pebble on 
an element of a structure, or removing a pebble and placing it on another 
element. Second, the game does not have to end in a finite number of rounds 
(but we can still determine who wins it). 

Definition 11.4 (Pebble games). Let m, ~ E STRUCT[a]. A k-pebble 
game over m and ~ is played by the spoiler and the duplicator as follows. 
The players have a set of pairs of pebbles {(p~,pk), ... , (p~,p!B)}. In each 
move, the following happens: 

• The spoiler chooses a structure, m or ~, and a number 1 :S: i :S: k. 
For the description of the other moves, we assume the spoiler has 

chosen m. The other case, when the spoiler chooses ~' is completely sym
metric. 

• The spoiler places the pebble Ph on some element of m. If Ph was already 
placed on m, this means that the spoiler either leaves it there or removes 
it and places it on some other element of m; if p~ was not used, it means 
that the spoiler picks that pebble and places it on an element of m. 

• The duplicator responds by placing Pk on some element of ~. 

We denote the game that continues for n rounds by PGk(m, ~), and the 
game that continues forever by PG'k(m, ~). 

After each round of the game, the pebbles placed on m and ~ define a 
relation F t;;; A x B: if Ph, for some i :S: k, is placed on a E A and Pk is 
placed on bE B, then the pair (a, b) is in F. 

The duplicator has a winning strategy in PGk(m, ~) if he can ensure that 
after· each round j :S: n, the relation F defines a partial isomorphism. That is, 
F is a graph of a partial isomorphism. In this case we write m ='k::: ~-

The duplicator has a winning strategy in PG'k(m, ~) if he can ~nsure that 
after every round the relation F defines a partial isomorphism. This is denoted 
by m ='kw ~-
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L_j L_j 

L_j L_j 

(a) (b) (c) (d) 

Fig. 11.1. Spoiler winning the pebble game on Lr, and £ 1 

These games characterize finite variable logics as follows. 

Theorem 11.5. a) Two structures 2l, IB E STRUCT[a] agree on all sen
tences of .CJ~w of quantifier mnk up to n iff 2l =k.,~ lB. 

b) Two structures 2l, IB E STRUCT[a] agree on all sentences of £~w iff 
2l=rw~E. o 

Before we prove this theorem, we give a few examples of pebble games. 
First, consider two arbitrary linear orderings Ln. L.111 of lengths n and m, 
n =/= m. Here we show that it is the spoiler who wins PG~ ( L,, Lm). 

The strategy for L.5 and L4 is shown in Fig. 11.1; the general strategy 
is exactly the same. We have two pairs of pebbles, and elements pebbled by 
pebble 1 are shown as circled, and those pebbled by pebble 2 are shown in 
dashed boxes. The spoiler starts by placing pebble 1 on the top clement of 
L 5 ; the duplicator is forced to respond by placing the matching pebble on the 
top element of L4 . Then the spoiler places the second pebble on the second 
clement of L 5 , and the duplicator matches it in L4 (if he does not, he loses in 
the next round). 

This is the configuration shown in Fig. 11.1 (a). Next, the spoiler removes 
pebble 1 from the top element of L 5 and places it on the third element. ThP 
spoiler is forced to mimic the move in L4 , to preserve the order relation. WP 
are now in the position shown in Fig. 11.1 (b). The spoiler then moves the 
second pebble two levels down; the duplicator matches it. We are now in 
position (c). At this point the spoiler places pebble 1 on the last element of 
L5 , and the duplicator has no place for the matching pebble, and thus he loses 
in the position shown in Fig. 11.1 (d). 

Note that we could not have expected any other result here, since we know 
that all queries over finite linear orderings are expressible in £~w; hence, the 
duplicator should not be able to win PG~ (L.,, Lm) unless n = rn. 
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As another example, consider structures of the empty vocabulary: that 
is, just sets. We claim the following: if IAI, IBI ~ k, then the duplicator wins 
PGk'(A, B); in other words, A =k'w B. Indeed, the strategy for the duplicator 
is very similar to his strategy in the Ehrenfeucht-Fra1sse game: at all times, he 
has to maintain the condition that p~ and VA are placed on the same element 
iff Pk and ~B are placed on the same element. Since both sets have at least k 
elements, this condition is easily maintained, and the duplicator can win the 
infinite game. This gives us the following. 

Corollary 11.6. The query EVEN is not expressible in .C~w· 

Proof. Assume, to the contrary, that EVEN is expressible by a sentence t:/J of 
.C~w. Let k be such that t:/J E .C~w. Choose two sets A and B of cardinalities k 
and k + 1, respectively. By the above, A =k'w Band hence A f= t:/J iff B f= <P. 
This, however, contradicts the assumption that <P defines EVEN. D 

From Corollary 11.6, we derive a result mentioned, but not proved, in 
Chap. 10. 

Corollary 11.7. • LFP ~ (LFP+<)inv· 

• IFP ~ (IFP+<)inv· 

• PFP ~ (PFP+ <)inv· 

Proof. Since LFP,IFP,PFP <:;;; .C~w' none of them defines EVEN; however, 
over ordered structures these logics capture PTIME and PSPACE, and hence 
can define EVEN. D 

Before proving Theorem 11.5, we make two additional observations. First, 
consider an infinitary disjunction i.p = viE[ i.pi, where all 'Pi are FO formulae, 
and assume that qr(~.p) :::; n. This means that qr(tpi) :::; n for all i E I. We 
know that, up to logical equivalence, there are only finitely many different FO 
formulae of quantifier rank n. Hence, there is a finite subset I0 C I such that 
i.p is equivalent to ViEio i.pi; that is, to an FO formula. Using this argument 
inductively on the structure of .C~w formulae, we conclude that for every k, 
every .C~w formula of quantifier rank n is equivalent to an FOk formula of 
the same quantifier rank. Hence, if ~ and IE agree on all FOk sentences of 
quantifier rank at most n, then ~ =k,':: lB. 

Now assume that~ and IE agree on all FOk sentences. That is, for every 
n, we have~ =k;':: lB. Since ~ and IE are finite, so is the number of different 
maps from A k to Bk, and hence every infinite strategy in PG k' (~, IE) is 
completely determined by a finite strategy for sufficiently large n: the one in 
which all (finitely many) possible configurations of the game appeared. Thus, 
for sufficiently large n (that depends on~ and IE), winning PGk(~, IE) implies 
winning PGk'(~, IE). We therefore obtain the following. 

Proposition 11.8. For every two structures ~' IE, the following are equiva
lent: 
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1. 2l and 23 agree on all FOk sentences, and 

2. 2l and 23 agree on all c~w sentences. D 

The second observation is about formulae with free variables. We write 
(2l,a) ='k':: (23,b) (or (2l,a) ='kw (23,b)), where lal = lbl = rn:::; k, if the 
duplicato~ wins the game PGk(2l, 23) (or PG'k(2l, 23)) from the position where 
the first rn pebbles have been placed on the elements of a and b respectively. 
A slight modification of the proof of Theorem 11.5 shows the following. 

Corollary 11.9. Given two structures, 2l, 23, and a E A'". bE /1"'. m :::; k, 

a) (2l,a) =k:':: (23,b) iff for every cp(x) E .C~w with qr(cp):::; n, it is the ca8e 

that 2l f= cp(a) {'} 23 f= cp(b). 

b) (2l, a) ='kw (23, b) iff for ever·y cp(:T) E .C~w• it is the case that 

2t F= cp(a) {'} 23 F= cp(b). o 

We are now ready to prove Theorem 11.5. As with the Ehrenfeucht-Frai'sse 
theorem, we shall use a certain back-and-forth property in the proof. We start 
with a few definitions. 

Given a partial map f : A ---> B, its domain and range will be denoted by 
dom(f) and rng(f); that is, f is defined on dom(f) <;:;: A, and f( dom(f)) = 
rng(f) <;:;:B. 

We let symbols a and (3 range over finite and infinite ordinals. Given two 
structures 2l and 23 and an ordinal (3, let Ip be a set of partial isomorphisms 
between 2l and 23, and let Ja = {I11 I (3 < a}. We say that Jn has the 
k-back-and-forth property if the following conditions hold: 

• Every set If3 is nonempty. 

• Iw <;:;: Ir1 for (3 < (3'. 

• Each Ir1 is downward-closed: if g E Ir1 and f <;:;: g (i.e., dom(f) <;:;: dom(g), 
and f and g coincide on dom(f)), then f E If3· 

• Iff E IfJ+l and ldom(f)l < k, then 

forth: for every a E A, there is g E I;3 such that f <;:;: g and a E dorn(g): 

back: for every b E B, there is g E Ir1 such that f <;:;: g and b E rng(g). 

As before, games are nothing but a reformulation of the back-and-forth 
property. Indeed, for a finite a, having a family Ja with the k-back-and-forth 
property is equivalent to 2l =k.~-l 23: the collection Ir1 simply consists of 
configurations from which the duplicator wins with (3 moves remaining. This 
also suffices for infinitely long games: as we remarkc~d earlier, for every two 
finite structures 2l and 23, and for some n, depending on 2l and 23, it is the 
case that 2l =k.':: 23 implies 2l ='kw 23. FurthermorP, if we haVP a sufficiently 
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long finite chain J,, some Ir/s will be repeated, as there arc only finitely 
many partial isomorphisms between 1.(1. and 93. Hence, such a chain can then 
be extended to arbitrary ordinal length. 

Therefore, it will be sufficient to establish equivalence between indistin
guishability in £':xow and the existence of a family of partial isomorphisms with 
the k-back-and-forth property. This is done in the following lemma. 

Lemma 11.10. Given two structures 1.(1. and 93, they agree on all sentences of 

£~w of quantifier rank < a iff there is a family Jn = {If:l I /1 < o:} of partial 
isomorphisms between 1.(1. and 93 with the k-back-and-forth property. 

In the rest of the section, we prove Lemma 11.10. Suppose 1.(1. and 93 agree 
on all sentences of £~w of quantifier rank < a. Let /3 < a. Define Ir, as the 
set of partial isomorphisms f with I dom(f) I:::; k such that for every ip E £':xow 
with qr(lfJ):::; /3, and every a contained in dom(f), 

1.(1. F= lfJ(a) {=} 93 F= 'PU(a)). 

We show that J, = {If:l I /3 < a} has the k-back-and-forth property. 
Since 1.(1. and 93 agree on all sentences of £~w of quantifier rank< a, each Ir> 

is nonempty as it contains the empty partial isomorphism. The containment 
Iw c;;; I 11 for /3 < /3' is immediate from the definition, as is downward-closure. 
Thus, it remains to prove the back-and-forth property. 

Assume, to the contrary, that we found f E If:l+ 1 , with /3 + 1 < a, such that 
ldom(f) I = m < k, and f violates the forth condition. That is, there exists 
a E A such that there is no g E Ir3 extending f with a E dom(g). In this case, 
by the definition of If:i, for every bE B we can find a formula 'Pb(x0, x 1 , ... , x,) 
of quantifier rank at most /3 such that for some a 1 , ... , am E dom(f), we have 
1.(1. f= ipb(a, 01, ... , am) and 93 f= ''Pb(b, f(al), ... , f(am)). 

Now let 

lfJ(X], ... ,xrn) = ::lxo 1\ I[Jb(Xo,XI,· .. ,xrn)· 
bEB 

Clearly, 1.(1. f= lfJ( a1, ... , am), but 93 f= •ip(f( a I), ... , f( am)), which contradicts 
our assumption f E If:l+l (since q r( 'P) :::; /1 + 1). The case when f violates the 
back condition is handled similarly. 

For the other direction, assume that we have a family J, with the k-back
and-forth property. We use (transfinite) induction on /3 to show that for every 
lfJ(XJ, ... , Xm) E £~w' m:::; k, with qr(lfJ) :::; /3 <a, 

for every f E If:J, a1, ... , Om E dom(f) : 
1.(1. F ip(al, ···,am) {=} 93 F ip(f(ai), .. ·, f(am)). 

(11.6) 

Clearly, (11.6) suffices, since it implies that 1.(1. and 93 agree on £~w sentences 
of quantifier rank < a. 
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The basis case is 3 = 0. Then zp is a Bool<•an combination of atomic 
formulae (for finite quantifier ranks. as we saw, infinitary connectives arc 
superfluous), and hence (11.6) follows from the assumption that .f is a partial 
isomorphism. 

We now use induction on the structure of -P· The case of Boolean combi
nations is trivial. If cp =vi '-Pi and qr(zp) > qr(zp;) for all i, then (J is a limit 
ordinal and again (11.6) for cp easily follows by applying the hypotlwsis to all 
the zp; 's of smaller quantifier rank. 

Thus, it remains to consider the case of zp(.r 1 ••••• :r,11 ) 

::l:ro ~J(xo, .... :rm), with qr(zp) = ;1 + 1 and qr( d for some ;) with 
{3 + 1 < a. 'Ve can assume without loss of generality that .r0 is not among 
x1, ... , Xm (exercise: why?) and hence m < k. 

Let .f E I 1J+l and OJ •.. .• a, E dom(.f). Assume that 2l ~ -P(a 1 .... . a 11 ,); 

that is, for some no E A, 2l ~ liJ(oo.riJ, ... , o, ). Since I3+1 is downward
closed, we can further assume that dom(.f) = {o 1 .. ... a,}. Since ldom(f)l = 
rn < k, by the k-back-and-forth property we find g E I,J ext<'IHling I 
such that a 11 E dom(_q). Applying (11.6) inductively to 1 ·, we derive 123 ~ 
~J(g(ao),g(o.t), ... ,g(au,)). That is, 123 ~ 1/{q(ao),.f(ai) ..... .f(ou,)) since I 
and g agree on a 1, ... , 0 111 • Henc<~, 123 ~ cp(.f( o.J), .... .f( o,)). 

The otlwr direction, that 123 ~ cp(.f(ai), .... .f(u 11,)) impli<·s 2l ~ 
zp( a1 , ... , 0.111 ), is completely symmetric. This finishes the proof of ( 1 1.6). 
Lemma 11.10, and Theorem 11.5. D 

11.3 Definability of Types 

For logics lik<~ FO and !\ISO, we have used rank-k type8, which are collections 
of all formulae of quantifier rank k that hold in a given structur<'. An extremely 
useful feature of types is that they can be defined hy formula<' of quantifin 
rank k, and we have used this fact many times. 

"\\'hen we mov<~ to finite variable logics, the role of paramder /; is pla.v<•d 
by the number of variables rather than the quantifier rank. We can. therefore. 
defin<~, FO"-typcs, but then it is not imnwdiately dmr if <'V<TV such type is 
itself dPfinable inFO". In this section W<' prove that this is the casP. As with 
the case of FO or MSO types, this definability n~snlt proves wry usefuL awl 
we derive some interesting corollaries. In particular, we establish a normal 
form for L~w, and prove that every dass of finit<' structun•s that is closed 
under =/:'w is definable in L"xw· 

Definition 11.11 (FOk-types). Given a stnu:lur-e 2l and a tuple 5, the 
FO'-type of (2l. ii) is 

tPFo' (2l, 5) { zp(.f) E FO~. 1 2l ~ zp( a)}. 

An FO" -type is any set of for-rnnlae of FO" of the for-m tPFo' (2l. ii). 
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One could have defined .C~w-types as well, as the set of all .C~w formulae 
that hold in (2t, a). This, however, would be unnecessary, since every FOk
type completely determines the .C~w-type: this follows from Proposition 11.8 
stating that two structures agree on all .C~w formulae iff they agree on all 
FOk formulae. 

Note that unlike in the cases of FO and MSO, the number of different 
FOk -types need not be finite, since we do not restrict the quantifier rank. In 
fact we saw in the example of finite linear orderings that there are infinitely 
many different F02 -types, since every finite cardinality of a linear ordering 
can be characterized by an F02 sentence. 

Each FOk -type T is trivially definable in .C~w by V <pEr cp. More interest-

ingly, we can show that FOk -types are definable without infinitary connectives. 

Theorem 11.12. For every FOk-type T, there is an FOk formula cp7 (x) such 
that, for every structure 2t, 

tppQk (2(, a) = T 

Before we prove Theorem 11.12, let us state a few corollaries. First, re
stricting our attention to sentences, we obtain the following. 

Corollary 11.13. For every structure 2t, there is a sentence l/f'}). ofFOk such 
that for any other structure 23, we have 23 f= l/f'}J. iff 2t ='kw 23. D 

We know that without restrictions on the number of variables, we can 
write a sentence that tests if 23 is isomorphic to 2t, and this is why the full 
infinitary logic defines every class of finite structures. Corollary 11.13 shows 
that, rather than testing isomorphism as in the full infinitary logic, in .C~w 
one can write a sentence that tests ='kw-equivalence. 

We can also see that closure under ='kw is sufficient for definability in 
,C~w· 

Corollary 11.14. If a class C of structures is closed under ='kw (i.e., 2t E C 
and 2t ='kw 23 imply 23 E C), then C is definable in .C~w. 

Proof. Let T be the collection of .C~w-types T such that there is a structure 
2( in c with tpFOk (2t) = T. From closure under ='kw it follows that v rET 'Pr 
defines C. D 

Definability of .C~w-typcs also yields a normal form result, stating that 
only countable disjunctions of FOk formulae suffice. 

Corollary 11.15. Every .C~w formula is equivalent to a single countable dis
junction of FOk formulae. 
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Proof. Let cp(x) be an .C':xow formula. Consider th<~ set c'P = { (12!, a) I 12{ F 
cp( a)}' such that no two elements of c'P are isomorphic (this ensures that c'P 
is countable, since there are only countably many isomorphism types of finit<' 
structures). Let <p'){,a(x) be the FOk formula defining tpFo' (12!, a} Let 

'1/J(x) v 'P('){.<n ( x). 
(')l.a)EC, 

We claim that cp and '1/J are equivalent. Suppose 113 f= cp(b). Let (113'. b') be 

an isomorphic copy of (113, b) present in C'P. Then 113' f= cp('B'.b')(b') and thus 

113' f= 'lj;(b') and 113 f= 'lj;(b). Conversely, if 113 f= 11'(b), then for some 12! and a 
with 12{ F cp(a), we have tpFOk (12!, a) = tpFO' (113, b); that is, (12!, a) =='tw (113, b). 
Since cp is an .C':xow formula, this implies 113 f= cp(b), showing that cp and t/• arc 
equivalent. D 

Since the negation of an .C~w formula is an .C~w formula, we obtain a dual 
result. 

Corollary 11.16. Every .C':xow formula is equivalent to a single countable con
junction of FOk formulae. 

We now present the proof of Theorem 11.12. To keep the notation sim
ple, we look at the case when there are no free variables; that is, we deal 
with tpFOk (12!). Another assumption that we make is that the vocabulary (J is 
purely relational. Adding free variables and constant symbols poses no prob
lem (Exercise 11.1). 

Fix a structure 12!, and let A<:::k be the set of all tuples of elements of A 
of length up to k. For any a= (a1 •... ,al) E A<:::k, where l :s; k, we define a 
formula cprf'(x1 , ... , xz). Intuitively, these formulae will have the property that 
they precisely characterize what one can say about a in FOk, with quantifier 
rank at most m: that is, 113 f= cp;I'(b) iff (12!. a) and (113, b) agree on all the FOk 
formulae of quantifier rank up to m. 

To define these formulae, consider partial functions h : { x 1 , ... , :q.} --+ A, 
and first define formulae cp/~'(if), with free variables if being those in dom(h). 
as follows: 

• cp~ ('Y) is the conjunction of all atomic and negated atomic formulae true 
in 12! of h(if). 

• To define cp"/:+ 1 (if), consider two cases: 

1. Suppose I dom( h) I< k. Let i be the least index such that :r; r:j dorn (h), 
and ha be the extension of h defined on dom( h) U { x;} such that 
ha(x;) = a. Then 

cp"/:+1 (ff) =:= cpf:(ff) 1\ 1\ ::Jx; cpf:..(if,x;) 1\ Vx; V 'P;;:,(if,x;). 
aEA aEA 
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2. Suppose ldom(h)l = k:. Let h1 be the restriction of h which ts not 
defined only on xi. Then 

h: 

<f?/~' ( x) A 1\ <p;;;+ 1 (xi), 
i=l 

where Xi is :15 with the variable x 1 excluded. 

Finally, we define <p5'(x1 , ... ,:rt) as <p/;'(x), where his given by h(:r;) =a;, 
for 'i = 1, ... , l. 

To show that formulae <f?"ii' do what they arc supposed to do, we show 
that if they hold, a certain sequence of sets of partial isomorphisms with the 
k:-back-and-forth property must exist. 

Lemma 11.17. Let a= (at, ... ' al) E A:Sk. Then \l) F <p:f'(b) iff there exists 
a collection Jm = { Io, It, ... , Irn} of sets of partial isomorphism between ~ 
and ll3 with the k-back-and-for·th property such that Irn t;;;: Im-1 t;;;: ... t;;;: Io, 
and g = { ( a1, b1), ... , ( ar, b1)} E Irn. 

Pr-oof of Lemma 11.17. Since qr(<p5') = rn and~ f= <p:f'(a), the existence of 

J."' implies, by Lemma 11.10, that ll3 f= <f?a(b). 
For the converse, we establish the existence of Jm by induction on In. 

If rn = 0, we let I 0 consist of all the restrictions of g. Clearly, I 0 is not 
empty, and since g is a partial isomorphism (because, by the assumption, 
ll3 f= <p~(b), and thus a and b satisfy the same atomic formulae), all elements 
of I 0 are partial isomorphisms. 

For the induction step, to go from rn to rn + 1, we distinguish two cases. 

Case 1: l < k:. From ll3 f= <p~'+ 1 (b) and the definition of <p~'+ 1 it follows 
that ll3 f= <f?a(b), and thus we have, by the induction hypothesis, a sequence 
J',, = {I(1, ••• , I;,} of partial isomorphisms with the k:-back-and-forth prop
erty such that g E I~,. 

Looking at the second conjunct of <p~'+ 1 and applying the induction hy
pothesis for rn, we see that for every a E A there exists b E B and a sequence 
J;1, = {II), ... ,I:,} of partial isomorphisms with the k:-back-and-forth prop
erty such that 9a,b = { ( a 1 , b1), ... , (a,, bz), (a, b)} E I;~,. 

We uow define: 

I; = I: U U If for i :::; m 
oEA 

Im+l = {.f I J t;;;: g}. 

It is easy to sec that component-wise unions like this preserve the k:-back
and-forth property. Furthermore, since g E I;n, then Im+ 1 t;;;: I;, t;;;: I 111 • Thus, 
we only have to check the k:-back-and-forth property with respect to Irn+l 
and Im. But this is guaranteed by the second and the third conjunct of <p;-;'+ 1 . 



224 11 Finite Variable Logics 

Indeed, consider g and a E A- dom(g). Since ll3 f= <p~'+ 1 (b), by the second 

conjunct we see that ll3 f= 3x<p5;,(b, x) and hence for some b E B, we have 

23 f= 'Pa;,(bb). But then g U {(a, b)} E I~, <:: Im. The back property is proved 
similarly. This completes the proof for case 1. 

Case 2: l = k. By the definition of <p~•+l for the case of l = k. we see that 

23 f= 'Pa' (b), and hence by the induction hypothesis, g is a partial isomorphism. 

For each i :S k, let 9i beg without the pair (ai, bi)- Applying the argum0nt 
for the case l < k to each 9i, we get a sequence of partial isomorphisms 
{I~, ... ,I:n+l} with the k-back-and-forth property such that I:"+ I <:: ... <:: 
I~. Now we define 

k 

Ii = {g} u U Ij. j :S rn + 1. 
i=l 

One can easily verify all the properties of a sequence of partial isomorphisms 
with the k-back-and-forth property: in fact, all of the properties are preserved 
under component-wise union, and since ldom(g) I = k, the k-back-and-forth 
extension for g is not required. This completes the proof case 2 and Lemma 
11.17. D 

For each a E A'S", consider <prf'(Ql) = {ao I Qt f= <prf'(iio)}. By definition. 
m+ 1 · f tl 1' rn 1\ · d h 'Pa IS o 1e 10rm 'Pa ... , an ence 

Since Q{ is finite, this sequence eventually stabilizes. Let m 5 be the number 
such that <p~'"(Qt) = 'Pa(Qt) for all rn >rna. Then we define 

AI = max rn,7 , and 
aEASk 

lf/21. = 'P~1 1\ /\ lfx1 .. . \fxk ( <p~1 (.i) ---+ tp~I+l (:T)) ( 11. 7) 
aEASk 

Here E stands for the empty sequence. By the definition of 1\I, Q{ f= WQl· 

Furthermore, lf/21. E FOk. 
Thus, to conclude the proof, we show that lf/21. defines tpFO' (Qt). In other 

words, we need the following. 

Lemma 11.18. If ll3 is a finite structure, then 23 f= lf/21. iff tPFo' (Qt) 
trFo' (23); that is, Qt ~k'w 23. 

Proof of Lemma 11.18. Since lf/21. E FO"" and Qt f= lf/21., it suffices to show that 
Q{ ='kw 23 whenever 23 f= lf/21.. 

Let ll3 f= lf/21.. We define a set G of partial maps between Q{ and 23 by 
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Since 113 I= l]i'21, the sentence cp~f+l is true in 113, and thus G is nonempty, as 
the empty partial map is a member of G. 

Applying Lemma 11.17 to each g = {(a1 , bi), ... , (a!, b1)} E G, we see that 
there is a sequence 'JY = {I8, ... , I~+l} of partial isomorphisms with the 
k-back-and-forth property such that I8 2 ... 2 I~+l and g E IXf+J· We 
now define a family 'J = {Ii I i EN} by 

Ii = U If for i :S: M + 1 
gEG 

Ii = I M + 1 for i > M + 1. 

It remains to show that 'J has the k-back-and-forth property. As we have 
seen in the proof of Lemma 11.17, the k-back-and-forth property is preserved 
through component-wise union, and since all Ii, i > M + 1, are identical, it 
suffices to prove that every partial isomorphism in IM+2 can be extended in 
IM+l· 

Fix f E IM+2 such that ldom(J)I < k. We show the forth part; the back 
part is identical. Let a EA. Since f E IM+2, and the sequence {I0 , ... ,Ifo,f+J} 
has the k-back-and-forth property, we can find f' E IM with f ~ f' and 
a E dom(J'). Let f' = {(a1, b1), ... , (a!, b1)}. Since f' is a partial isomorphism 
from IM, from Lemma 11.17 we conclude that 113 I= cp~1 , ••• ,a!)(bl,···,bl). 

Now from the implication in (11.7), we see that 113 I= cpra~~.,a!)(bi, ... , b1); 

therefore, f' E G. But then f' E I{r+l and hence f' E IM+I, which proves 
the forth part. Since the back part is symmetric, this concludes the proof of 
Lemma 11.18 and Theorem 11.12. D 

11.4 Ordering of Types 

In this section, we show that many interesting properties of types can be 
expressed in LFP. In particular, consider the following equivalence relation 
>::::pok on tuples of elements of a structure 2l: 

Clearly this relation is definable by an £/:X,w formula 

T 

where T ranges over all FOk-types. 
It is more interesting, however, that this relation is definable in a weaker 

logic LFP. Furthermore, it turns out that there is a formula of LFP that 
defines a certain preorder --<pok on tuples, such that the equivalence relation 
induced by this preorder is precisely >::::pok. This means that on structures in 
which all elements have different FOk -types, we can define a linear order in 
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LFP, and hence, by the Immerman-Vardi theorem, on such structures LFP 
captures PTIME. 

We start by showing how to define :::::::Fo' . 

Proposition 11.19. Fix a vocabulary (]. For every k and l <::: k, there is an 
LFP formula ry(x, if) in 2l free variables .such that joT eveTy Ql E STRUCT[(J], 

~Zt F= q(a, b) a ::::::;FO' b. 

Pmof The atomic F01.:-type of (Ql, a), with I iii= l <::: k, is the conjunction of 
all atomic and negated atomic formulae true of a in Qt. Since there arc finitely 
many atomic F01.:-formulae, up to logical equivalence, each atomic type is 
definable by an FOk formula. Let a 1 ( x), ... , a" ( x) list all such formulae. Then 
we define 

'1/Jo(x, if) = v 
This is a formula of quantifier rank 0, and Ql F '1/'o(a. b) iff thP atomic FOk

types of a and b are different. 
Next, we define a formula 1/-' in the vocabulary (] expanded with a 21-ary 

relation R: 

I I 

1/J ( R, x, if) 1/'o(i, if) v V 3x;'Vy;R(x, if) v V 3y;'Vx;R(.f .. i/). (11.8) 
i=1 i=l 

and let 
[lfp R,x .. Q' 1/J(R. x, if)](x. if). 

Consider the fixed point computation for 1/J. Initially, we have tuples (a, b) 
with different atomic types; that is, tuples corresponding to the position in 
the pebble game in which the spoiler wins. At the next stage, we get all the 
positions of the pebble game (a, b) such that, in one move, the spoiler can force 
the winning position. In general, the ith stage consists of positions from which 
the spoiler can win the pebble game in i - 1 moves, and hence Ql F <p( a, b) 
iff from the position (a, b), the spoiler can win the game. In other words, 

Ql F cp(a, b) iff (Ql, a) tr:-w (Ql, b), or, equivalently, tpFO' (Qt. a) -1- tpFO' (Ql,b). 
Hence, ry can be defined as •cp, which is an LFP formula. 0 

We now extend this technique to define a preorder -<Fo" on tuples, whose 
associated equivalence relation is precisely ::::::<pok. 

Suppose we have a set X partitioned into subsets X 1 , ...• X'". Consider a 
binary relation -< on X given by 

x-< y ¢? x E Xi, y EX;, and i < j. 

We call relations obtained in such a way strict pTeoTder.s. With each strict 
preorder -< we associate an equivalence relation whose equivalence classes are 
precisely X 1 , ... ,Xm. It can be defined by the formula •(:c-< y) 1\ •(y-< :r). 
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Theorem 11.20. For every vocabulary a, and every k, there exists an LFP 
formula x(x, if), with I x 1=1 171= k, such that on every~ E STRUCT[a], the 
formula x defines a strict preorder --<Fo• whose equivalence relation is ~Fo•. 

As we mentioned before, this result becomes useful when one deals with 
structures~ such that for every a,b E A, tPFo•(a) -/=- tPFo•(b) whenever 
a -/=- b. Such structures are called k-rigid. 

Theorem 11.20 tells us that in a k-rigid structure, there is an LFP-definable 
strict preorder whose equivalence classes are of size 1: that is, a linear order. 
Hence, from the Immerman-Vardi theorem we obtain: 

Corollary 11.21. Over k-rigid structures, LFP captures PTIME. D 

Now we prove Theorem 11.20. We shall use the following notation. If a= 
(al, ... 'ak) is a tuple, then ai<-a is the tuple in which ai was replaced by a, 
i.e., (al, ... ,ai-l,a,ai+l,···,ak)· 

Recall the formula 'lj;(x, y) (11.8). The fixed point of this formula defined 
the complement of ~Fo• , and it follows from the proof of Proposition 11.19 
that the jth stage of the fixed point computation for 'lj;, 'lj;J (x, if), defines the 
set of positions from which the spoiler wins with j - 1 moves remaining. In 
other words, ~ f= 'lj;J (a, a) iff(~, a) and (23,b) disagree on some FOk formula 
of quantifier rank up to j - 1. 

We now use this formula 'lj; to define a formula '"'f(S, x, if) such that the 
jth stage of the inflationary fixed point computation for '"'! defines a strict 
preorder whose equivalence relation is the complement of the relation defined 
by 'lj;J (x, Y). In other words, '"Yj (~) defines a relation --<j on Ak such that the 
equivalence relation "'j associated with this preorder is 

(~,a) ='ff-1 (~,b). 
We now explain the idea of the construction. In the beginning, we have to deal 
with atomic FOk-types. Since these can be explicitly defined (see the proof of 
Proposition 11.19), we can choose an arbitrary ordering on them. 

Now, suppose we have defined --<j, the jth stage of the fixed point compu
tation for '"'(, whose equivalence relation is the set of positions from which the 
duplicator can play for j - 1 moves (i.e., the complement of the jth stage of 
'lj;). Let Y1 , ... , Ys be the equivalence classes. 

We have to refine --<j to come up with a preorder --<J+l· For that, we 
have to order tuples (a, b) which were equivalent at the jth stage, but become 
nonequivalent at stage j + 1. But these are precisely the tuples that get into 
the fixed point of 'lj; at stage j + 1. 

Looking at the definition of 'lj; (11.8), we see that there are two ways for 
'lj;j+l (a, b) to be true (i.e., for (a, b) to get into the fixed point at stage j + 1): 

1. There is a E A such that c.pJ ( ai ..... a, bi ..... b) holds for every b E A. In other 
words, the equivalence class of ai<-a contains no tuple of the form bi<-b 
which is different from b. 
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2. Symmetrically, there is b E A such that the equivalence class of b,;~b 
contains no tuple of the form ili<-a ol a. 

Assume that i' is the minimum number :<:::; k such that either 1 or 2 above, or 
both, happen. Let Y be the set of all the tuples ai'c-a for case 1 and b;~~~~ for 
case 2. We then consider the smallest, with respect to -<.1, equivalence class 
Yp's into which elements of Y may fall. Note that it is impossible that for 

some a, b, both a;'c-a and bi'c-b are in Yp. Hence, either 

1'. for some a, ai'c-a is in Yp, or 

2'. for some b, bi'c-b is in YP. 

In case 1', we let a -<.i+ 1 b, and in case 2', we let b -<.1+1 a. 
This is the algorithm; it remains to express it in LFP. The formula x(x, if) 

will be defined as [ifPs,:I',gf'(S, x, if)](x, if). To express{', we first deal with the 
atomic case. Since we have an explicit listing a 1 .... , ns of formulae defining 
atomic types, we can use 

!'o(x, if) V (ai(x) 1\ a.J(if)) 
'i<:i 

to order atomic types. 
Next, we define 

~Wi,il) = Vxi3y; (·S(x,if) 1\ -.S(if,:r)) 1\ Vy;3x; (•S(x,if) 1\ -.S(if,x)), 

~;(x, if)= ( 1\ ~~(x, if)) A ~;,(x, if). 
p<i 

The formula ~;(x, b) will be used to determine the position i' in the algorithm. 
To select tuples a;,__a which are inequivalent to all tuples b;c-b, we use the 
formula 

and 15r(y, x, if) for the symmetric case (in which we reverse the roles of :r and 
y). 

Finally, we get the following definition of !'(x, ff): 

Notice that I' is not positive in S; however, by the Gurevich-Shelah theorem, 
ifp s,x,yl' is equivalent to an LFP formula. 
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We leave it to the reader to complete the proof: that is, to show that "( in
deed codes the algorithm described in the beginning of the proof, and to prove 
by induction that the jth stage of the inflationary fixed point computation 
for"( defines a preorder whose equivalence relation is =k,j_1 . D 

11.5 Canonical Structures and the Abiteboul-Vianu 
Theorem 

Using definability of a linear ordering on FOk-types, we show how to convert 
each structure !2l into another structure ltk(!2t), which, in essence, captures 
all the information about .C~w-definabi1ity over !2l. The main application of 
this construction is the Abiteboul-Vianu theorem, which reduces the problem 
of separating complexity classes PTIME and PSPACE to separating two logics 
over unordered structures (recall that PTIME and PSPACE are captured by 
LFP and PFP over structures with a linear ordering). 

Fix k > 0, and a purely relational vocabulary a = { R 1, ... , R1} such 
that the arity of each Ri is at most k (since we shall be dealing with FOk 
formulae, we can impose this additional restriction without loss of generality). 
We shall use the preorder relation --<pok defined in the previous section; its 
equivalence relation is a ~FOk b given by tppQk (!2t, a) = tppok (!2t, b), for a, bE 
Ak. Whenever k and !2l are clear from the context, we shall write [a] for the 
~Fok-equivalence class of a. 

Definition 11.22. Given a vocabulary a = { R1 , ... , Rz}, where the ar·ities of 
all the Ri 's do not exceed k, and a a-structure !2l, we define a new vocabulary 
ck(a) and a structure ltk(!2t) E STRUCT[ck(a)] as follows. 

Let t = kk, and let n 1 , ... , ?rt enumerate all the functions 1r : { 1, ... , k} ---> 

{ 1, ... , k}. Then 

where<, the Si 's, and the Pi's are binary, and U, U1 , ... , Uz are unary. 
The universe of ltk(!2t) is Ak / ~Fok, the set of ~Fok -equivalence classes 

of k-tuples from !2l. The interpretation of the predicates is as follows (where a 
stands for (a1, ... , ak)): 

• < is interpreted as --<Fok. 

• U([a]) holds iff a1 = a2. 

• U,([a]) holds iff (a1, ... , a111 ) E R?, where m :::; k is the ar·ity of R;. 

• S;([a], [b]) holds iff a and b differ at most in their ith component. 

• P,, contains pairs ([a], [(a1r(l), ... , a1r(k))]) for all a E Ak. 

Lemma 11.23. The structur·e ltk(!2t) is well-defined, and< is interpreted as 
a linear ordering on its universe. 
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Proof Suppose U([a]) holds and bE [a]. Then a 1 = a2 , and sincP tpFo' (a) = 
tpp0 k(b), we have b1 = b2. Since other predicates of <t,,(Qt) are defined in 
terms of atomic formulae over m, they are likewise independent of particular 
representatives ofthe equivalence classes. Finally, Theorem 11.20 implies that 
< is a linear ordering on Ak I ~Fo'. D 

The structure ([k(Ql) can be viewed as a canonical structure in terms of 
.C~w -definability. 

Proposition 11.24. For every Qt, 'B E STRUCT[a], 

Ql ='kw 'B -(=} ([k(Ql) ~ ([k('B). 

Proof sketch. Suppose Ql ='kw 'B. Since every FOk -type is definable by an FO" 
formula, every type that is realized in Ql is realized in 'B. Hence, I A I= I B I· 
Furthermore, since -<Fo' is definable by the same formula on all a-structures. 
we have an order-preserving map h : Akl ~FO' --> Bk I ~Fo'- It is easy to 
verify that such a map is an isomorphism between <tk(Ql) and <t,('B). 

For the converse, one can use the isomorphism h: ([k(Ql) --> <tk('B) togetlwr 
with relations S; to establish a winning strategy for the duplicator in the k
pebble game. Details are left as an easy exercise for the reader. D 

We next show how to translate formulae of LFP and PFP over <t~c(l2l) to 
formulae over Ql, and vice versa. We assume, as throughout most of Chap. 10, 
that fixed point formulae do not have parameters. 

Lemma 11.25. 1. For every LFP or PFP formula <p(.r) over vocabulary cr 
that uses at most k variables, there is an LFP (respectively, PFP) formula 
<p 0 over vocabulary c k ( 17) in one free var·iable such that 

(11.!)) 

2. For every LFP or PFP formula <p( x1 , ... , Xm) in the language of c~c ( cr), 
there is an LFP {respectively, PFP) formula <p* (17) over vocabulary 17 in 
km free variables such that 

Before proving Lemma 11.25, we present its main application. 

Theorem 11.26 (Abiteboul-Vianu). PTIME = PSPACE ifJLFP = PFP. 

Proof. Suppose PTIME = PSPACE. Let <p be a PFP formula, and let it usc k 
variables. By Lemma 11.25 (1), we have a PFP formula tp 0 over ck(O"). Since 
<p0 is in PFP, it is computable in PSPACE, and thus, by the assumption, in 
PTIME. Since <p0 is defined over ordered structures of the vocabulary Ck ( O"), by 
the Immerman-Vardi theorem it is definable in LFP over Ck ( O"), by a formula 
'1/J(x). Now applying Lemma 11.25 (2), we get an LFP formula ljo*(:i) over 
vocabulary a which is equivalent to tp. Hence, LFP = PFP. 

For the other direction, if LFP = PFP, then LFP+ < = PFP+ <. and 
hence PTIME = PsPACE. D 
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Corollary 11.27. The follow·ing are equivalent: 

• LFP = PFP; 

• LFP+ < = PFP+ <; 
• PTIME = PSPACE. D 

Notice that this picture differs drastically from what we have seen for logics 
capturing DLoc, NLoc, and PTIME: while the exact relationships between 
DETTRCL+ < = DLoc;, TRCL+ < = NLoG, and LFP+ < = PTIME are 
not known, we do know that 

DETTRCL ~ TRCL ~ LFP. 

However, for the case of LFP and PFP, we cannot even conclude LFP ~ PFP 
without resolving the PTIME vs. PsPACE question. 

We now prove Lemma 11.25. As the first step, we prove part 1 for the 
case of cp being an FO' formula. Note that in general, x may have fewer 
than k: variables. However, in this proof we shall treat any such formula as 
defining a k:-ary relation; that is, cp(xJ,, ... , XjJ defines the relation cp(21) = 
{(a1, ... ,ak) I 21 f= cp(a1,, ... ,a.iJ}, and when we write 21 f= cp(ii), we 
actually mean that ii E A k and ii E cp(21). 

Using this convention, we define cp0 by induction on the structure of the 
formula: 

• If cp is x; = :r:j, then choose 1r so that 1r(l) = i, 1r(2) = j, and let cp0 (J:) = 
3y (Prr(x,y) 1\ U(y)). 

• If cp is an atomic formula of the form R.;(xj, ... , xjJ, choose 1r so that 
7r(1) = j1, ... , 1r(s) = j 8 , and let cp0 (x) = 3y (P'Tr(.1:,y) 1\ Ui(Y)). 

• (•cp)o = -.cpo . 

• (cpl v cp2) 0 = cp~ v cp~. 
• If cp is 3:ri1/{E), then cp 0 (x) = 3y (S;(x, y) 1\ V' 0 (y)). 

It is routine to verify, by induction on formulae, that the above transla
tion guarantees (11.9). For example, if cp is .Ti = Xj, then 21 f= cp(ii) implies 

that a; = a.i, and hence Q:k(21) f= P'Tr([ii], [b]) for 1r(i) = 1, 1r(j) = 2, and 

b = (a;, Oj, .. . ). Since Q:A(21) f= U([b]), we conclude that Q:k(21) f= cp 0 ([ii]). 
Conversely, if Q:A(21) f= P'Tr([ii], [b]) 1\ U([b]) for 1r as above and somf~ b, we con
clude that there is r E [ii] with C'j = CJ. Since tpFO' ( ii) = tpp()k (C), it follows 
that a; = a.i and 21 f= cp(ii). The other basis case is similar. 

For the induction step, the only nontrivial case is that of cp being 3x;JJ(x). 
If 21 F= cp( ii), then for some a, that differs from a in at most the ith position we 
have 21 f= J;(iii), and hence by the induction hypothesis, Q:k(21) f= S;([ii], [ii;])/\ 
1/1°([iii]) and, therefore, Q:k(21) f= cp 0 ([ii]). Conversely, assume that for some b, 
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Q:A(Qt) I= S;([a], [b]) 1\ ([b]). Then we can find r1o ~Po' a and bo ~Fo' b such 
that r1o and b0 differ in at most the ith position. Consid<T the k-pebhle gam<' 
on (Qt. ao) and ('2t. r1). Suppose that in one move the spoiler goes from (Qt. Ito) 
to ('2t, b0 ). Since the duplicator can play from position (a0 • a). lw can respond 
to this move and find b' such that (Qt. b0 ) =tu) (Qt. b'). Rene<>, D' E [b], all(] it 

differs from a in at most the ith position. Sine<~ [b'] = [b], by t h<' induction 
hypothesis we conclude that '2t I= 1/;(bt). which witnesses 2l ;= ,:J(r1). This 
concludes the proof of (11.9) for FO' formulae. 

Furthermore. (11.9) is preserved if we expand the vocabulary by an <·xtra 
relation symbol R, with a corresponding R' added to ck(CJ), and interpret Has 
a rdation closed under =7:""''. Since \VI' know that all the stag<·s of lfp and pfp 
operators d<~fine such relations (see Exercise 11.6). we mnclud<• that (11.9) 
holds for LFP and PFP formulae. 

The proof of part 2 of Lemma 11.25 is hy straightforward induction 011 

the formulae, using the fact that --<Fo' is definable in LFP (Th<'orem 11.20). 
Details are left to the reader as an exercise. D 
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Sources for exercises: 
Exercises 11.6 and 11.7: Dawar, Lindell, and Weinstein [53] 
Exercises 11.8 and 11.9: Dawar [49] 
Exercise 11.10: de Rougemont [56] 
Exercise 11.11: Dawar, Lindell, and Weinstein [53] 
Exercise 11.12: Lindell [171] 
Exercise 11.13: Grohe [108] 
Exercises 11.14 and 11.15: Dawar, Lindell, and Weinstein [53] 
Exercises 11.16 and 11.17: Kolaitis and Vardi [154] 
Exercise 11.18: Grobe [110] 
Exercise 11.19: McColm [181] 

Kolaitis and Vardi [153] 

11.7 Exercises 

Exercise 11.1. Extend the proof of Theorem 11.12 to handle free variables, and 
constants in the vocabulary. 

Exercise 11.2. Fill in the details at the end of the proof of Theorem 11.20. 

Exercise 11.3. Complete the proof of Proposition 11.24. 

Exercise 11.4. Complete the proof of Lemma 11.25, part 2. 

Exercise 11.5. Prove that the FOk hierarchy is strict: there are properties express
ible in Fok+ 1 which are not expressible in FOk. 

Exercise 11.6. The goal of this exercise is to find a tight (as far as the number of 
variables is concerned) embedding of fixed point logics into .C:'xow. Let LFPk, IFPk, 
and PFPk stand for restrictions of LFP, IFP, and PFP to formulae that use at 
most k distinct variables (we assume that fixed point formulae have no parameters). 
Prove that LFP\ IFP\ PFPk ~ I.~w· 

Hint: Let r.p(R, x) be a formula, and let r.p'(x) define the ith stage of a fixed point 
computation. Show by induction on i that the query defined by r.p' is closed under 
=k'w, and use Corollary 11.14. 

Exercise 11. 7. Prove that if 2t and 'B agree on all FOk sentences of quantifier rank 
up tonk+ h: + 1 and lA IS: n, then 2t ='kw 'B. 

Exercise 11.8. Consider the complete bipartite graph Kn,m· Show that Kk,k =A':"w 
Kk.k-t-1 for every k. Also show that Kn.m is Hamiltonian iff n = rn. Conclude that 
Hamiltonicity is not L~w-definable. 

Exercise 11.9. Prove that 3-c:olorability is not L~w-definable. 

Exercise 11.10. Let In be a graph with n isolated vertices and Cm an undirected 
cycle of length m. For two graphs G1 = (V1, E1) and G2 = (V2, E2) with V1 and V2 
disjoint, let Gl X G2 be the graph whose nodes are Vt u v2, and the edges include 
E1, E2, as well as all the edges (v1,v2) for Vt E V1,v2 E V2. Prove that for a graph 
of the form In X Cm, it is impossible to test, in L~w' if n = rn. Usc this result to 
give another proof (cf. Exercise 11.8) that Hamiltonicity is not I..::::,w-definable. 
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Exercise 11.11. A binary tree is balanced if all the leaves arc at the same distance 
from the root. Prove that £~"' ddines a Boolean query Q on graphs such that if 
Q( G) is true, then G is a balanced binary tree. 

Exercise 11.12. Prove that there is a PTIME query on balanced binary tn·<~s which 
is not LFP-definable. 

Condud<~ that LFP ~ L:~w n PTI!\11-:. 

Exercise 11.13. Prove that the following problems ar<' PTI~m-comp!Pte for each 
fixed k. 

• Given two u-structures QL and 23, is it the case that QL =I:"' '23? 
• Given au-structure QL and ii, bE A k, are tpFO' (Ql. !7) and tPFo' ('Zl. b) the sam<'? 

Exercise 11.14. Prove that if QL is a finite rigid structur<~ (i.e., a structure that has 
no nontrivial automorphisms), then then• is a nurnb<>r k such that QL is I.--rigid. 

Exercise 11.15. Prove that the structure <!:k (Ql) can be constructed in polynomial 
time. 

Exercise 11.16. Define ::JL:f::c'" as the fragment of £~'"' that contains all atomic 
formulae and is dosed under infinitary conjunctions and disjunctions, and existential 
quantification. Let 

Prove that DATALOG c:; ::3£~w· 
Exercise 11.17. Consider the following modification of the k-pcbble game. For two 
structures QL and 23, the spoiler always plays in QL and the duplicator always n~sponds 
in 23. The spoiler wins if at some point, the position (ii. b) does not defirH' a partial 
homomorphism (as opposed to a partial isomorphism in the standard game). TlH' 
duplicator wins (which is denoted by QL <JZC"' 23) if th<' spoikr does not win; that is, 
if after each round the position defines a partial homomorphism. 

Prove that the following are equivalent: 
• QL <lk''"' 23. 
• If <P E ::JL:f::cw and 2l f= <P, then 23 f= <P. 

Exercise 11.18. By an FOk theory we mean a maximally consistent set of FO' 
sentences. Define the k-si:r,e of an FOk theory T as the number of different FO'
types reali:~:ed by finite models ofT. Prov<' that th<>rc is no recursive bound on tlw 
si:~:e of the smallest model of an FO' theory in terms of its k-size. That is, for every 
k there is a vocabulary CTk such that is no recursive function f with th<· prop<•rtv 
that every FOk theory Tin vocabulary u, has a modd of si;-:e at most f(n), when• 
n is the k-size ofT. 

Exercise 11.19. Let C be a class of a-structures. We call it bounded if for <~V<'ry 
relation symbol R tfc u, there exists a number n such that <'VPry FO formula cp(R.:J) 
positive in R reaches its least fixed point on any structure in C in at most n iterations. 

Prove that the following are equivalent: 
• C is bounded; 
• L:':!xw. collapses to FO on C. 

Exercise 11.20: Is the FO' hierarchy strict over ordered structures? That is, ar<' 
there properties which, over ordered structures, are definable in FOk 11 hut not in 
FOk, for arbitrary k? 
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Zero-One Laws 

In this chapter we show that properties expressible in many logics are almost 
surely true or almost surely false; that is, either they hold for almost all 
structures, or they fail for almost all structures. This phenomenon is known 
as the zero-one law. We prove it for FO, fixed point logics, and £~w· We 
shall also see that the "almost everywhere" behavior of logics is drastically 
different from their "everywhere" behavior. For example, while satisfiability 
in the finite is undecidable, it is decidable if a sentence is true in almost all 
finite models. 

12.1 Asymptotic Probabilities and Zero-One Laws 

To talk about asymptotic probabilities of properties of finite models, we 
adopt the convention that the universe of a structure ~ with IAI = n will 
be { 0, ... , n - 1}. Let us start by considering the case of undirected graphs. 
By G Rn we denote the set of all graphs with the universe { 0, ... , n - 1}. The 
number of undirected graphs on {0, ... , n- 1} is 

Let P be a property of graphs. We define 

f.Ln(P) = 
I{G E GRn I G has P}l 

IGRnl 

That is, f.Ln(P) is the probability that a randomly chosen graph on the set of 
nodes { 0, ... , n- 1} has P. Randomly here means with respect to the uniform 
distribution: each graph is equally likely to be chosen. 

We then define the asymptotic probability of P as 

t-L(P) = lim f.Ln(P), 
fL------700 

(12.1) 
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if the limit exists. If P is exprmsed by a sent<~nce <P of smrw logic then we 

refer to Jln (<P) and Jl(<P). 
In general, ViC can deal with arbitrary <J-structures. In that case, we 

can define .s~ as the number of different u-structures with the universe 
{0, ... , n- 1}, and s~(P) as the number of different <J-structnn•s with the 
universe {0 ..... n- 1} that have the property P, and let 

s~('P) 
p"(P) = --. s;:. 

Then the asymptotic probability p (P) is defined again by ( 12.lt). 

\Ve now consider a few examples: 

• Let P lw the property "there are no isolated nodes''. \N<~ claim that JI(P) = 
1. For that, w<~ show that JL(P) = 0, where Pis: "there is an isolated nod<•". 
To calculate Jin(P), note that th<~re are n ways to choose an isolated node. 

(" I) and 2 " ways to put edges on the remaining nodes. HerH·e 

and thus Jt(P) = 0. 

II 

2" I . 

• Let P be the property of being connected. Again, v,;e show that JL(P) = 0, 
and thus the asymptotic probability of graph cormectivity is 1. 

To calculate tt(P), we have to count the rmrnber of graphs with at least 
two comwcted components. Assuming the size of on<' cornporH'nt is k. 

- there are G) ways to choose a subset X c;; {0 .... . 11 ~ I}: 

then~ are 2 (:) ways to put edges on X; and 

- there are 2(";'·) ways to put edges on tlH' compl<·nwnl of X. 

Hence. 

Il-l(~'). 2m. 2("/l 
~l" (P) < 2:.: ')(~) k=l -

n-1 G) n 
+ 2:.: 2k"+kll 2"-1-1 

k=2 

/) 

< -t ---" 0. 
2"+1 2n 

• Consider the query I'VE!\. Then 

Jl 11 (EVEN) = {l 
() 

Hence, p(EVEN) does not exist. 

'11-1 
(~) 2:.: 2/;2-f-ku 

k=l 

ll 
< 2n+l + 

if n is evC'n. 

if n is odd. 

fl~l() 2~" . 2:.: ~'. 
/; c2 
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• The last example is the parity query. If CJ has a unary relation U, then 2t 
satisfies PARITYu iff I U')J.I mod 2 = 0. Therefore, 

/Ln(PARITYu) = _2: (~), 
k<n, k even 

and hence JL(PARITYu) = ~· 

Thus, for some properties P, the asymptotic probability tL(P) is 0 or 1, 
for some, like parity, tL(P) could be a number between 0 and 1, and for some, 
like EVEN, it may not even exist. 

Definition 12.1 (Zero-one law). Let C be a logic. We say that it has the 
zero-one law if for every property P (i.e., a Boolean query) definable in C, 
either tL(P) = 0, or tL(P) = 1. 

The first property P for which we proved tL(P) = 1 was the absence of 
isolated nodes: this property is FO-definable. Graph connectivity, which also 
has asymptotic probability 1, is not FO-definable, but it is definable in LFP 
and hence in C':x,w· On the other hand, the EVEN and PARITYu queries, which 
violate the zero-one law, are not £"/x,w-definable, as we saw in Chap. 11. It 
turns out that tL(P) is 0 or 1 for every property definable in C':x,w· 

Theorem 12.2. C':x,w has the zero-one law. 

Corollary 12.3. FO, LFP, IFP, and PFP all have the zero-one law. 

Zero-one laws can be seen as statements that a logic cannot do nontrivial 
counting. For example, if a logic C has the zero-one law, then EVEN is not 
expressible in it, as well as any divisibility properties (e.g., is the size of a 
certain set congruent to q modulo p?), cardinality comparisons (e.g., is I X I 
bigger than I Y I?), etc. 

Note also that while LFP, IFP, PFP, and C':x,w all have the zero-one law, 
their extensions with ordering no longer have it, since LFP+ <defines EVEN, 

a PTIME query. 
In the presence of a linear order (in fact, even successor), FO fails to have 

the zero-one law too. To see this, let S be the successor relation, and consider 
the sentence 

Vx'Vy (vz (--.S(z,x)A--.S(y,z)) --> E(x,y)), 

saying that if x is the initial and y the final element of the successor relation, 
then there is an edge between them. Since this sentence states the existence 
of one specific edge, its asymptotic probability is ~. 

We shall prove Theorem 12.2 in the next section after we introduce the 
main tool for the proof: extension axioms. 
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T S-T 
• • • • • • 

z 

Fig. 12.1. Extension axiom 

12.2 Extension Axioms 

E.rtension axioms arc statements defined as follows. Let S b<' a finite set of 
cardinality n , and let T ~ S be of cardinality rn. Then the extension axiom 
EA,.m says that there exists z ¢ S such that for all :r; E T. thcrr is an edge 
between z and x, and for all .1: E S - T, there is no edge hetwePn z and .r:. 

This is illustrated in Fig. 12.1. 
Extension axioms can be expressed in FO in the language of graphs. In 

fact, EAn.m. is given by the following sentence: 

( " ) (\ Z #X; 

\fx1 . . . . ,J;11 ( ./\. x; # .T.7) ----> =:Jz 1\ 'A E(z, :r;). 
'l.< rn 

iicj ~A J' ( ) 1\ I \ I :'_.; z, .l'.J 

'i>/11 

( 12.2) 

The extension axiom EAn.m is vacuously true in a structure with fewer 
than n elements, but we shall normally consider it in structures with at least 
n elements. 

We shall be using special cases of extension axioms, when lSI = '2/,; ami 
IT I is k. Such an extension axiom will be denoted by EA, . That is, EA, says 
if X n Y = 0, and I X 1=1 Y I= k, then there is z such that there is an edge 
(x,z) for all x E X but there is no edge (y ,z ) for any y E Y. 

Proposition 12.4. f.L (EAk) = 1 jo1· each k. 

Proof. We show instead that Jl(•EAk) = 0. L<'t n > 2k. Not<' that for E1h 
to fail , there must be disjoint X and Y of cardinality k: such that there is no 
z ¢XU Y with B(.T, z) for all :r E X and •E(y , z ) for all y E Y. W<• 11 0 w 

calculate JJ·n(•EAk), for n > 2/,;. 

• There are G.) ways to choose X . 
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• There are (n~k) ways to choose Y. Therefore, there are at most G~) · 
(n~k) ::::; n 2k ways to choose X andY. 

• Since there are no restrictions on edges on XU Y, there are 2C:i') ways to 
put edges on XU Y. 

• Again, since there are no restrictions on edges outside of XU Y, there are 

2(n-;2 k) ways to put edges outside of X U Y. 

• The only restriction we have is on putting edges between X U Y and its 
complement XU Y: for each of then- 2k elements z E XU Y, we can 
put edges between z and the 2k elements of X U Y in every possible way 
except one, where z is connected to every member of X and not connected 
to any member of Y. Hence, for each z there are 22k - 1 ways of putting 
edges between z and XU Y, and therefore the number of ways to put 
edges between XU Y and XU Y is (22k - l)n- 2k. 

Thus, 
n2k . 2C2k) . 2(n-;2 k) . (22k _ l)n-2k 

J-Ln(•EAA:) :S 2 (~) 

A simple calculation shows that 

(2k) (n-2k) 2 2 • 2 2 

2(~) 
< 

1 
22k(n-2k) · 

Combining (12.3) and (12.4) we obtain 

1-Ln ( ·EAk) ::::; n2k . ( 1 - 2!k r-2k 

proving that Jt( ·EAk) = 0 and p,(EAk) = 1. 

____, 0, 

Corollary 12.5. p,(EAn,m) = 1, for any n and m::::; n. 

(12.3) 

(12.4) 

D 

Proof For graphs of size > 2n, EAn implies EAn,m for any m ::::; n. D 

Corollary 12.6. Each EAk has arbitrarily large finite models. D 

Notice that it is not immediately obvious from the statement of EAk that 
there are finite graphs with at least 2k elements satisfying it. However, Propo
sition 12.4 tells us that we can find such graphs; in fact, almost all graphs 
satisfy EAk. 

We now move to the proof of the zero-one law for £":xow. First, we need a 
lemma. 
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Lemma 12. 7. Let G1, G2 be finite graphs such that GJ. G2 f= EAn.n1 for all 
m::::; n::::; k. Then G1 ='kw G2. 

Proof The extension axioms provide the strategy. Suppose we have a position 
in the game where ( a 1 , ... , ak) have been played in G1 and (b1 .... , bk) in 
G2 . Let the spoiler move the ith pebble from a; to some element a. Let 
I c:;;; { 1, ... , k} - { i} be all the indices such that there is an edge from a 
to aj, for all j E I. Then by the extension axioms we can find b E G2 such 
that there is an edge from b to every b1, for j E I, and there are no edges 
from b to any bz, for l rf. I. Hence, the duplicator can play b as the response 
to a. This shows that the pebble game can continue indefinitely, and thus 
G1 ='kw G2. 0 

And finally, we prove the zero-one law. Let <P be from .C~w· Suppose there 
is a model G of EAk, of size at least 2k, that is also a model of <P. Suppose G' 
is a graph that satisfies EA~.: and has at least 2k elements. Then, by Lemma 
12.7, we have G' ='kw G and hence G' f= <P. Therefore, Jl(<p) 2': Jl(EAk) = 1. 
Conversely, assume that no model of EAk of size 2': 2k is a model of <P. Then 
Jl(P)::::; Jl(-,EAk) = 0. 0 

We now revisit the example of graph connectivity, for which the asymptotic 
probability was shown to be 1. If we look at EA 2 , then for graphs with at least 
four nodes it implies that, for any :r =/=- y, there exists z such that E(:c. z) and 
E(y, z) hold. Hence, every graph with at least four nodes satisfying EA2 is 
connected, and thus Jl( connectivity) = 1. 

As another example of using extension axioms for computing asymptotic 
probabilities, consider EA 2 and an edge (x, y). As before, we can find a node 
z such that E(x, z) and E(y, z) hold, and hence a graph satisfying EA 2 has a 
cycle (x, y, z). This means that Jl(acyclicity) = 0. 

Finally, we explain how to state the extension axioms for an arbitrary vo
cabulary O" that contains only relation symbols. Given variables x 1 , ...• ;r,, 
let Au(x1 , ... ,xn) be the collection of all atomic CT-forrnulae of the form 
R(xi,, ... , xi"'), where R ranges over relations from CT, and m is the arity 
of R. Let F c:;;; Au(xr, ... ,xn)· With F, we associate a formula XF(.rJ, ... ,.rn) 
(called a complete description) given by 

1\ 'P 1\ 1\ 

That is, a complete description states precisely which atomic formulae m 
x 1 , ... , Xn are true, and which are not. 

Let F now be a subset of Au(x 1, ••• ,xn), and G a subset of 
Au(x1 , ... ,Xn,Xn+d such that G extends F; that is, F c:;;; G. Then the exten
sion axiom EAF.G is the sentence 
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saying that every complete description inn variables can be extended to every 
consistent complete description in n + 1 variables. A similar argument shows 
that J-L( EAF,G) = 1. Therefore, the zero-one law holds for arbitrary finite 
structures, not only graphs. 

12.3 The Random Graph 

In this section we deal with a certain infinite structure. This structure, called 
the random graph, has an interesting FO theory: it consists of precisely all the 
sentences P for which J-L(P) = 1. By analyzing the random graph, we prove 
that it is decidable, for an FO sentence P, whether J-L(P) = 1. 

First, recall the BIT predicate: BIT( i, j) is true iff the jth bit of the binary 
expansion of i is 1. 

Definition 12.8. The random graph is defined as the infinite {undirected} 
graph R{} = (N, E) where there is an edge between i and j, for j < i, iff 
BIT( i, j) is true. 

Why is this graph called random? After all, the construction is completely 
deterministic. It turns out there is a probabilistic construction that results 
in this graph. Suppose someone wants to randomly build a countable graph 
whose nodes are natural numbers. When reaching a new node n, this person 
would look at all nodes k < n, and for each of them will toss a coin to 
decide if there is an edge between k and n. What kind of graph does one get 
as the result? It turns out that with probability 1, the constructed graph is 
isomorphic to R{}. 

However, for our purposes, we do not need the probabilistic construction. 
What is important to us is that the random graph satisfies all the extension 
axioms. Indeed, to see that R{} I= EAn,m, let S C N be of size n and X ~ S be 
of size m. Let l be a number which, when given in binary, has ones in positions 
from X, and zeros in positions from S - X. Furthermore, assume that l has 
a one in some position whose number is higher than the maximal number 
in S. Then l witnesses EAn,rn for S and T. To give a concrete example, if 
S = {0, 1, 2, 3, 4} and X = {0, 2, 3}, then the number l is 45, or 101101 in 
binary. 

Next, we define a theory 

EA = {EAk I kEN}. (12.5) 

Recall that a theory T (a set of sentences over vocabulary a) is complete if 
for each sentence P, either T I= P or T I= -.rfJ; it is w-categorical if, up to 
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isomorphism, it has only one countable model, and decidable. if it is d<'ridahl<' 
whether T f= cp_ 

Theorem 12.9. EA is complete, v..:-categorical. and decidable. 

Proof For w-categoricity, we claim that up to isomorphism, 7?() is the only 
countable model of EA. Suppose that Q is another model of EA (and 
thus it satisfies all the extension axioms },'A.11 _11 ,). \Ve dai:n that 7?() =..., Q: 
that is, the duplicator can play countably many moves of the Elm~nfeucht
Fra"isse game on 7?() and Q. Indeed. suppose after round r we have a posi
tion ( (a 1 , ...• or). (b1 ..•. , b,)) defining a partial isomorphism. aud suppose till' 
spoiler plays a,+l in 7?(). LPt I= {iS r I 7?() f= E(a,+l· u,)}. Since Q f= EA. 
by the appropriate extension axiom we can find b,+ 1 suc:lt that Q f= I:( b,+ 1 • h;) 
iffi E I. Thus, the resulting position ((a 1 .... . a,.a,+ 1 ), (b 1 •...• b,.h,+ 1 )) still 
defines a partial isomorphism. 

If we have two countable structures such that 2l =~· 23, th<m 2l ~ 23. 
Indeed, if A = { o; I i E N} and B = { b; I i E N}. let tlw spoil<~r play, in 
each even rouwL tlw smallest unused dmrwnt of A, and in each odd rouwl 
the smallest unused element of R. Then t hP union of the sequence of partial 
isomorphisms generatf~d by this play is an isomorphism between 2l and 23. 

Thus, \Ve havr~ shown that Q f= EA implies Q ~ RQ and hence EA is 
w-categorical. 

The next step is to show completeness of EA. Suppose that we han' a 
sentence 4> such that neither EA f= <J> nor EA f= ---4>. Thm>. both theories 
EAU { 4>} and EAU { •P} are consistent. By the LowPnheim-SkolPm theorem, 
we get two countablP models Q', Q" of EA such that Q' f= <!> and Q" f= ---4>. 
However, by uJ-categoricity, this means that Q' ~ Q" ~ 7?(). This contradidim1 
proves that EA is complde. 

Finally, a classical result in model theory says that a r<'cursivdy axioma
ti>\able complete th(~ory is decidabl<~. Since (12.5) proYides a recnrsivP axiom
atization. we conc:lude that EA is d('ciclable. D 

Corollary 12.10. IftJ> is an FO sentence, then 7?() f= <J> iff I'(<J>) =I. 

Proof. Let 7?() f= P. Since EA is complete, EA f= <I>, and hencP, by cmu
pactness, for somP k > 0, {RA, I i S /,;} f= <[>. Thus, E.!1.,, f= tJ> and lwrHT 
p(P) 2> f!.(EAA) = 1. Convers<~ly, if 7?() f-= ,iJ>, th<'n p(-4') = Land 1'(<1>) c= 0. 
Hence, for any rJ> with ~L(c])) = 1, we have 7?() f= -;:. D 

Combinin~ Corollary 12.10 and dPcidahility of EA. we obtain tlw follow-
ing. 

Corollary 12.11. For an FO sentence P it i8 decidable whether· 1'(<1>) = I. 

Thus, Trakhtenbrot's theorem tells us that it is undecidable wlH'tlH'r a 
S('ntence is true in all finite models, but nm'' \Ve see that it is decidable whether 
a sentence is true in almost all finite mudds. 
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12.4 Zero-One Law and Second-Order Logic 

We have proved the zero-one law for the finite variable logic .C~w and its 
fragments such as FO and fixed point logics. It is natural to ask what other 
logics have it. Since the zero-one law can be seen as a statement saying that 
a logic cannot count, counting logics cannot have it. Another possibility is 
second-order logic and its fragments. Even such a simple fragment as 380, 
the existential second-order logic, does not have the zero-one law: since 380 
equals NP, the query EVEN is in 380. But we shall see that some nontrivial 
restrictions of 380 have the zmo-one law. 

One way to obtain such restrictions is to look at quantifier prefixes of the 
first-order part. Recall that an 380 sentence can be written as 

( 12.6) 

where each Qi is 'v' or 3, and r.p is quantifier-free. If r is a regular expression 
over the alphabet {3, \1}, by 3SO(r) we denote the set of all sentences (12.6) 
such that the string Q 1 ... Q 111 is in the language denoted by r. For example, 
380(3*\f*) is a fragment of 380 that consists of sentences (12.6) for which 
the first-order part has all existential quantifiers in front of the universal 
quantifiers. 

Theorem 12.12. 380(3*\f*) has the zero-one law. 

Pmof. To keep the notation simple, we shall prove this for undirected graphs, 
but the result is true for arbitrary vocabularies that contain only relation 
symbols. The result will follow from two lemmas. 

Lemma 12.13. Let 5 1 , ... , Sm be r·elation symbols, and r.p an FO sentence of 
vocabulary {51 , ... , Sm, E} such that 

R{J F 'v'St · · · 'v'Srn r.p(S1, ... , Sm)· 

Then thcr·e is an FO sentence <P of vocabular·y {E} such that p.(<P) 
<P --+ \f § r.p is a valid sentence. 

1 and 

Lemma 12.14. Let 51 , ... , Sm be relation symbols, and r.p(x, fj) a quantifier
fr-ee FO formula of vocabulary { S 1, ... , Sm, E} such that 

R[J F= 3S\ ... 38m 3:£ \Iff r.p(S, x, iJ). 

Then there is an FO sentence tJt of vocabu.lar-y { E} such that p,( <P) 
<P --+ 3S 3:£ \fy r.p is a finitely valid sentence. 

1 and 

First, th(~Se lemmas imply the theorem. Indeed, assume that we are given 
an ::180(3*\f*) sentence 8 = 3S 3£ \fy r.p. Let R[J f= 8. Then, by Lemma 
12.14, there is a sentence <P with Jt(<P) = 1 such that 8 is true in every finite 
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model of P, and hence ;1,(8) = 1. Conversely, assumC' RQ f= -,(-1. Sine<' --,E:-J is 
an VSO sentence, by Lemma 12.13 we find a sentence P with fl(<I>) = I such 
that --,(9 is true in every modd of P, and thus /L( --,f3) = 1 and f.l( 8) = 0. 
Hence, JL( 8) is either 0 or 1. It remains to prov(~ the lemmas. 

Proof of Lemma 12.1.'1. Assume that RQ f= 'v'Scp(S), but for every FO sentene<' 
P with Jl(P) = 1, it is the case that (<P---. \IS cp) is not a valid sentence (i.e., 
P 1\ ~S--,cp(S) has a model). 

Consider the theory T = E AU { ''P} of vocabulary { S\ ..... Sm, E}. Sinn~ 
every finite mnjunc:tion of extension axioms has asymptotic probability 1, by 
compactness we conclude that T is consistent, and by the Liiwenheim-Skolem 
theorem, it has a countable model 2l. Since EA is w-categoric:al, the { E}
reduc:t of 2l is isomorphic to RQ. But then RQ f= ~S--,cp(!]), a contradiction. 
This prow~s Lemma 12.13. 

Proof of Lemma 12.14. Let I Sl = 1n and 1-fl = n. Let A1 .... , Arn witness tlw 
second-order quantifiers, and let a 1 , .•• , a~~. lw the elements of RQ \Vitlwssing 
FO existential quantifiers. Let RQ0 be the finite subgraph of RQ with tiH~ 

universe { a1 , ... , an}. We can find finitely many extension axioms { L'A 1..1} 

such that their conjunction implies the existence of a subgraph isomorphic 
to RQ0 . Let P be the conjunction of all such extension axioms. Let 2l lw 
a finite model of P. By the extension axioms, there is a subgraph RQ'2J. of 
RQ that is isomorphic to 2l and contains RQ0 . Now we claim that R[;h I= 
~/J~iViJ cp. To witness the second-order quantifiers, we takP the restrictions of 
the A;. 's to RQ'2J.; as witnesses of FO existential quantifiers we take a 1 ••••• 11 11 • 

Since universal sentences are preserved under substructures, we concludP that 
RQ'}J. F Vfl cp(A, a, il), and thus RQ2( F ~S~:N;~7 !.p. Therefor<~. 2l F :J.'l35Vy Y• 
which proves the lemma. [] 

There are more results concerning z<~ro-one laws for fragments of SO, hut 
they are significantly more complicated, and we present them without proofs. 
One other prefix class which admits the zero-one lmv is 3*V~*: that is, exact l~· 
one universal quantifier is present. 

Theorem 12.15. ~SO(~*V~*) has the zem-one law. [] 

Going to two universal quantifiers, however, creates problems. 

Theorem 12.16. :JSO(W~) does not have the zem-one law, even if the FO 
part does not usc equaldy. D 

For some prefix classes, the failure of thP zero-om' law is fairly easy to 
show. Consider, for example, the sentence 

( 
,'1'(:1:, y) 1\ --,S(.r, 1·)) 

~s \f:dy\fz A ,~(.T. z) ---. Y, = z 
1\ S ( J'. z) f--'t S ( z . . r) 
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This in an 380(\13\1) sentence saying there is a permutation Sin which every 
element has order 2; that is, this sentence expresses EVEN and thus 380(\13\1) 
fails the zero-one law. A similar sentence can be written in 380(VVV3). There
sult can further be strengthened to show that both 380(\13\1) and 380(VVV3) 
fail to have the zero-one law even if the FO order part does not mention 
equality. 

12.5 Almost Everywhere Equivalence of Logics 

In this short section, we shall prove a somewhat surprising result that on 
almost all structures, there is no difference between FO, LFP, PFP, and .C~w· 

Definition 12.17. Given a logic .C, its fragment .C', and a vocabulary a, we 
say that .C and .C' are almost everywhere equivalent over a, if there is a class 
C of finite a-structures such that JL(C) = 1 and for every .C formula cp, there 
is an .C' formula '1/J such that cp and '1/J coincide on structures from C. 

Theorem 12.18 . .C~w and FO are almost everywhere equivalent over a, for 
any purely relational vocabulary a. 

Proof sketch. For simplicity, we deal with undirected graphs. Let Ck be the 
class of finite graphs satisfying EAk. We claim that on Ck, every .C~w formula 
is equivalent to an FOk formula. Indeed, for a tuple ii = (a1 , ... , ak) in a 
structure l2l E Ck, its FOk type tpp0 k (l21, ii) is completely determined by the 
atomic type of ii; that is, by the atomic formulae E( ai, aJ) that hold for ii. 
To see this, notice that if ii and b have the same atomic type, then (a, b) is a 
partial isomorphism, and by EAk from the position (a, b) the duplicator can 
play indefinitely in the k-pebble game; hence, (l21, ii) ='kw (l21, b). 

Therefore, there are only finitely many FOk types, and each .C~w formula 
is a disjunction of those, and thus equivalent to an FOk formula. (In fact, we 
proved a stronger statement that on ck, every .c~w formula is equivalent to 
a quantifier-free FOk formula.) 

We now consider the classes C1 ~ C2 ~ ... , and observe that since each 
JL(Ck) is 1, then for any sequence t:1 > E2 > ... > 0 such that limn--+oo En = 0, 
we can find an increasing sequence of numbers n 1 < n2 < ... < nk < ... such 
that 

We then define 

C = {l21 E STRUCT[{E}] J if IAI 2:: nk, then l2l E Ck}· 

One can easily check that JL(C) = 1. We claim that every .C~w formula is 
equivalent to an FO formula on C. Indeed, let cp be an .C~w formula. We know 
that on Ck, it is equivalent to an FOk formula cp'. Thus, to find a formula 'ljJ 
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to which r.p is equivalent on C, one explicitly enumerates all the structures of 
cardinality up to n~,; and evaluates r.p on them. Then, one writes an FO formula 
1/Jk saying that if~ is one of the structures with IAI < n~,;, then th(~) = r.p(~), 

and for all the structures with !AI :::: n~,;, 1/Jk agrees with r.p'. Since the number 
of structures of cardinality up to n~,; is fixed, this can be done in FO. D 

This result has complexity-theoretic implications. While we know that 
LFP and PFP queries have respectively PTIME and PSPACE data complexity, 
Theorem 12.18 shows that their complexity can he reduced to AC0 on almost 
all structures. 
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Exercise 12.1. Calculate J-L(P) for the following properties P: 

• rigidity; 
• 2-colorability; 
• being a tree; 
• Hamiltonicity; 
• having diameter 2. 

Exercise 12.2. Prove the zero-one law for arbitrary vocabularies, using extension 
axioms EAF,G· 

Exercise 12.3. Instead of J-ln(P), consider vn(P) as the ratio of the number of 
different isomorphism types of graphs on {0, ... , n-1} that have P and the number 
of all different isomorphism types of graphs on {0, ... , n -1 }. Let v(P) be defined as 
the limit of vn(P). Prove that if Pis an FO-definable property, then v(P) = J-L(P), 
and thus is either 0 or 1. 

Exercise 12.4. If constant or function symbols are allowed in the vocabulary, the 
zero-one law may not be true. Specifically, prove that: 

• if cis a constant symbol and U a unary predicate symbol, then U(c) has asymp
totic probability ~; 

• iff is a unary function symbol, then Vx -.(x = f(x)) has asymptotic probability 
l 
e 

Exercise 12.5. Instead of the usual successor relation, consider a circular successor: 
a relation of the form {(a1, a2), (a2, a3), ... , (an-1, an), (an, a!)}. Prove that in the 
presence of a circular successor, FO continues to have the zero-one law. 

Exercise 12.6. Prove that MSO does not have the zero-one law. 
Hint: choose a vocabulary u to consist of several binary relations, and prove that 

there is an FO formula rp(x, y) of vocabulary u U {U}, where U is unary, such that 
the MSO sentence 3U rp1 almost surely holds, where rp' states that the set of pairs 
for (x,y) for which rp(x,y) holds is a linear ordering. 

Then the failure of the zero-one law follows since we know that MSO+ < can 
define EVEN. 

Prove a stronger version of this failure, for the vocabulary of one binary relation. 

Exercise 12. 7. Prove that for vocabularies with bounded arities, the problem of 
deciding whether J-L(P) = 1, where Pis FO, is PSPACE-complete. 

Exercise 12.8. Prove that the random graph admits quantifier elimination: that is, 
every formula rp(x) is equivalent to a quantifier-free formula rp'(x). 
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Exercise 12.9. (a) Consider the following undirected graph Q: its univ<·rse is N ~ 
{n E N I n > 0} and there is an edge between n and m, for n > 111, iff n is 
divisible by p,, the mth prime. Prove that Q is isomorphic to the random graph 
1?{}. 

Hint: the proof does not require any numh<'r th<'ory, and is a simple application 
of extension axioms. 

(h) Consider another countable graph Q' whose universe is the s<'t of prim<'s con
gruent to 1 modulo 4. Put an edg<~ between Jl and q if p is a <ptadratic residm· 
modulo q. Prove that Q' is isomorphic to the random graph R{/. 

Exercise 12.10. Let <J> be an arbitrary :JSO sentenc<~. Prow that it is undecidahl<• 
whether JL( <I>) = 1. 

Exercise 12.11. Prove that the restriction of :JSO, where the first-order part if' a 
formula of F0 2 , does not have the zero-one law. 

Exercise 12.12. Prove that for vocabulari<'s with hound<•d aritics, the problem of 
deciding whether Jl.(<l>) = 1 is 

• NEXPTIME-complete, if <l> is an :JSO(:J*I;f*) sentence, or an :JSO(:J*'v':J*) sentence: 
• EXPTIME-complete, if <l> is an LFP sentence. 

Exercise 12.13: Does :JSO(W:J) have the zero-one law over graphs'~ 
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Embedded Finite Models 

In finite model theory, we deal with logics over finite structures. In embedded 
finite model theory, we deal with logics over finite structures embedded into 
infinite ones. For example, one assumes that nodes of graphs are numbers, 
and writes sentences like 

3x3y (E(x,y)l\(x·y=x·x+l)) 

saying that there is an edge (x, y) in a graph with xy = x2 + 1. The infinite 
structure in this case could be (IR, +,·),or (N, +,·),or (Q, +,} 

What kinds of queries can one write in this setting? We shall see in this 
chapter that the answer depends heavily on the properties of the infinite 
structure into which the finite structures are embedded: for example, queries 
such as EVEN and graph connectivity turn out to be expressible on structuws 
embedded into (N, +,·),or (Q, +,·),but not (IR, +, ·). 

The main motivation for embedded finite models comes from database tlw
ory. Relational calculus - that is, FO · is the basic relational query language. 
However, databases store interpreted elements such as numbers or strings, 
and queries in all practical languages use domain-specific operations, like 
arithmetic operations for numbers, or concatenation and prefix comparison 
for strings, etc. Embedded finite model theory studies precisely these kinds 
of languages over finite models, where the underlying domain is potentially 
infinite, and operations over that domain can be used in formulae. 

13.1 Embedded Finite Models: the Setting 

Assume that we have two vocabularies, Q and u, where u is finite and rela
tional. Let 9.11 be an infinite fl-structure (U, D), where U is an infinite set. 
For example, if [! contains two binary functions + and ·, then (IR, +, · j and 
(N, +, · j are two possible infinite !?-structures, with + and · interpreted, in 
both cases, as addition and multiplication respectively. 
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Definition 13.1. Let 9J1 = (U, D) be an infinite f?-str·v.ctun~, and let rT = 

{ R l, ... , Rm}. Sv.ppose the arity of each R; is ]!; > 0. Then an cmlwddcd 
finite model (i.e., a rT -str-ucture embedded ·into 9J1) is a structure 

where each R? is a finite subset of lfP·, and A is the set of all the elements 

of U that occur- in the relations Rfl ..... Rfl. The set A is mlled the active 
domain of 2l, and is denoted by adom(2l). D 

So far this is not that much different from the usual finite rnodd. <'xcept 
that the universe comes from a given infinite set l!. 'Vhat makes the setting 
different, however, is the presence of the underlying structun· sm, which makes 
it possible to usc rich logics for defining queries on Pmhedded finite modds. 
That is, instead of just FO over 2l, we shall use FO over 

(9J1, 2l) '.2! '2l) (U. fl. R 1 •..•• R1 . 

making use of operations availabk on 9J1. 
Before we define this logic, denoted by F0(9J1. (J), we shall address the 

issue of quantification. The universe of (9J1, 2l) is U, so saying 3.rcp(.r) mmns 
that there is an element of U that witnesses cp. But while \V<~ are dealing with 
finite structures 2l embedckd into sm, quantification over the entire set u is 
not always very convenient. 

Consider, for example, the simple property ofreflexivity. In tlH' usual finite 
model theory context, to state that a binary relation r~' is n•flt>xive. we would 
say vx E(x, .r ). Howev<~r, if the interpretation of v:r is ''for all 1· E [T", this 
sentence would be false in all embedded finit<~ models! What we really want 
to say here is: "for all :r in the active domain, E(:r, .r:) holds". 

The definition of F0(9J1, CJ) thus provicks additional syntax to quantify 
over dements of the active domain. 

Definition 13.2. Given 9J1 = (U. fl) and a r·elational vocabular·y rT, first-onl<·r 
logic (FO) over 9J1 and CJ, denoted by F0(9J1, rT), is defined as follows: 

• Any atomic FO for-rn:ula in the language of 9J1 is an atomic F0(9J1. rT) joT
mula. For· any p-ary symbol R from (J and tenns t 1 ..... t 1, in the lan.rruaye 
of 9J1, R(t 1 •... , t)l) is an atomic F0(9J1. (}) fonrmla. 

• Formulae of F0(9J1. rT) are closed nnder the Boolean counectives V. 1\. and 

• If 'P is an F0(9J1. (J) formula, then the following an~ F'0(9J1. rT) fonnulac: 

- 3:r cp, 

v:r ',), 
- 3:r E adorn ',), and 

-v.r; E adorn cp. 
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The class of first-order formulae in the language of 9J1 will be denoted by 
F0(9J1) (i.e., the formulae built up from atomic 9J1-formulae by Boolean con
nectives and quantification ::3, \f). The class of formulae not using the symbols 
from J? will be denoted by FO(O") (in this case all four quantifiers are allowed). 

The notions of free and bound variables are the usual ones. To define the 
semantics, we need to define the relation (9J1, 2l) f= 'P(ii), for a formula i.p(x) 
and a tuple a over U of values of free variables. All the cases are standard, 
except quantification. If we have a formula 'P(x, ff), and a tuple of elements b 
(values for Y), then 

(9J1,2l) f= ::Jx 'P(:r.b) iff (9J1,2l) f= I.{J(a,b) for some a E U. 

On the other hand, 

(9J1,2l) f= ::lxEadorn i.p(x,b) iff (9J1,2l) f= 'P(a,b) for some a E adorn(2l). 

The definitions for the universal quantification are: 

(9J1, 2l) f= \fx i.p(x, b) iff (9J1, 2l) f= 'P(a, b) for all a E U 
(9J1,2l) f= \fxEadorn i.p(x,b) iff (9J1,2l) f= 'P(a,b) for all a E adorn(2l). 

Since 9J1 is most of the time clear from the context, we shall often write 
2l f= 'P(ii) instead of the more formal (9J1, 2l) f= 'P(ii). 

The quantifiers ::Jx E adorn 'P and \f:r E adorn 'P are called active-domain 
quantifiers. We shall sometimes refer to the usual quantifies ::3 and \1 as nn
restr·icted quantifiers. 

From the point of view of expressive power, active-domain quantifiers are a 
mem convenience: since adorn(2l) is definable with unrestricted quantification, 
so are these quantifiers. But we use them separately in order to define an 
important sublogic of F0(9J1, a). 

Definition 13.3. By FOact(9.n, O") we denote the fragment of F0(9.n, O") that 
only nses qnantifier·s ::Jx E adorn and \fx E adorn. Formulae in this fragment 
are called the active-domain formulae. 

Before moving on to the expressive power of F0(9J1, O"), we briefly discuss 
evaluation of such formulae. Since quantification is no longer restricted to a 
finite set, it is not clear a priori that formulae of F0(9J1, O") can be evaluat<~d -
and, indeed, in some cases there is no algorithm for evaluating them. However, 
there is one special case when evaluation of formulae is "easy" (that is, easy 
to explain, not necessarily easy to evaluate). 

Suppose we have a sentence q> of F0(9J1, O"), and an embedded finite model 
2l. We further assume that every element c E adorn(2l) is definable over 9J1: 
that is, there is an F0(9J1) formula ac(x) such that 9J1 f= ac(x) iff x =c. 

In such a case, we replace every occurrence of an atomic formula 
R(t 1(x), ... , trn(x)), where REa and the t;'s are terms, by 



252 13 Embedded Finite Models 

V n,. 1 (t1 (i)) 1\ ... 1\ n,."' (tm(i)). 
(r·J ... ,cm)EH"' 

That is, we say that the tuple of values of the i;(i)'s is one of the tupks in 
R'<J.. Thus, if <JJ'2i is the sentence obtained from <P hy such a n~placement, then 

(911. 2l) F= <P (13.1) 

Notice that <1>'21 is an F0(911) sentence, since all tlw J-relatious disappeared. 
Now using (13.1) we can propose the following evaluation algorithm: given <]J, 

construct <JJ'2i, and check if 911 f= <P21 . The last is possible if the theory of 911 is 
decidable. 

13.2 Analyzing Embedded Finite Models 

When we briefly looked at the standard model-theoretic techniques in Chap. 3, 
we noticed that they are generally inapplicable in the setting of finite model 
theory. For embedded finite models, we mix the finite and tlw infinite: Wl' study 
logics over pairs (911, 2l), where 911 is infinite and 2l is finite. So the question 
arises: can we use techniques of either finitP or infinitl' model tlll'ory'? 

It turns out that we cannot use finite or infinite modd-theorf'tic techniques 
directly; as we an~ about to show, in general, they fail over embedded finitl' 
models. Then we outline a new kind of tools that is used \vith emlwdded 
finite models: by using infinite model-theoretic techniques, we reduce qUl~stions 
about embedded finite modds to questions about finite nwd(~ls, for which thl' 
prec~~ding 12 chapters give us plenty of answers. In general. we shall SPl' thai 
the behavior of F0(911, J) depends heavily on modd-theor<'tic properties of 
the underlying structure 911. 

We now discuss standard (finite) model-tlworetic tools and their applica
bility to the study of f~rnbedded finite models. 

First, notice that compactness fails over embedded finite modds for thl' 
saml" reason as for finite models. Orw can VvTite sentencl's ;,n, n ;:>: 0, stating 
that adom(2l) contains at least n dements. Then T = Pn I n ;:>: 0} is finitely 
consistent: every finite set of sPntences has a finite modeL How<~ver, T its<·lf 
does not have a finite model. 

Onl' tool that definitely applies in the ernlwdded settinp; is EhrPnfPucht
Fra'isse games. However, playing a game is very hard. AssumP, for l'xamplE', 
that 911 is the rml field (JR:., +,-). Suppose J is empty, and we want to show 
that the query EVE!\, testing if I adorn(2l) I is Pven, is not expr<'ssiblP (v.:hich, 
as we shall see latf~r, is a true statement). As in tlw proof giv<~n in Chap. 3, 
suppose EVEN is expressiblP by a sentfmce <P of quantifier rank k. Bdore, Wl' 
picked two structures, 2l1 of cardinality k and 2l2 of cardinality k + 1, and 
showed that 2l1 =k 2l2 . Our problem now is that showinp; '?1 1 ==,. 2l2 no longl'r 
sufficl~s, as we have to prove 
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(9J1, 2h) '=k (9J1, 2l2) (13.2) 

instead. For example, in the old strategy for winning the game on 2l1 and 
2l2 , if the spoiler plays any point a 1 in 2l1 in the first move, the duplicator 
can respond by any point 2l2 • But now we have to account for additional 
atomic formulae such as p(x) = 0, where p is a polynomial. So if we know 
that p(ai) = 0 for some given p, the strategy must also ensure that p(a2) = 0. 
It is not at all clear how one can play a game like that, to satisfy (13.2). 

The next obvious approach is to try finite model-theoretic techniques that 
avoid Ehrenfeucht-Frai'sse games, such as locality and zero-one laws. This ap
proach, however, cannot be used for all structures 9J1, as the following example 
shows. 

Let 1)1 be the well-known structure (N, +,·);that is, natural numbers with 
the usual arithmetic operations. A a-structure over 1)1 is a a-structure whose 
active domain is a finite subset of N, and hence it can be encoded by some 
reasonable encoding (e.g., a slight modification of the encoding of Chap. 6, 
where in addition all numbers in the active domain are encoded in binary). 
A Boolean query on a-structures embedded into 1)1 is a function Q from such 
structures into {true, false}. It is computable if there is a computable function 
!Q: {0, 1}*----> {0, 1} such that !Q(s) = 1 iff sis an encoding of a structure 2l 
such that Q(2l) = true. 

Proposition 13.4. Every computable Boolean query on a-structures embed
ded into 1)1 can be expressed in FO(IJt, a). 

Proof. Without loss of generality, we assume that a contains a single binary 
relation E. We use the following well-known fact about 1)1: every computable 
predicate P ~ Nm is definable by an FO(IJt) formula, which we shall denote 
by 'lj;p(x 1 , ... ,xm)· The idea of the proof then is to code finite a-structures 
with numbers. For a query Q, the sentence defining it will be 

(13.3) 

where x(x) says that the input structure 2l is coded by the number x, and 
the predicate PQ is the computable predicate such that PQ( n) holds iff n is 
the code of a structure 2l with Q(2l) = true. 

Thus, we have to show how to code structures. Let Pn denote the nth 
prime, with the numeration starting at p 0 = 2. Suppose we have a structure 
2l with adam (2l) = { n 1 , ... , nk}. We first code the active domain by 

k 

codeo(2l) = ITPni· 
i=l 

There is a formula xo(:r) of FO(IJt, a) such that 2l f= xo(n) iff code0 (2l) = n. 
Such a formula states the following condition: 
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• for each l E adam(~), n is divisible by Pt but not divisible by pf, and 

• if n is divisible by a prime number p, then p is of the form p1 for some 
l E adam(~). 

Since the binary relation {(n,pn) I n 2" 0} is computable and thus definahlP 
in FO(SJl), Xo can be expressed as an FO(sn, O") formula. 

We next code the edge relation E. Let pair : N x N -+ N be the standard 
pairing function. We then code E 21 by 

codel(~) = II Ppair(n;. ni) · 

(n;.nj)EE 21 

As in the case of coding the active domain, there exists a formula \ 1 ( J:) such 
that ~ f= XI ( n) iff code1 (~) = n ·· the proof is the same as for '\' 0 . Finally, WP 
code the whole structure by 

code(~) = pair(code0 (~),code 1 (~)). 

Clearly,~ -1- 23 implies code(~) -1- code(23), so we did define a coding function. 
Moreover, since xo and Xt are FO(SJl, O") formulae, the formula \(:r:) can bP 
defined as 3y3z xo(Y) Ax1 (z) A '1/Jp(y, z, x), where Pis the graph of the pairing 
function. This completes the coding scheme, and thus shows that (13.3) defines 
Q on structures embedded into sn. 0 

Therefore, in FO(sn, O") we can express queries that violate locality notions 
(e.g., connectivity) and queries that do not obey the zero-one law (e.g., parity). 

Hence, we need a totally different set of techniques for proving bounds on 
the expressive power ofF0(9J1, O"). If we want to prove results about F0(9J1. O"), 
perhaps we can relate this logic to something we know how to deal with: 
the pure finite model theory setting. In our new terminology, this would he 
FOact(11vh O"), where 110 = (U, 0) is a structure of the empty vocabulary. That 
is, there are no functions or predicates from 9J1 used in formulae, and all 
quantification is restricted to the finite universe ad om(~). (N oticP that the 
setting of FOact(110, O") is in fact a bit more restrictive than the usual finite 
model theory setting: in the latter, we quantify over a finite universe that may 
be larger than the active domain.) 

For technical reasons that will become clear a bit later, we shall deal not 
with~ but rather with 11< = (U, <), where < is a linear order on U. Then 
FOact (11<, O") corresponds to what we called FO+ < in the finite model theory 
setting. We know a number of results about this logic: in particular, it cannot 
express the query EVEN (Theorem 3.6) nor can it express graph connectiYity 
(Theorem 5.8). 

We now present the first of our two new tools. First, we need the following. 
Suppose D' expands D by adding some (perhaps infinitely many) predicate 
symbols. We call a structure 9J1' = (U, D') a definitional expansion of 9J1 = 
(U, D) if for every predicate P E D' - [2, there exists a formula lf'p(.r) in the 
language of 9J1 such that pm' = {a I 9J1 F= 1; p (a)}. 
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Definition 13.5. We say that 9J1 admits the restricted quantifier collapse, or 

RQC, if there exists a definitional expansion 9)1' of 9J1 such that 

FOact (9J1', 0") 

for every O". 

The notion of RQC can be formulated without using a definitional ex
pansion as follows. For every F0(9J1, O") formula rp(x), there is an equivalent 

formula rp'(x) such that no O"-relation appears within the scope of an unre
stricted quantifier ::3 or 1::/ (i.e., O"-relations only appear within the scope of 
restricted quantifiers ::lx E adorn and 1::/x E adorn). 

Then~ is one special form of the restricted quantifier collapse, which arises 
for structures 9J1 that have the collapse and also have quantifier elimination 
(that is, every F0(9J1) formula is equivalent to a quantifier-free one). In this 
case, if FOact (9J1', O") refers to a definable predicate P E []'- n, we know that 
P is definable by a quantifier-free formula over 9Jl. Hence, using the definition 
of P, we obtain an equivalent F0(9J1, O") formula. Thus, we have: 

Proposition 13.6. If 9J1 admits the restricted quantifier collapse (RQC) and 

has quantifier elimination, then 

F0(9J1, O") (13.4) 

The condition in (13.4) is usually called the natural-active collapse, since 

the standard unrestricted interpretation of quantifiers is sometimes called the 
"natural interpretation". 

Using RQC, or the natural-active collapse, eliminates quantification out
side of the active domain. To reduce the expressiveness of F0(9J1, O") to that 
of FOact (11<, O"), we would also like to eliminate all references to 9J1 functions 
and predicates, except possibly order. This, however, in general is impossible: 
how could one express a query like ::Jx E ad om ::Jy E adorn E ( x, y) 1\ x · y = :r + 1? 

To deal with this problem, we use the notion of genericity which comes 

from the classical relational database setting. Informally, it states the follow
ing: when one evaluates formulae on embedded finite models, exact values 

of elements in the active domain do not matter. For example, the answer 
to the query "Does a graph have diameter 2?" is the same for the graph 
{(1,2),(1,3),(1,4)} and for the graph {(5,10),(5,15),(5,20)}, which is ob
tained by the mapping 1 f-+ 5, 2 f-+ 10, 3 f-+ 15,4 f-+ 20. 

In general, generic queries commute with permutations of the universe. 
Queries expressible in F0(9J1, cr) need not be generic: for example, the query 
given by ::Jx E adorrdy E adorn E(.r, y) 1\x·y = x+ 1 is true onE= { (1, 2)} but 
false on E = { ( 1, 3)}. However, as all queries definable in standard logics over 
finite structures are generic, to reduce questions about F0(9J1, O") to those in 
ordinary finite model theory, it suffices to restrict one's attention to generic 
queries. 
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\Ve now define genericity for queries (which map a finit<' IT-strnct ure 2l to 
a finite subset of Am, m 2 0). Given a function 7r : U __, U. we extend it to 
finite iT-structures 2l by replacing each occurrenc<' of o E adorn (2l) \vit.h n( o). 

Definition 13.7. • A quer:q Q is generic ·if for every partial ·injective func
tion 7r : U --+ U which is defined on adom(2l), it is the case that 
Q(2l) = Q(n(2l)). 

• The clas.~ of generic queries definable in F0(1111. IT) or· FOa,t(1111. cr) is de
noted by FOg"u(1111. iT) or· FO~:·;~ (1111. iT), r·esper:tivdy. 

While it is undecidable in general if an F0(1111, IT) quPry is gc·neric. most 
queries whose inexpressibility we want to prove are generic. 

Definition 13.8. We say that 1111 admits the active-gcrwrir collapse. if 

Now using the different notions of collapse togd.her. \Ve come up \\·ith the 
following methodology of proving hounds on FO ( 1111. a). 

Proposition 13.9. Let 1111 admit both tlw restr"icted-quant'ijier· collapse (RQC) 
and the active-generic collapse. Then ever·y generic queTy e:z:pressible zn 
FO(I111,1T) is also c1:pressible in FOacdll<,a). D 

For example, it would follow from Thc·orem 3.6 that for 9J1 as in thP propo
sition above, EVEN is not expressible in F0(9Jl, iT). Furtlwrmore. for such 1111. 
every query in FOg''11 (9Jl. a) is Gaifman-local. by Proposition 13.~} and TIH'o
rem 5.8. 

Thus, our next goal is to see for \vhat structures collap.-;e n~sults can be 
established. W<~ start with the active-generic collapse, and prov<', in til<' n<•xt 
section, that it holds for all structures. 

The situation with RQC is not nearly as simple•. \Ve shall see that it fails for 
(N, +. ·) and (Q, +.·),hut w<" shall prov<~ it forth<~ ordered real fidel (JR.+.·.< 
, 0, 1). This structure motivated much oft he initial work on embedded finitP 
models due to its database applications; this will h<~ explain<'d in Sect. 13.6. 
More examples of RQC (or its failure) are given in the <'XPrcises. \Ve shall also 
revisit the random graph of tlw previous chapter and relat<' queries oyer it to 
those definable in MSO. 

13.3 Active-Generic Collapse 

Our goal is to prove the following result. 

Theorem 13.10. Ever'JJ infindc stnu:tv.r·e 9J1 admits the aelive-gewTic col
lapse. [J 
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We shall assume that 9J1 is ordered: that is, one of its predicates is < 
interpreted as a linear order on its universe U. If this were not the case, we 
could have expanded 9J1 to 9)1< by adding a linear order. Since F0(9J1, a) c;: 
F0(9J1<,a), the active-generic collapse for 9)1< would imply the collapse for 
9J1: 

F0~~;1 (9J1,a) c;: F0~~~(9J1<,a) c;: FOact(il<,a). 

The idea behind the proof of Theorem 13.10 is as follows: we show that 
for each formula, its behavior on some infinite set is described by a first-order 
formula which only uses < and no other symbol from the vocabulary of 9J1. 
This is called the Ramsey property. We then show how genericity and the 
Ramsey property imply the collapse. 

Definition 13.11. Let 9J1 = (U, D) be an ordered structure. We say that an 
FOact(9J1, a) formula r.p(x) has the Ramsey property if the following is true: 

Let X be an infinite subset of U. Then there exists an infinite set 
Y c;: X and an FOact (il<, a) formula 1/;( x) such that for· ever·y a
structure Q( with adorn (Qt) C Y, and for every a over Y, it is the case 
that 12t f= rp( a) ,__. 1f;( a). 

We now prove the Ramsey property for an arbitrary ordered 9J1. The 
following simple lemma will often be used as a first step in proofs of collapse 
results. Before stating it, note that for an F0(9J1, a) formula (x = y) can 
be viewed as both an atomic FO(a) formula and an atomic F0(9J1) formula. 
We choose to view it as an atomic F0(9J1) formula; that is, atomic FO(a) 
formulae an~ only those of the form R(· · ·) for R E a. 

Lemma 13.12. Let r.p(x) be an F0(9J1, a) formula. Then there exists an equiv
alent formula ·tj;( x) such that every atomic sub formula of 1j; is either an FO (a) 
formula, or an F0(9J1) formula. Furthermore, it can be assumed that none of 
the free variables :l occurs in an FO(a)-atomic subformula of 1/;(x). If r.p is an 
FOact (9J1, a) for·mula, then 'lj; is also an FOact (9J1, a) formula. 

Proof. Introduce m fresh variables z1 , ... , Zm, where m is the maximal arity of 
a relation in a, and replace any atomic formula of the form R(t1 (iJ), ... , t, (if)), 
where l <::;: m and the t;'s are 9J1-terms, by ::Jz1 E adorn ... 3z1 E adorn f\.;(z; = 
t1 (il)) 1\ R( z1 , ... , z1). Similarly use existential quantifiers to eliminate the free 
x-variables from FO(a)-atomic formulae. 0 

The key in the inductive proof of the Ramsey property is the case of 
F0(9J1) subformulae. For this, we first recall the infinite version of Ramsey's 
theorem, in the form most convenient for our purposes. 

Theorem 13.13 (Ramsey). Given an infinite ordered set X, and any par·ti
tion of the .~et of all ordered m-tuplcs (x1, ... , :rrn), x1 < ... < :r:m, of elements 
of X into l classes A 1 , ••• , Az, there exists an infinite subset Y c;: X such that 
all ordered rn-tuples of elements of Y belong to the same class A;. 0 
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The following is a standard model-theoretic result that we prov(' hen· for 
the sake of completerwss. 

Lemma 13.14. Let ;,.J(:F) be an FO(IJJ!) fonnula. Then -,; has thl' Ramsey 
property. 

Pmof. Consider a (finite) enumeration of all the \vays in which the variablPs .r 
may appear in the order of U. For example, if .r = (x 1 ••.•• . r 1 ). one possibility 
is J: 1 = J:;J,£2 = :r 1, and .r 1 < .r2 . L(~t P be such an arrangement, and 
((P) a first-order formula that defines it (J· 1 = J":l 1\ .c2 = .r 1 1\ .r 1 < .r2 in 
the above example). Note that there are finitely many such arrangements P; 
let P be tlw set of all of those. Each P induces an equivalence relation 011 

.f: for example, {(J: 1,.r;,), (x2 .. r 1)} for P above. Let :;P be a subtupk of.? 
containing a representative for each class (<'.g., (:r 1 .:~·4 )) and h~t _,;~"(.fl') lw 

obtained from cp by replacing all variables from an <'quivalenc<' class hy t]H• 
chosen representatiw. Then <p(:r) is equivalent to 

V ((I') 1\ 'Pl'(:rr'). 
PEP 

We now show the following. Ld P' c;; P and n E: P'- Jpt X C lT lw an 
infinite set. Assume that 7/{1) is given by 

V ((P) 1\ cpr(:re). 
PEP' 

Then there exists an infinite set Y c;; X and a quantifier-frp(~ formula ; n, (.r) 

oft he vocabulary { <} such that ~.' is equivalent to 

v 
PEP'-{n,} 

for tuples i of elements of Y. 
To sec this, suppose that P0 has m (~qui valence classes. Consid<T a partition 

of tuples of xm ordered according to nl into two classes: A 1 oft hose tuples 
for which cpR' p:Po) is tnw, and A1 of those for which cpn (.fP") is fals<'. By 
Ramsey's theorem, for some infinite set Y c;; X (~itlwr all ordered tuples 
over ym are in A1 , or all are in A 2 . In tlw first case. v is equivalent to 

((n) V VrEP'-{l'o} ((P) 1\ cpPCrl'), and in the s('cond case u is equiYalent to 

V PEP'-{Po} ((P) 1\ cpP(:fP), proving the claim. 
The lemma now follows by applying this claim indw:tively to every parti

tion P E P, passing to smaller infinite sets, while getting rid of all the formulae 
containing symbols other than = and <. At the end we have an infinite set 
over which cp is equivalent to a quantifiPr-frce formula in the yocabulary { <}. 

D 

The next lemma lifts the Ramsey propmty from FO(IJJ!) formulae to arbi
trary FOact (IJJ!. a) formulae. 
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Lemma 13.15. Ever·y FOact(9J1, iT) forrn11la has the Ramsey property. 

Pr·oof. By Lemma 13.12, we assume that every atomic subformula is an 
FOacd iT) formula or an F0(9J1) formula. The base cases for the induction 
are the case of FOact (iT) formulae, where there is no need to change the for
mula or find a subset, and the case of F0(9J1) atomic formulae, which is given 
by Lemma 13.14. 

Let <p(x) = <p1 (:f)!\ <p2 (:f), where X ~ U is infinite. First, find 1/J1, Y1 ~ X, 
such that for every 2l and a over Y1 , it is the case that 2l I= <p1 (a) +-> 'lf;l (a). 
Next, by using the hypothesis for <p 2 and }} , find an infinite set Y2 ~ Y1 such 
that for every 2l and a over Y2 , it is the case that 2l I= <p2 (a) +-> 'ljJ2 (a). Then 
take 'lj; = 1/Jt !\ 'lf;2 and Y = Y2. 

The case of <p = •<p' is trivial. 
For the existential case, let <p( :r) = ::Jy E adorn ;p1 (y, x). By the hypothesis, 

find Y ~ X and '1/11 (y. x) such that for every 2l and a over Y and every bE Y 
we have 2ll= ;p1 (b,a) +->1};1(b,a). Let 'lj;(x) =::lyE adorn 1};1 (y,x). Then, for 
every 2l and a over Y, 2ll= 'lj;(ii) iff 2ll= Vh(b,ii) for some bE adorn(2l) iff 
2ll= ;p1 (b,ii) for some bE adorn(2l) iff2ll= <p1(ii), thus finishing the proof. 0 

To finish the proof of Theorem 13.10, we have to show the following. 

Lemma 13.16. Assume that every FOact(9J1, iT) formula has the Ramsey 
proper·ty. Then 9J1 admits the active-generic collapse. 

Proof. Let Q be a generic query definable in FOact(9J1, iT). By the Ramsey 
property, we find an infinite X ~ U and an FOact (ll<, iT )-definable Q' that 
coincides with Q on X. We claim they coincide everywhere. Let 2l be a iT
structure. Since X is infinite, there exists a partial monotone injective function 
1r from adom(2l) into X such that for every pair of elements a < a' of adom(2l), 
there exist x 1 ,x2 ,x:1 EX -1r(adom(2l)) with the property that x 1 < 1r(a) < 
X2 < 1r(a') < X;J. 

By the genericity of Q, we have 1r(Q(2l)) = Q(1r(2l)). Thus, Q(1r(2l)) coin
cides with the restriction of Q'(1r(2l)) to X. We now notice that Q' does not 
extend its active domain. Indeed, if adam( Q' ( 1r(2l))) contained an element 
b rf. 1r(adorn(2l)), we could have replaced this element by b' EX -1r(adorn(2l)) 

such that for every a E 7r (adam (2l)), a < b iff a < b'. Since Q' is FOact ( ll<. iT)
definable, this would imply that b' E adom(Q'(1r(2l))), which contradicts the 
fact that over X, the queries Q and Q' coincide. 

Hence, 1r((J(2l)) = Q(1r(2l)) = Q'(1r(2l)). Again, since Q' is FOact(ll<, iJ)
definable, it commutes with any monotone injective map, and thus Q' ( 1r(2l)) = 

1r(Q'(2l)). We have shown that 1r(Q(2l)) = 1r(Q'(2l)), from which Q(2l) 
Q'(2l) follows. 0 

This completes the proof of Theorem 13.10. 

Thus, no matter what functions and predicates there are in 9J1, FO can
not express more generic active-domain semantics queries over it than just 
FOart(ll<, a). In particular, we have the following. 
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Corollary 13.17. Let 9J1 be an arbitmry str·uctnr·e. Then qner·ies such as 
EVEN, PARITY, rnajor·ity, connectivity, tmnsitive clo.m.r·e, and ar:yclir:ity ar·e 
not definable in FOact (9J1. o'). D 

13.4 Restricted Quantifier Collapse 

One part of our program for establishing bounds on F0(9J1. 0') has been very 
successful: we prove the active-generic mllapse for arbitrary structures. Can 
we hope to achiew~ the same succPss with the restricted-quantifier <'ollapse 
(RQC)? The answer is clearly negative. 

Corollary 13.18. The restricted-quantifier collapse fails over IJ1 = (N, +.-). 

Pr·oof. By Corollary 13.17, parity is not definable in FOa,t(IJl.O'), but by 
Proposition 13.4, it is expressible in FO(IJl,O'). D 

FurthermorE~, RQC fails over (Ql, +.·),since it is possible to define natural 
numbers within this structure, and then emulate the proof of Proposition 1:3.4 
to show that every computable query is expressible. 

However, the situation becomes very different when we mov<' to the real 
numbers. \Ve shall consider the real ordered field: that is, th(• structun· 

R = (R+.·,<.0,1). 

This is the structure that motivated much of the initial devdopment in em
bedded finite models, due to its dose connections with questions about the 
expressiveness of languages for geographical databas(~S. 

Consider the following FO(R, { E}) sentence. \vhere E is a binary relation 
symbol: 

3v3v\f:r:E adorn\fyE adorn (E(:z:, y) -+ y = u · .r + 1'). (13.5) 

saying that all elements of E C JR 2 lie on a line. Notice that it is essential 
that the first two quantifiers range over the entin' set JR. For example. if E is 
interpreted as {(2,2),(3,3),(4,4)}, then the sentence (13.5) is true, and the 
witnesses for the existential quantifiers are u = 1 and u = 0. I3ut rwit her 0 
nor 1 is in the active domain of E. 

Nevertheless, (13.5) can be expressr~d by an FOact (R. { F}) sentencP. To 
see this, notice that E lies on a line iff every tlm='e points in R ar<' collirH•ar. 
This can be expressed as 

\f:z:1 E adorn\fy1 E adom \f:r:2 E adorn\1,1}2 E adornYr;3 E o.dom\ly;l E ndom 

((E(.T,.yl)/\E(x2,Y2)/\E(:r:J.JJ:l))-+ collinPar(.F.J7l) (13.G) 
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where collinear(x,Y) is a formula, over R, stating that (:r1 ,yt), (x 2 ,y2 ), and 
( x 3 , y3 ) are collinear. It is easy to check that collinear( x, Y) can be written as 
a quantifier-free formula (in fact, due to the quantifier elimination for the real 
field, every formula over R is equivalent to a quantifier-free formula, but the 
condition for collinearity can easily be expressed directly). Hence, (13.6) is an 
FOact(R, {E}) formula, equivalent to (13.5). 

This example is an instance of a much more general result, stating that 
the real field R admits RQC. In fact, we show the natural-active collapse for 
R (since R has quantifier elimination). Moreover, the proof is constructive. 

Theorem 13.19. The real field R = (1Ft,+,·,<, 0, 1) admits the restr·icted 

quantifier· collapse. That is, for every FO(R, cr) formula cp(x), there is an 

equivalent FOact (R, cr) formula ipact ( x). M oreuver, ther·e is an algor·ithm that 

constructs IPact fmm ip. 

Proof. The proof of this result is by induction on the structure of the formula. 
We shall always assume, by Lemma 13.12, that all atomic FO(cr) formulae are 
of the form S(ij), whew ]J contains only variables. Thus, the base cases of the 
induction are as follows: 

• IP(x) is S(x). In this case IPact = IP· 

• cp(x) is an atomic FO(R) formula. Again, ipact = cp in this case. 

The cases of Boolean operations are simple: 

• If ip = 't/J V X, then IPact = t/Jact V X act; 

• if ip = •'t/J, then VI act = •'l/Jact. 

We now move to the case of an unrestricted existential quantifier. \'\h~ 

shall first treat the case of CT-structures 2{ with adom(2t) of. 0; at the end of 
the proof, we shall explain how to deal with empty structures. 

Suppose cp(x) = 3z fi(x, z). By the induction hypothesis, f3 can be assumed 
to be of the form 

f'i(x,z) = Qy1Eadom ... QymEadom BC(a;(x,y,z)), 

where each Q is either 3 or 'V, and: 

1. BC (a; (:C, y, z)) is a Boolean combination of atomic formulae a 1 , ... , n,; 

2. each FO(CT) atomic formula is of the form S('t7), where 11 c;;; y; 
3. all atomic FO(R) formulae are of the form p(x, y, z) = 0 or p(x, :tT z) > 0, 

where p is a polynomial; aJl(l 
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4. n, m > 0, and at least one of the FO(R) atomic formulaE> involws a 
multivariate polynomial p(.r!, JT z) = y; - --: for some y;. 

The reason for this is that, under the assumption adom(21) fc 0. we 
can always replace d by 

{-} 1\ ( ==Jy E adorn (y- y = 0) 1\ ( (y-:.: = 0) v -{IJ -:.: = 0))). 

Putting the resulting formula in the prenex normal form fulfills the l'OJl
ditions listed in this item. 

We now assumE' that o; (.r, Fl;:,). 1 ::; i ::; n, an' FO(R) al omic formulal' 

p,(J,,i/,z){:}o, and n 1, n <iS:;_ are FO(rT) atomic formula<'. \Ve let rl, 

be the dq~ree, in z, of Jr,. For each r1. b. by pf·r;(:;) Wl' denote tlw univariall' 

polynomial p; (a, b. z). Note that the degree of p:1 r; is at most d,. Wl' let d = 
maxi d;. \Vhenever we refer to the _jth root of a univariate polynomial p. 
we mean its _jth real root in thP usual ordering, if such a root exists, and 0 
otherwise. Note that thl~re exists an FO(R) formula rootjJr) which holds iff 
.T is the _jth root of p. 

We now prove tlw following. 

Lemma 13.20. Let;:(:?) be as above, wher-e the a.ssumptions 1 4 hold. Ll't '41 
be .such that adom(21) fc 0. Fi:z: a tuple of r-eal rmmber·s a. Then (R. 21) I= ;:(r7) 
iff ther·e e:rist i, k S n, and j./::; d and two tupli·s b. i' O'llfT adom(21) of length 
1m, .mch that 

(R. 21 J F= i3 (a, <'/ ; rf/) v d ( ii. r<'/ + 1) )(~ u'.i; 1) VuU./' 1 -, 
.I 

Proof of Lemma 13.20. One direction is trivial: if therl' is a witrwss of a givt•n 
form, then there is a witness. For the other direction .. assunw that (R. 21) f= 

,.;;1,1; -+-r ~~/· 
;:(a). \Ve tlwn must show that tlwre exists n 11 E lR of the form 2 or 

r-:~r; ± l such that (R, 21) f= j-J(r7, uo)-

Lct b1 , ... , bM be the enunwration of all the tuples of length ll71 consisting 

of elements of udom (21 ). Consider all univariate polynomials p','- 5~ (.~). and l('t 

f';.Jk be the kth root of p7,r;, ( z), for k S d. LP! S be thP family of all elements 
of the form r;1k, i S n, _j S I\1, k ::; d. It follows from our assumptions that 
S f f/J and adorn(21) c;;. S', sinc-l' one of tlw polynomials is y, - z. \\'e let 1'111 i 11 

and '!'max be the minimum and the maximum dlmwnts of s·, n~spectively. 
SuppOS(~ (R.21) f= .i-J(a.a0 ). If a0 E S', then then· is a polynomial p,. a 

tuple b, and j s d such that 0() = <7; 5. By Sl~lecting t = r;_ /,- = i .I = j' Wl' S<'(' 

that a 0 is of the required form. 
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Assume a0 ¢ S. There are three possible cases: 

1. ao < Tmin, or 

2. Uo > Tmax, Or 

3. there exist ri, r2 E S such that ri < a0 < r 2, and there is no other r E S 
with TI < T < T2. 

We claim that for every Pi and every bj: 

. ( ii,bj ( )) . ( ii,bj ( 1)) . 1 Sign Pi ao = sign Pi r min - m case 

. ( ii,bj ( )) . ( ii,bj ( 1)) . 2 Sign Pi ao =sign Pi Tmax + m case (13.7) 

. ( ab( )) . ( iib(ri+r2)). sign pi' 1 ao = stgn Pi' 1 --2- m case 3. 

Indeed, in the third case, suppose sign (p~·bj ( ao)) -1- sign (p~,bj ( T] r 2 )). 

Then the interval [a0 , r 1 !"2 ] contains a real root of p~,bJ (z), which then must 
be in S. We conclude that there is an element of S between ri and r 2, a 
contradiction. The other two cases are similar. 

Let ai be (rmin -1) for case 1, (rmax + 1) for case 2, and r1!r2 for case 3. 

Then for every tuple bj,j:::; M, and every atomic formula ai, we have 

(13.8) 

This follows from (13.7) and the fact that FO(a) atomic formulae may not 
contain variable z. 

We can now use (13.8) to conclude that {3(ii, a0 ) <--+ {3(ii, at). Clearly, 
the equivalence (13.8) propagates through Boolean combinations of formu
lae. Furthermore, notice that if for a finite set A and m > 0, a(ii, b, b, a0 ) <--+ 

a( ii, b,b, a I) for every b E A and every bE Am, then 

(3x E A a(ii,x,b,ao)) <--+ (3x E A a(ii,x,b,ai)) 

for every bE Am. This shows that (13.8) propagates through active-domain 
quantification, and hence {3(ii,a0 ) <--+ {3(ii,at). 

Thus, if (R, ~) f= {3(ii, a0 ), then (R, ~) f= {3(ii, at). Since ai is of the right 
form (either r- 1, orr+ 1 for r E S, or rtr' for r, r' E S), this concludes the 
proof of the lemma. 

To conclude the proof of the theorem, we note that Lemma 13.20 can be 
translated into an FO definition as follows. For each FO(R) atomic formula 
a( x, y, z), and for any two tuples il, v of the same length as fj, we define the 
following formulae: 
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• aik;l (x, y, il, v), for i, k :S n, j, l :S d, says that n(i. :if.;:;) holds when .:; is 
r·~··ii+r.r.ii 

equal to ' 2 kL • That is, 

• a0(x,y,i1) fori :S n,j :S d, says that a(i.:if,z) holds for.:= 1L''7 + 1: 
that is, 

• aij(x,y,il) fori :S n,j :S d, says that a(x,y.z) holds for z = rD'' -1; 
the FO definition is similar to the one given above, except that we use a 
conjunct z = Zt - 1. 

Note that by quantifier elimination for R, we may assume that all formulae 
1/2 ( ~ ~ ~ ~) + ( ~ ~ ~) d - ( ~ ~ ~) 'fi f aik:il x, y, u, v , ai:i x, y, u , an ai:i x, y, u are quanti er- ree. 

For i, k :S n, and j, l :S d, let 'Yi1fi~ (x,ij. il, 'IJ) be the Boolean combination 

BC(as) where each atomic FO(R) formula a is replaced by n~{j1 (i, :t7. il. T'). 

L (31/2 ( ~ ~ ~) b et i:ikl x, u. v e 

Q d Q d 1/2 ( ~ ~ ~ .~) y 1 Ea om ... y,Ea om '~·ik:il ;c,y.1L,u. 

Likewise, we define '/.;j(x, y, il) to be the Boolean combination BC(ns) where 

each atomic FO(R) formula a is replaced by rxij(i:.y,il), and let ;f!j(.f.t7) lw 

'!{;(x,y,il) preceded by the quantifier prefix of j'J. Finally, we define ti;j(.r.Ti) 
as f3{j ( x, il), except by using formulae aij ( x, y. il). 

Now Lemma 13.20 says that =Jz f'J(:i!, z) is equivalent to 

=JiiEadom=JvEadom V V (fJi1/A~(x.i1,iJ) v fJ(j(;T.17) v ;3ij(.r.il)) 
i.k<:n :iJ<:d 

which is an FOact (R, a) formula. 
This eompletes the proof of the translation for the ease of structures Ql with 

adom(Ql) i- 0. To deal with empty structures Ql, consider a formula -P(;f), and 
let cp' (x) be an FO(R) formula obtained from cp(;r) by replacing each atomic 
FO(a) subformula by false. Note that if adom(Ql) = 0, then (R. Ql) f= 'PUll iff 
R f= cp'(a). By quantifier elimination, we may assume that -P' is quantifier
free. Hence, 'P is equivalent to 

(·=JyEadom(y=y)l\'fJ'(x)) V (=JyEadom(y=y)I\-Pac~(.TJ). (13.9) 

where 'Pact is constructed by the algorithm for the case of nonempty structures. 
Clearly, (13.9) will work for both empty and nonempty structures. Since (13.9) 
is an FOact (R, a) formula, this rompletes the proof. D 
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Corollary 13.21. Every generic query in FO(R, a) is expressible in 
FOact ( (IR, <),a). In particular, every such query is local, and EVEN is not 
expressible in FO(R, a). 0 

What other structures have RQC? There are many known examples, some 
of them presented as exercises at the end of the chapter. It follows immediately 
from Theorem 13.19 that (IR, +, <) has RQC. Another example is given by 
(IR, +, ·, e"), the expansion of the real field with the function x r---> ex. The field 
of complex numbers is known to have RQC, as well as several structures on 
finite strings. See Exercises 13.10- 13.14. 

13.5 The Random Graph and Collapse to MSO 

The real field is a structure with a decidable theory. So is the structure 3 = 

(Z, +, <), which also admits RQC (see Exercise 13.10). In fact both admit 
quantifier elimination: for 3, one has to add all the definable relations (x -
y) mod k = 0, as well as constant 1. 

Could it be true that one can guarantee RQC for every structure 9J1 with 
decidable theory? We give a negative answer here, which establishes a different 
kind of collapse: of F0(9J1, a) to MSO under the active-domain semantics. 

The structure is the random graph R{i = (U, E), introduced in Chap. 12. 
This is any undirected graph on a countably infinite set U that satisfies every 
sentence that is true in almost all finite undirected graphs. Recall that the set 
of all such sentences forms a complete theory with infinite models, and that 
this theory is decidable and w-categorical. 

The random graph satisfies the extension axioms EAn,m (12.2), for each 
n 2": m 2": 0. These say that for every finite n-element subset S of U, and an 
m-element subset T of S, there exists z (j_ S such that (z, x) E E for all x E T, 
and ( z, x) (j_ E for all x E S - T. 

Recall that MSO (see Chap. 7), is a restriction of second-order logic in 
which second-order variables range over sets. We define MSOact (9J1, a) as MSO 
over the vocabulary that consists of both [l and a, every first-order quantifier 
is an active-domain quantifier (i.e., :lxE adorn or 'VxE adorn), and every MSO 
quantifier is restricted to the active domain. We write such MSO quantifiers 
as :JX <:;;adorn or 'VX <:;;adorn. The semantics is as follows: (9J1, 1.2t) ~ :JX <:;; 
adorn c.p(X, ·) iffor some set C <:;; adorn(1.2t), it is the case that (9J1, 1.2t) ~ c.p(C, ·). 

Theorem 13.22. For every a, 

FO(RQ, a) = MSOact(RQ, a). 

Proof. The idea is to use the extension axioms to model MSO queries. Con
sider an MSOact formula c.p(x) 

QX1 <:;;adorn ... QXm <:;;adorn Qy1 E adorn ... QynE adorn a(X,x,Y), 
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where the X; 's are second-order variables, the YJ 's arc first-order variables, 
and a is a Boolean combination of u- and 'Rg-formulae in variables :f, i], and 
formulae X;(xj) and X;(y1). Construct a new FO(Rg,u) formula cp'(:f) by 
replacing each QX; ~ adam with Qz; tj_ adam U :1 (which is FO-definablP), 
and changing every atomic subformula X;('U) to E(z1,u). In other words, a 
subset X; of the active domain is identified by an element ::1 from which there 
are edges to all elements of X;, and no edges to the elcmmts of the active 
domain which do not belong to X;. It is then easy to see, from the extension 
axioms, that cp' is equivalent to rp. Hence, MSOact(Rg, u) ~ FO(Rg, u). 

For the other direction, proceed by induction on the FO(Rg. u) formu
lae. The only nontrivial case is that of unrestricted existential quantification. 
Suppose we have an MSOact(Rg, u) formula 

rp(x,z) QX~adom QiJEadorn a(X,.r,fj.::), 

where x = ( x 1 , ... , Xn), and a again is a Boolean combination of atomic u
and 'Rg-formulae, as well as formulae X; ( u), where u is one of the first-ordPr 
variables z, x, fl. We want to find an MSOact formula equivalent to :3:: cp. 

Such a formula is a disjunction of the form 

::lz E adorn <p V V rp(x, x;) V ::lz tj_ adorn .p. 

Both ::lz E adam <p and cp(x, x1) are MSOact(Rg, u) formulae. To eliminate 
z from ::Jz tj_ adorn rp, all we have to know about z is its connections to .r 
and to the active domain in the random graph; the former is taken care of 
by a disjunction listing all subsets of { 1, ... , n}, and thP latter by a second
order quantifier over the active domain. For I ~ {1, .... n}, lPt u(.i) he a 
quantifier-free formula saying that no x;, :r1 with i E I, j tj_ I, could be equal. 
We introduce a new second-order variable Z and define an l\1S0act formula 
'ljJ(x) as 

::JZ~adom V (xr(x)/\QX~adom Qi]Eadom nf(X.Z.:r.m). 
J<;:{l.. .. ,n} 

where af (X, Z, x, if) is obtained from n by: 

1. replacing each E(z, x;) by true fori E I and false fori tj_ I, 

2. replacing each E(z, YJ) by Z(y1 ), and 

3. replacing each X;(z) by false. 

The extension axioms then ensure that 1)1 is equivalent to ::Jz tj_ adorn cp. 0 

The active-generic collapse, as it turns out, can be extended to MSO. 

Proposition 13.23. Every generic query in MSOact(Rg, u) i8 expressible in 
MSO over u-structures. 
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Proof. First, we notice that there exists an infinite subset Z of Rg such that 
for every pair a, bE Z, there is no edge between a and b (such a subset is easy 
to construct using one of the concrete representations of the random graph). 
Next, we show by induction on the formulae that for every MSOact(R£/, a) 

formula VJCX' x) and every infinite set Z' <;;; z' there is an infinite set Z" <;;; z 
and an MSO formula VJ'(X,x) of vocabulary a such that for every a-structure 

1.2i, and an interpretation of x, X as C, 6 over adom(1.2i), 

( R£1, 1.2t) F= VJ ( 6, C) f--7 VJ' ( 6, C). 

Indeed, atomic formulae E(x, y) can be replaced by false. The rest of the 

proof is exactly the same as the proof of Lemma 13.15: the active-domain 

MSO quantifiers are handled exactly as the active-domain FO quantifiers. 
Next, the same proof as in Lemma 13.16 shows that if VJ defines a generic 

query, then it is equivalent to VJ 1 over all a-structures. This proves the propo
sition. 0 

Corollary 13.24. The class of generic querie8 expre88ible in FO(R£1, a) ~s 

precisely the class of quer-ies definable in MSO over a-structures. 0 

Thus, Rg provides an example of a structure with quantifier elimination 
and decidable first-order theory (see Exercise 12.8) that does not admit RQC, 
but at the same time, one can establish meaningful bounds on the expressive
ness of queries. For example, each generic query in FO(R£/, a) can be evaluated 

in PH, and string languages definable in FO(R£/, a) are precisely the regular 
languages. 

13.6 An Application: Constraint Databases 

The framework of constraint databases can be described formally as the logic 
F0(9J1, a), where each m-relation 8 in a is interpreted not as a finite set, but 
as a definable subset of U"'. That is, there is a formula as(x 1 , ••• ,xm) of 

F0(9J1) such that 8 is the set {a I9J1 f= as(a)}. 
The main application of constraint databases is in querying spatial infor

mation. The key idea of constraint databases is that regions are represented 
by FO formulae over some underlying structure: typically either the real field 
R, or Rlin = (IR, +, -, 0, 1, <). That is, they are described by polynomial or 
linear constraints over the reals. 

To illustrate how linear constraints can be used to describe a specific spa
tial database, consider the following example, representing an approximate 
map of Belgium (a real map will have many more constraints, but the basic 
ideas are the same). Fig. 13.1 shows the map itsdf, while Fig. 13.2 shows how 
regions and citi!~s are described by constraints. 

One can then use FO(R,a) or FO(Rlin,a) to query those databases as 
if they were usual relational databases that store infinitely many points. For 
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Fig. 13.1. Spatial information map of Belgium 

example, to find all points in the \Valloon region that arc cast of Hasselt 011(' 

would write 

;p(.r,y) = Walloon(:r,y)A==iu.u (Hasselt(u,u)/\.r > u). (l:UO) 

To find all the points in the Walloon n~gion that are on tlw direct line 
from Hassclt to Liege, one writPs a formula ~,J(:r, y) as the conjunction of 
\Valloon(:r. y) and 

( 

Hasselt(u. c) 1\ Li{~ge(s, t)) 
/\0<,\ 1\ ,\<I 

3v.r.s,I.A -, (1- ') 
. (\ .C = /\U + - /\ .S 

1\ iJ = Au + ( l - ,\ )t 

(l:Ul) 

In these examples, ( 13.10) is an FO ( (R <). iT) quer)·, while ( 13.11) needs 
to be expressed in the more expressivl~ language FO(R. iT). 

We now give one simple application of embedded finite modds to eou
straint databases. A basic property of regions is their topological cormect.ivity. 
Most regions represented in geographical databases arc comH'cted (and the few 
examples of unconnected ones to be rather well known, as they usually lead 
to nasty political problems). But can we test this property in FO-bas<~d quny 
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Cities Regions 

Namr~ Geometry Name Geometry 

Antwerp (x = 10)/\ 
(y =Hi) 

Bastogne (J: = 19)/\ 
(y = 6) 

Bruges (J; = 5)/\ 
(y = 16) 

Brussels (x = 10.5)/\ 
(y = 12.5) 

Charleroi (.x = 10)/\ 
(y = 8) 

Hasselt (.7: = 16)/\ 
(y = 14) 

Liege (x=17)/\ 
(y = 11) 

Brussels (y :S: 13) 1\ (x :S: 11)/\ 
(y 2': 12) 1\ (x 2': 10) 

Flanders (y :S: 17) 1\ (5x- y :S: 78)/\ 
(x - 14y :S: -150)/\ 
(x+y2':45)/\ 
(3x - 4y 2': -5:~)/\ 
(•((y :S: 13) 1\ (x :S: 11)/\ 
1\(y 2': 12) 1\ (x 2': 10))) 

\Valloon ( (x - 14y ;:: -150) 1\ (y :S: 12)/\ 
(19x + 7y :S: 375)/\ 
(J:- 2y :S: 15) 1\ (x 2': 13)/\ 
(5x + 4y 2': 89)) V 
( (3y- x 2': 5) 1\ (x + y 2': 45)/\ 
(x- 14y 2': -150) 1\ (x 2': 13)) 

Fig. 13.2. A spatial database of Belgium 

languages? We now give a simple proof of the negative answer, by reduction 
to collapse results. 

Theorem 13.25. Topological connectivity is not expr·essible in FO(R, CJ). 

Proof. Assume, to the contrary, that topological connectivity of sets in JR:l is 
definable (one can show that connectivity of sets on the plane is undefinable 
as well; the proof involves a slightly more complicated reduction and is the 
subject. of Exercise 13.5). We show that graph connectivity is then definable. 

Suppose we have a finite undirected graph G with adom(G) c JR. For 
each edge (a, b) in G, we define the segment s(a, b) in JR3 between (a, 1, 0) 
and (0, 0, b). Each point in s(a, b) is of the form (>.a, A, (1 ->.)b) for some 
0 :S: A :S: 1. Not<~ that this implies that s( a, b) n 8( c, d) i=- 0 can only happen if 
a = cor b = d, since (Aa, A, (1 ->.)b) = (JLc, Jt, (1- JL)d) implies A = p and 
thus for A i=- 0. 1 we have a = c and b = d, for A = 0 we get b = d, and for 
A = 1 we get a = c. 

Now we encode each edge (a, b) by the set e(a, b) = s(a, b) U 8(b, a) U 
s(a, a) U s(b, b) (see Fig. 13.3). Note that e(a, b) is a connected set, and that 
c( a, b) n e( c, d) i=- 0 iff the edges (a, b) and ( c, d) have a common node. 

We then define a new set Xc in JR:l as 

Xc; U e(a, b). 
(o,b)EG 

It follows that Xc; is topologically connected iff G is connected as a graph. 
Since the transformation G ----+ Xc; is definable in FO(R, CJ), the assumption 
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.· 

Fig. 13.3. Embedding an edge (a, b) into JR3 

that topological connectivity is definable implies that so is graph courwctivit_y. 
However , we know from Corollary 13.21 that graph connecr.ivity cannot lw 
expressed. This contradiction proves the theorem. 0 

13.7 Bibliographic Notes 

The framework of embedded finite models originated in database theory, in 
connection with attempts to understand query languages that use interpreted 
operations, as well as query languages for constraint databases. Constraint. 
databases were introduced by Kanellakis , Kuper , and Reves;~, [142] (see also 
the surveys by Kuper, Libkin , and Paredaens [158), Libkin [168], and Van dPn 
Bussche [242]) . 

Soon after [142] was published, it became clear that many questions about 
languages for constraint databases reduce to questions about embedded fiiJit. e 
models. For example, Grumbach and Su [115] present many reductions to the 
finite case. 

Collapse results as a technique for proving bounds 011 F0(9J1, a) wen' in
troduced by Paredaens , Van den Bussc:he, and Van Gucht. [197), where tlw 
restrc:ited-quant.ifier collapse for R 1in was proved. The collapse for the real 
field was shown by Benedikt and Libkin [19] (in fact the proof in [19] appliPs 
to a larger class of a-minimal structures; sec [243]). The active-generic collapsP 
was shown by Otto and Van den Bussche [193]; the proof giveu here follows 
[19]. For the basics of Ramsey theory, see Graham, Rothschild, aud Spen('er 
[103]. The collapse to MSO over the random graph is from [168], although one 
direction was proved earlier by [193]. 
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Inexpressibility of connectivity by reduction to the finite case was first 

shown in [115]; for a different approach that characterizes topological proper

ties expressible in FO(R, { S} ), where Sis binary, see Kuijpers, Paredaens, and 
Van den Bussche [157]. For a study of these problems over complex numbers, 

we refer to Chapuis and Koiran [36]. See also Exercise 13.6. 
Although we said in the beginning of the chapter that no collapse results 

were proved with the help of Ehrenfeucht-Fra1sse games, results by Fournier 

[83] show how to use games to establish bounds on the quantifier rank for 

expresssing certain properties over embedded finite models. An example is 

presented in Exercise 13.8. 
In this chapter we used a number of well-known results in classical model 

theory, such as decidability and quantifier elimination for the real field R (see 

Tarski [229]) and undecidability of the FO theory of (Q, +, ·) (see Robinson 

[206]). 

Sources for exercises: 
Exercise 13.4: 
Exercise 13.6: 
Exercise 13.7: 
Exercise 13.8: 
Exercise 13.9: 
Exercise 13.10: 

Benedikt and Libkin [19] 
Chapuis and Koiran [36] 
Grumbach and Su [115] 
Fournier [83] 
Hull and Su [127] 
Flum and Ziegler [82] 
(see also [168] for a self-contained proof) 

Exercise 13.11: Benedikt and Libkin [19] 
Exercise 13.12: Flurn and Ziegler [82] 
Exercise 13.13: Barrington et al. [15] 
Exercises 13.14 13.16: Benedikt et al. [21] 

13.8 Exercises 

Exercise 13.1. Give an example of a noncomputable query expressible in FO('Jl, o} 

Exercise 13.2. Prove that it is undecidable if a query expressible in FO(Wl, a) is 
generic (even if the theory of 9J1 is decidable). 

Exercise 13.3. Suppose that Sis a binary relation symbol, and R is a ternary one, 

and both arc interpreted as set'~ definable over the real field R = (IR, +, ·, 0, 1, <). 
Show how to express the following in FO(R, { S, R} ): 

• S is a graph of a function f : IR --+ IR; 
• S is a graph of a continuous function f : IR --+ IR; 
• S is a graph of a differentiable function f : IR --+ IR; 
• R is a trajectory of an object: that is, a triple (:r, y, t) E R gives a position (:r, y) 

at timet; 
• a formula r.p(:r,y,v) which holds iff vis the speed of the object at timet (as

suming that R defines a trajectory). 
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Exercise 13.4. Prove a generalization of the Ramsey property (i.e., each active
semantics sentence expressing a generic query can be written using just the order 
relation) for SO, ::ISO, FO(Cnt), and a fixed point logic of your choice. Also prove 
that £~w does not have such a generalized Ramsey property. 

Exercise 13.5. Use a reduction different from the one in the proof of Theorem 13.25 
to show that topological connectivity of subsets of IR2 is not definable in FO(R, { 5}), 
where 5 is binary. 

Exercise 13.6. Prove that topological connectivity of subsets of <C2 which arc de
finable in (<C, +, -, ·, 0, 1) cannot be expressed inFO( (<C, +. -. ·, 0. 1), {5} ), where S 
is binary. 

Exercise 13. 7. Prove that if 5 and 5' are interpreted as subsets of IR2 definable in 
R, then none of the following is expressible in FO(R, { 8. 5'}): 

• 5 contains at least one hole (assuming 5 is a closed set). 
• 5 has a Eulerian traversal. That is, if 5 is a union of line segments, then it has 

a traversal going through each line segment exactly once. 
• S and 5' are homeomorphic. 

Use reductions to the finite case for all three problems. 

Exercise 13.8. Show that in FO(R, !7) one can express EVEN for sets of cardinality 
upton using a sentence of quantifier rank 0( v'log n). 

Exercise 13.9. Prove the natural-active collapse for 1.4J = (U. 0). 

Exercise 13.10. Prove the restricted quantifier collapse for (Z.+. <). 

Exercise 13.11. An ordered structure 9J1 = (U, fl, <) is called a-minimal if 
every definable subset of U is a finite union of points and open intervals 
(a, b), ( -oo, a), (a, oo). 

Prove the restricted quantifier collapse for an arbitrary o-minimal structure. 
Hint: you will need the following uniform bounds result of Pillay and Steinhorn 

[198]. If cp(x, y) is an FO(!.m) formula, then there exists a constant k such that. 
for every b, the set {a I 9J1 f= cp( a, b)} is a union of fewer than k points and open 
intervals. 

One can use this result to infer that (.IR, +,·,ex) admits the restricted quantifier 
collapse, since Wilkie [248] proved that it is a-minimal. 

Exercise 13.12. We say that a structure 9J1 has the finite cover property if there is 
a formula cp(x, y) such that for every n > 0, one can find tuples ii1, ... , iin such that 
:Jx A#i cp( x, iii) holds for each i :=::: n, but :lx A .is, cp( x. iiJ) does not hold. 

• Prove that if 9J1 does not have the finite cover property, then it admits thf~ 

restricted quantifier collapse. 
• Conclude that (<C, +, ·) and (N, succ) admit the restricted quantifiPr collapse. 



13.8 Exercises 273 

Exercise 13.13. We say that a language L <;;; E* has a neutral letter if there exist;; 

a E E such that for every two strings 8, 5 1 E E*, we have 8 · s' E L iff s ·a· s' E L. 
Now let f2 be a set of arithmetic predicates. We say that a language Lis FO(fl)

definable if there is an FO sentence P L of vocabulary cr E U f! such that M I' f= P L 

iff s E L. Here Mf is the structure Ms expanded with the interpretation of fl

predicates on its universe. 
The following statement is known as the Crane Beach conjecture for f!: if L is 

FO(f!)-definable and has a neutral letter, then it is star-free. 

• Use Exercise 13.10 to prove that the Crane Beach conjecture is true when f! = 
{ +} (the graph of the addition operation). 

• Prove that the Crane Beach conjecture is false when fl = { +, X} (hint: use 
Theorem 6.12). 

Exercise 13.14. Consider the structure (E*,-<,(fa)aEE), where-< is the prefix 

relation, and fa : E* --> E* is defined by fa(x) = x ·a. Prove that this structure 

has the restricted quantifier collapse. Prove that it still has the restricted quantifier 
collapse when augmented with the following: 

• The predicate PL, for each regular language L, that is true of s iff 8 is in L. 

• The functions Ya: E* --> E* defined by Ya(x) =a· x. 

Exercise 13.15. Suppose S is an infinite set, and C <;;; 25 is a family of subsets of 

S. Let F C S be finite; we say that C shatters F if the collection {F n C I C E C} 
is g::.(F), the powerset of F. The Vapnik-Chervonenkis (VC) dimension of C is the 

maximal cardinality of a finite set shattered by C. If arbitrarily large finite sets are 
shattered by C, we let the VC dimension be oo. 

If 9J1 is a structure and tp(x, if) is an F0(9J1) formula, with I xI= n, I iJ I= m, 

then for each (L E un, we define tp(a,9J1) ={bE u= I9J1 F tp(a,b)}, and let F,(9J1) 

be { tp(a, 9J1) I a E un }. Families of sets arising in such a way are called definable 
families. We say that 9J1 has finite VC dimension if every definable family in 9J1 has 

finite VC dimension. 
Prove that if 9J1 admits the restricted quantifier collapse, then it has finite VC 

dimension. 

Exercise 13.16. Consider an expansion 9J1 of (E*, -<, (fa)aEE) with the predicate 

el(x,y) which is true iff lxi=IYI· We have seen this structure in Chap. 7 (Exercise 
7.20); it defines precisely the regular relations. 

Prove that F0(9J1, cr) cannot express EVEN. 

Exercise 13.17: For the structure 9J1 of Exercise 13.16, is F0~;';'(9J1, cr) contained 

in FOact (.U<, !J )? 
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Other Applications of Finite Model Theory 

In this final chapter, we briefly outline three different application areas of 
finite model theory. In mathematical logic, finite models are used as a tool for 
proving decidability results for satisfiability of FO sentences. In the area of 
temporal logics and verification, one analyzes the behavior of certain logics on 
some special finite structures (Kripke structures). And finally, it was recently 
discovered that many constraint satisfaction problems can be reduced to the 
existence of a homomorphism between two finite structures. 

14.1 Finite Model Property and Decision Problems 

The classical decision problem in mathematical logic is the satisfiability prob
lem for FO sentences: that is, 

Given a first-order sentence P, does it have a model? 

We know that in general, satisfiability is undecidable. However, a complete 
classification of decidable fragments in terms of quantifier-prefix classes exists. 
For the rest of the section, we assume that the vocabulary is purely relational. 

We have already seen classes of formulae defined by their quantifier prefixes 
in Sect. 12.4. For a regular expression r over the alphabet {:3, \1}, we denote 
by FO(r) the set of all prenex sentences 

where the string Q 1 .•. Qn is in the language denoted by r. Here, each Q; is 
either :3 or \1, and r.p is quantifier-free. 

It is known that there are precisely two maximal prefix classes for which the 
satisfiability problem is decidable: these are FO(::l*\1*) (known as the Bernays
Schonfinkel class), and FO(::l*\1:3*) (known as the Ackermann class). 

The proof technique in both cases relies on the following property. 
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Definition 14.1. We say that a class K of sentences has the finite model 
property if for every sentence c;P in K, either c;P is unsatisfiable, or it ha8 a 
finite model. 

In other words, in a class K that has the finite model property, every 
satisfiable sentence has a finite model. 

It turns out that both FO(::J*V*) and FO(::J*V::J*) have the finite model 
property, and, furthermore, there is an upper bound on the size of a finite 
model of P in terms of II P II, the size of P. We prove this for the Bernays
Schonfinkel class. 

Proposition 14.2. If P is a satisfiable sentence of FO(::J*Vx), then it ha8 a 

model whose size is at most linear in II P II· 

Proof Let c;P be 
::lx1 ... ::l:r:, Vyt ... Vym ~.p(:r, if), 

where 1.p is quantifier-free. Let lj;(x) be Vif ~.p(x, if). 
Since c;P is satisfiable, it has a model~- Let a 1 , ... , an witness the existential 

quantifiers: that is, ~ f= 1/J(a). Let ~~ be the finite substructure of~ whose 
universe is { a1, ... , an}. Since '¢ is a universal formula, it is preserved under 
taking substructures. Hence,~~ f= 1/J(a), and therefore,~~ f= cf>. Thus, we have 
shown that c;P has a model whose universe has at most n elements. D 

This immediately gives us the decision procedure for the class FO(::J*V*): 
given a sentence c;P with n existential quantifiers, look at all nonisornorphir 
structures whose universes are of size up to n, and check if any of them is a 
model of P. This algorithm also suggests a complexity bound: one can guess 
a structure ~ with IAI ::; n, and check if~ f= P. Notice that in terms of II c;P II, 
the size of such a structure could be exponential. For each relation symbol 
R of arity m, there could be up to n 111 different tuples in R'2l. Since there 
is no a priori bound on the arity of R, it may well depend on II c;P II, which 
gives us an exponential upper bound on II~ II· Hence, the algorithm runs in 
nondeterministic exponential time. 

It turns out that one cannot improve this bound. 

Theorem 14.3. The satisfiability pr·oblem for FO(::J*V*) is NEXPTIME

complete. D 

If we have a vocabulary of bounded arity (i.e., there is a constant J.· such 
that every relation symbol has arity at most k), then the size of a struct un' 
on n elements is at most polynomial in n. Thus, in this ease one has to cheek 
if ~ f= i.p, where II A II is polynomial in n. As we know from the results 
on the combined complexity of FO, this can be done in PSPAC:K HPncf', for 
a vocabulary of bounded arity, the satisfiability problem for FO(::J*V*) ts m 
PSPACE. 
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We now see an application of this decidability result in database theory. In 
Chap. 6, we studied conjunctive queries: those of the form 3xcp, where cp is a 
conjunction of atomic formulae. We also saw (Exercise 6.19) that containment 
of conjunctive queries is NP-complete. 

Another class of queries often used in database theory is unions of con
junctive queries; that is, queries of the form Q1 U ... U Qm, where each Qi 
is a conjunctive query. Can the decidability of containment be extended to 
union of conjunctive queries? That is, is it decidable whether Q(Ql) ~ Q'(Ql) 
for all Ql, when Q and Q' are unions of conjunctive queries? We now give the 
positive answer using the decidability of the Bernays-Schonfinkel class. 

Putting all existential quantifiers in front, we can assume without loss of 
generality that Q is given by cp(x) = 3fl a(x, if), and Q' by 'lj;(x) = 3fl {3(x, if), 
where o: and {3 are monotone Boolean combinations of atomic formulae. Our 
goal is to check whether cp = 'Vx (cp(x)---> 'lj;(x)) is a valid sentence. 

Assuming that if and z are distinct variables, we can rewrite cjj as 

vx 'Vfl 3z ( •a(x, if) v f3(x, z)). 

We know that cjj is valid iff -,cp is not satisfiable. But -,cp is equivalent to 
3x 3fl 'Vz (a 1\ •f3); that is, to an F0(3*V*) sentence. This gives us the fol
lowing. 

Proposition 14.4. Fix a relational vocabulary u. Let Q and Q' be unions 
of conjunctive queries over u. Then testing whether Q ~ Q' is decidable in 
PSPACE. 0 

The complexity bound given by the reduction to the Bernays-Schonfinkel 
class is not the optimal one, but it is not very far off: for a fixed vocabulary 
u, the complexity of containment of unions of conjunctive queries is known to 
be II~ -complete. 

We now move to the Ackermann class F0(3*V3*). Again, we have the 
finite model property. 

Theorem 14.5. Let cp be an F0(3*'V3*) sentence. If cp is satisfiable, then it 
has a model whose size is at most exponential in II cp II- D 

Even though the size of the finite model jumps from linear to exponential, 
the complexity of the decision problem does not get worse, and in fact in some 
cases the problem becomes easier. 

Theorem 14.6. The satisfiability problem for F0(3*'V3*) is NEXPTIME
complete. Furthermore, when restricted to sentences that do not mention 
eq1wlity, the problem becomes ExPT!ME-complete. D 

Finally, we consider finite variable restrictions of FO. Recall that FOk: 
refers to the fragment of FO that consists of formulae in which at most k 
distinct variables are used. 
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Fig. 14.1. An example of a Kripke structure 

2 2 Theorem 14. 7. FO has the finite model pmperty: each satisfiable FO sen-
tence has a finite model whose size is at most exponential in II if? II· Further·
more, the satisfiability pmblem for· F02 is NEXPTIME-complete. The satisfia
bility pmblern for FOk, k > 2, is undecidable. D 

14.2 Temporal and Modal Logics 

In this section, we look at logics that are used in verifying temporal propPrtiPs 
of reactive systems. The finite structure in this case is usually a transition 
system, or a K ripke structure. It can be viewed as a labeled dirPcted graph, 
where the nodes describe possible states the system could bP in, and the edges 
indicate when a transition from one state to another is possihlP. To descrilw 
possible states of the system, one uses a collection of propositional variablPs, 
and specifies which of them are true in a given state. 

An example of a Kripke structure is given in Fig. 14.1. We have threP 
propositional variables, red, green, and yellow. The states are those in which 
only one variable is true, and the other two are false. As expected, from a red 
light one can go to green, from green to yellow, and from yellow to red, and 
the system can stay in any of these states. 

Sometimes edges of Kripke structures are labeled too, but since it is easy 
to push those labels back into the states, we shall assume that edges arP not 
labeled. 

Thus, formally, a Kripke structure, for a finite alphabet E, is a finite 
structure .5{ = (S, E, (Pa)aEE), where Sis the set of states, E is a binary 
relation on S, and for each a E E, Pa is a unary relation on S, i.e., a subset 
of S. Since assigning relations Pa can be viewed as labeling states with lPttc'rs 
from E, we shall also refer to the labeling function>.: S----> 21"·, given by 
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..\(s) = {aEE I sEPa}· 

We now define the simplest of the logics we deal with in this section: 
the propositional modal logic, ML. Its formulae are given by the following 
grammar: 

cp, '1/J ::= a (a E E) I cp /\ '1/J I ---,cp I Dcp I Ocp. (14.1) 

The semantics of ML formulae is given with respect to a Kripke structure .lt 
and a state s. That is, each formula defines a set of states where it holds. The 
formal definition of the semantics is as follows: 

• (Jt,s) f= a, a E E iff a E ..\(s); 

• (Jt, s) f= cp /\ 'ljJ iff (Jt, s) f= <p and (Jt, s) f= '1/J; 

• (Jt, s) F= ---,cp iff (Jt, s) ~ <p; 

• (Jt, s) f= Dcp iff (Jt, s') f= cp for all s' such that ( s, s') E E; 

• (Jt, s) f= Ocp iff (Jt, s') f= cp for somes' such that (s, s') E E. 

Thus, D is the "for all" modality, and 0 is the "there exists" modality: Dcp 
( Ocp) means that cp holds in every (in some) state to which there is an edge 
from the current state. 

Notice also that 0 is superfluous since Ocp is equivalent to ---,0---,cp. 

ML can be translated into FO as follows. For each ML formula cp, we 
define an FO formula cp0 (x) such that (Jt, s) f= cp iff .lt f= cp0 (s). This is done 
as follows: 

• a0 = Pa(x); 
• ( cp /\ '1/J) o = cpo /\ '1/Jo; 

• (---,cp)o -,cpa; 

• (Dcp) 0 = Vy ( R(x, y)--+ Vx (x = y--+ cp0 (x))). 

For the translation of Dcp, we employed the technique of reusing variables that 
was central in Chapter 11. Thus, cp0 is always an F02 formula, as it uses only 
two variables: x andy. Summing up, we obtained the following. 

Proposition 14.8. Every formula of the propositional modal logic ML is 
equivalent to an F02 formula. Consequently, every satisfiable formula cp of 
ML has a model which is at most exponential in II cp II· D 

The expressiveness of ML is rather limited; in particular, since it is a 
fragment of FO, it cannot express reachability properties which are of utmost 
importance in verifying properties of finite-state systems. We thus move to 
more expressive logics, LTL and CTL. 
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The formulae of the linear time temporal logic, LTL, are given by the 
following grammar: 

tp, tp1 ::= a (a E E) l ''P I 'P 1\ tp1 I Xtp I tpUtp'. ( 14.2) 

The formulae of the computation tree logic, CTL, are given by 

tp, tp1 ::= a (a E E) I ''P I 'P 1\ 'P1 I 
EXtp I AXtp I E(tpUtp') I A(tpUtp'). 

(14.3) 

In both of these logics, we talk about properties of path9 in the Kripke 
structure. A path in .5t is an infinite sequence of nodes 1r = s1s2 ... such that 
(s;, si+I) E E for all i. Of course, in a finite structure, some of thP nodes must 
occur infinitely often on a path. 

The connective X means "next time", or "for the next node on the path". 
The connective U is "until": 'P holds until some point where tp' holds. E is 
the existential quantifier "there is a path", and A is the universal quantifi<>r: 
"for all paths". 

To give the formal semantics, we introduce a logic that subsumes both 
LTL and CTL. This logic, denoted by CTL *, has two kinds of formulae: state 
formulae denoted by tp, and path formulae denoted by V'· These arc given by 
the following two grammars: 

tp, tp1 ::=a (a E E) I ''P I 'P 1\ 'P1 I E4' I A1b 
·~J, 'lj/ ::= 'P I •'1/J I '1/J 1\ 'lj/ I X'lj; I ·~JU'lj/. 

(14.4) 

The semantics of a state formula is again given with respect to a KripkP 
structure .5t and a state s. The semantics of a path formula V' is given with 
respect to .5t and a path 1r in Jt. If 1r = s1 s2s:3 ... , we shall write 1r" for thP 
path starting at sk; that is, sksk+1 .... 

Formally, we define the semantics as follows: 

• (.5t,s) f= a, a E E iff a E ..\(s); 

• (.5t, s) F= 'P A 'P' iff (.5t, s) F= 'P and (.5t, s) F= 'P'; 

• (.5t, s) F= ''P iff (.5t, s) ~ tp; 

• (.5t, s) f= E'lj; iff there is a path 1r = s1s2 ... such that s1 = sand (.5t. 1r) f= 
'1/J; 

• (.5t,s) f= Alj; iff for every path 7r = s1s2 ... such that s1 = 8, we have 
(.5t, 7r) F= ·1/J; 

• if 'P is a state formula, and 1r = s 1 s2 ... , then (.tt. 1r) f= 'P iff (K s1) f= tp; 

• (.5t, 1r) F= 'l/J 1\ '1/J' iff (.5t, 1r) F= 'l/J and (.5t, 1r) F= 4>'; 
• ( .5t, 1r) F= •'l/J iff ( .5t, 1r) ~ '1/J; 

• (.5t, 7r) F X'lj; iff (.5t, 7r2) F 'ljJ; 
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• (.It, 1r) f= 1/! U~/ ifthere exists k 2" 1 such that (.It, 1r") f= ?j/ and (.It, 1r') f= t/1 

for all i < k. 

Not(~ that LTL formulae are path formulae, and CTL formulae are state 
formulae. LTL formulae are typically evaluated along a single infinite path 
(hence the name linear temporal logic). On the other hand, CTL is well-suited 
to describe branching processes (hence the name computation tree logic). If 
we want to talk about an LTL formula 'ljJ being true in a given state of a 
Kripke structure, we shall mean that the formula A7/J is true in that state. 

Some derived formulae are often useful in describing temporal properties. 
For example, F?jJ = trueU?jJ, means "eventually", or sometime in the future, 
7/J holds, and G'ljJ = --,F--,'1/J means "always", or "globally", 7/J holds (true itself 
can be assumed to be a formula in any of the logics: for example, a V •a). 
Thus, AG7/J means that 1/J holds along every path starting from a given state, 
and EF\b means that along some path, 7/J eventually holds. 

For the example in Fig. 14.1, consider a CTL formula AG(yellow --> 

AFgreen), saying that if the light is yellow, it will eventually become green. 
This formula is actually false in the structure shown in Fig. 14.1, since 
yellow can continue to hold indefinitely long due to the loop. However, 
AG (yellow--> (AGyellowV AFgreen)), saying that either yellow holds forever 
or eventually changes to green, is true in that structure. 

The main difference between CTL and LTL is that CTL is better suited 
for talking about branching paths that start in a given node (this is the 
reason logics like CTL are sometimes referred to as branching-time logics), 
while LTL, on the other hand, is better suited for talking about properties of 
a single path starting in a given node (and thus one speaks of a linear·-tirne 

logic). For example, consider the CTL formula AG(EFa). It says that along 
every path from a given node, from every node there is a path that leads to a 
state labeled a. It is known that this formula is not expressible in LTL. Tlw 
formula A(FGa), saying that on every path, starting from some node a will 
hold forever, is a state formula resulting by applying the A quantifier to the 
LTL formula FGa; this formula is not expressible in CTL. 

While all the (~xamples seen so far could have been specified in other logics 
used in this book for example, MSO or LFP - the main advantage of these 
temporal logics is that the model-checking problem for them can be solwd 
efficiently. The model-checking problem is to determine whether (.It, s) f= zp, 
for some Kripke structure .It, state s, and a formula zp. The data complexity 
for CTL * and its sublogics can easily be seen to be polynomial (since CTL * 
formulae can be expressed in LFP), but it turns out that the situation is much 
better than this. 

Theorem 14.9. The model-checking problem for ML, LTL, CTL, and CTL * 
is fixed-parameter linear. For logic8 ML and CTL it can be solved in time 

0(11 rp II · II .It II) and for LTL and CTL *, the bound is 2°(1ft11l · II .It II· D 
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~'e illustrate the idea of the proof for the case of ~IL. Suppose we haw a 
formula cp and a Kripke structure k Consider all the subformula<' cp 1 •...• cp, 
of cp listed in an ordPr that ensures that if cp1 is a subfonnula of yi, then j < i. 
The algorithm then inductively labels each state s of .R \Vith either yi or 'l(J,. 
depending on which formula holds in that state. For the base case. there is 
nothing to do sinc·e the states are already labekd with Pit her a or ·,a for each 
a E E. For the induction, the only nontrivial case is ,,,..}wn cp, = D.;i for some 
j :::; i. Then for each state 8, wP check all the states s' with (8, s') E E. and 
see if all such s' have been labeled with cp1 in the jth step: if so. we label s 
by cp;; if not, we label it by '~?i. This algorithm can be irnplcmPntPd in time 
O(ll cp II · 11-RII). 

Next, we look at the connection betv.reen temporal and modal logics and 
other logics for finite structures we haw seen. ~'e already m<•ntiorwd that ?-.IL 
can be embedded into F02 . \Vhat about LTL? Vv'e can answer this quPstion 
for a simple kind of Kripke structures used in Chap. 7: t.hPsP are structures of 
the vocabulary CYL; = ( <, (1~, )oE~'), us<~d to represent strings. 

Theorem 14.10. Over finite str·ings ·triewed as sl.r-uctun·s of vocabulary a~·, 
LTL and FO ar·e equally e:rpressive: LTL = FO. D 

Interestingly, Theorem 14.10 holds for w-strings as w(•]J. hut this is outside 
the scope of this book. 

For CTL, one needs to talk about different paths, and lwnce OIH' should 
be able to express reachability properties such as "can a st ;1te labdcd 11 be 
reached from a state labeled b"? This suggests a dose conn('ction between 
CTL and logics that can express the transitive closure 01wrator. ''-'e illustrate 
this by means of the following exampk. 

Consid(~r a CTL formula AFa stating that aloug every path, a evPntually 
holds. \Ve now express this in a variant of DATA LOG. Let (171. T) be the 
following DATALOG~ program: 

R(.r.y) 
H(:r. y) 

'Po(.l:). lc'(:l', y) 
,f>a(z). U(:r, .~). E(z. y) 

This program computes a subset of the transitivc closure: the set of pairs 
(b.b') for which there is a path b =' b1,b2 .... ,h 11 -I,/J, = b' such that !lOll<' of 
the b/s, i < r1, is labele~d a. Kext, we defim~ a program (II2. U) that usPs!? as 
an ext<~nsional pn~dicat<': 

l!(:r) R(.r.:r) 
U(.l') ,f~,(x). F(.r. y). U(y) 

Suppose we have an infinite path over .R. Since .R is finite, it must haw a loop. 
If thPrc is a loop such that R(:L :r) hoids, then there is an infinitP path from 
x such that -,a holds along this path. If \VP han• any other path such that -lu 

holds along it, then it starts \Vith a few edg<'S and ewnt uallv enters a loop in 
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which no node is labeled a. Hence, U is the set of nodes from which there is 
an infinite path on which •a holds. Thus, taking the program (II:;, Q) given 
by 

Q(x) :- •U(x) 

we get a program that computes AFa. Notice that this program is stratified 
(for each stratum, the negated predicates are those defined in the previous 
strata) and linear (each intensional predicate appears at most once in the 
right hand sides of rules). The above translation techniques can be extended 
to prove the following. 

Theorem 14.11. CTL formulae can be expressed in either of the following: 

• the linear stratified DATALOG~; 

• the transitive closure logic TRCL. D 

Next, we define a fixed point modal logic, called the J.L-calculus and denoted 
by CALC~'' that subsumes LTL, CTL, and CTL*. Consider the propositional 
modal logic ML, and extend its syntax with propositional variables x, y, .. . , 
viewed as monadic second-order variables (i.e., each such variable denotes a 
set of states). Now formulae have free variables. Suppose we have a formula 
<p(x, ii) where x occurs positively in <p. Then J.LX.<p(x, if) is a formula with free 
variables if. 

To define the semantics of 'ljJ(if) = J.LX.<p(x, if) on a Kripke structure J'i, 
assume that each Yi from if is interpreted as a propositional variable: that is, 
a subset Y; of S consisting of nodes where it holds. Then <p(x, Y) defines an 
operator F: : 25 ---+ 25 given by 

F: (X) = { s E S (J'i, s) f= <p(X, Y)}. 

If x occurs positively, then this operator is monotone. We define the semantics 
of the J.L operator by 

(J'i, s) f= J.LX.<p(x, Y) ~ s E lfp(F:). 

Consider, for example, the formula J.LX.a VOx. This formula is true in (J'i, s) 
if along each path starting in s, a will eventually become true. Hence, this is 
the CTL formula AFa. In general, every CTL * formula can be expressed in 
CALCJL' 

Each CALC11 formula <p can be translated into an LFP formula <p0 (x) 
such that (J'i,s) f= <p iff J'i f= <p0 (s). FUrthermore, one can show that CALC1, 

formulae can be translated into MSO formulae as well. Summing up, we have 
the following relationship between the temporal logics: 

c { LTL } c C * c C c { LFP } ML 7:- CTL 7:- TL 7:- ALC1" 7:- MSO . 
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a a 

Fig. 14.2. Bisimulation equivalence 

In the f.L-Calculus, it is common to use both least and greatest fix<>d points. 
The latter are definable by vx.cp(x) = 'f.LX.,cp(--,x), assuming that .r occurs 
positively in cp. Notice that negating both cp and each occurrence of .r in it 
ensures that if x occurs positively in cp, then it occurs positively in ''P( --,;r), 
and hence the least fixed point is well-defined. Using the greatest and the least 
fixed points, the formulae of the f.L-calculus can be written in the alternating 
style so that negations are applied only to propositions. We shall denote the 
fragment of the f.L-calculus that consists of such alternating formulae with 
alternation depth at most k by CALc;~. 

Theorem 14.12. The complexity of the model-checking pr-oblem for· CALc~; 

is O(II'PII·II.itllk). D 

Since CALC1, can be embedded into LFP, its data complexity is polyno
mial. The combined complexity is known to be in NP n coNP. Furthermore, 
CALC11 has the finite model property: if cp is a satisfiable formula of CALC1" 

then there is a Kripke structure .it of size at most exponential in cp such that 
(.it, s) f= cp for somes E S. 

Finally, we present another way to connect temporal logics with other log
ics seen in this book. Since logics like CALC1, talk about temporal properties 
of paths, they cannot distinguish structures in which all paths agree on all 
temporal properties, even if the structures themselves are different. For exam
ple, consider the structures .it1 and .it2 shown in Fig. 14.2. Even though they 
are different, all the paths realized in these structures are the same: an infi
nite path on which every node is labeled a. CALC1, cannot see the difference 
between them, although these structures are easily distinguishPd by the FO 
sentence "There is a node with two distinct successors." 

One can formally capture this notion of indistinguishability using the defi
nition of bisimilarity. Let .it= (S, E, (Pa)aEE) and .it'= (S', E', (P,;)aa). WP 
say that (.it, s) and (.it', s') are bisimilar if there is a binary relation R <;;; S x S' 
such that 

• (s, s') E R; 
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• if (u, v') E R, then Pa(n) iff P/, (u'), for all a E E; 

• if (v,v.') E Rand (u.v) E E, then there is v' E S' such that. (11.1/) E R 
and (u.', v') E E'; 

• if (u., u') E Rand ('1L 1 , v') E E', then there is v E S such that (u, u') E R 
and (n, v) E E. 

A property of Kripke structures is bisirnulation-invariant if whenever it. 
holds in (.R.s), it also holds in every (.it',s') which is bisimilar to (.it.s). As 
we have seen, even FO can express properties which are not. bisimulat.ion
invariant., but CALc,, and its sublogics only express bisimulation-invariant. 
properties. 

The following result shows how to use bisimulation-invariance to relate 
temporal logics and other logics seen in this book. 

Theorem 14.13. • The class of bisirnulation-invariant properties expr-ess

ible in FO is precisely the class of properties expressible in ML. 

• The clas8 of bisirnulation-invariant properties expressible in MSO ·ts pre-

cisely the cla8s of properties expre8sible in CALCp. D 

14.3 Constraint Satisfaction and Homomorphisms of 
Finite Models 

Constraint satisfaction problems are problems of the following kind. Suppose 
we arc given a set V of variables, a finite domain D where the variables can 
take values, and a set of constraints C. The problem is whether there exists 
an assignment. of values to variables that. satisfies all the constraints. 

Each constraint in the set Cis specified as a pair ( iJ, R) where iJ is a tuple of 
variables from V, of length n, and R is an n-ary relation on D. The assignment 
of values to variables is then a mapping h: V-+ D. Such a mapping satisfies 
the constraint ( fi. R) if h( iJ) E R. 

For example, satisfiability of certain propositional formulae can be viewed 
as a constraint satisfaction problem. Consider the MONOTONE 3-SAT prob
lem. That is, W(~ have a CNF formula <p( x 1 , ... , Xm) in which every clause 
is either (:r:; V :r:.i V xk), or (':r:; V 'XJ V -,;r:k). Consider the constraint sat
isfaction problem where V = {:r1 , ... ,x11 }, D = {0,1}, and for each clause 
(:r:; V:r1 Vx,) we have a constraint. ((xi, x.i, :r:k), {0, 1 f3~{ (0, 0, 0)} ), and for each 
clause ( 'x;V -,;cJ V -,;r;,.) we have a constraint ((xi, Xj, x~c), {0, 1 r' ~ { (1, 1, 1)} ). 
Then the resulting constraint. satisfaction problem (V, D, C) has a solution iff 
<p is satisfiable. 

There is a nice representation of constraint satisfaction problems in terms 
of the existence of a certain homomorphism between finite structures. 

Suppose we are given a constraint satisfaction problem P = Cll, D. C). Let 
Rf, ... , Rj list all the relations mentioned in C. Let crp = ( R 1 , ... , R1). We 
define two CJp-structures as follows: 
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Then 

2tp = (V, {u 1 u::,Rf) E c} ..... {i" 1 (li.ll~J E c}) 
'23p = (IJ, Rf, .... R;';,). 

P has a solution 
{=} tlwre exists a homomorphism h : 121 p _, '23 p. 

Thus, the constraint satisfaction problem is really the problem of checkin~ 
whether tlwre is a homomorphism between two structures. \Ve tlms usC' th<• 
notation 

CSP(2t, '23) {=} then• exists a homomorphism h : 2t -~ '23. 

To see another example, let K, be the cliqu<' on 111 dements. Then 
CSP( G, Km) holds iff G is m-colorable. 

The constraint satisfaction problem can easily lw related to conjunctive 
query evaluation. Suppose we have a vocabulary a that consists only of re
lation symbols, and a a-structure 21. Let A = { a1 ..... a 11 }. \Ve define the 
Boolean conjunctiYe query CQ21 as 

:=l.rJ ... :=l.rn 1\ 1\ ll ( :r i 1 •••••• I" i n ) • 

REcr (a, 1 •.... 0 1111 )EI?'21 

Proposition 14.14. CSP(2t, '23) is tnw iff '23 f= CQ 21 . [] 

If C and C' are two classes of structures, tlH'n we write CSP(C, C') for the 
class of problems CSP(2t. '23) where 2t E C and '23 E: C'. \Ve use All for the 
class of all finite structures. 

The rn-colorability example shows that CSP(AII. All) contains ~P-hard 
problems. Furthermore, each problem in CSP(AII. All) can lw solwd in NP: 
given 2t and '23, we simply guess a mapping h : A -+ B, and check, in polyno
mial time, if it is a homomorphism lwtwP<'n 2t and '23. Thus, CSP(AII. All) is 
NP-complctC'. 

This naturally leads to the following qU<~stion: under what mnditious is 
CSP ( C, C') tractable? 

\Ve first answer this question in the setting suggested by the examples 
of MOJ.\OTONE 3-SAT and m-colorability. In both of these examples, we 
were interested in the problem of the form CSP(AII, 23); that is, in tll<' Pxis
tence of a homomorphism into a fixed structure_ This is a very commm1 class 
of constraint satisfaction problems. We shall write' CSP('23) for CSP(AIL 23). 
Thus, the first question we addn~ss is when CSP(23) can be )';Uaranteed to lw 
tractable. 

All problems of the form CSP('23) whose complexity is knmvn fall into 
two categories: they arc eithPr tractablP, or NP-compl<'h'. This is a real di
chotomy: if PT!ME of NP, thC're aw :"JP problems which arC' neith<'r tractable 
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nor NP-complete. In fact, it has been conjectured that for any ~' the prob
lem CSP(~) is either tractable, or NP-complete. In general, this conjecture 
remains unproven, but some partial solutions are known. For example: 

Theorem 14.15. For every ~ with IBI ::; 3, CSP(~) is either tractable, or 
NP -complete. D 

Moreover, for the case of IBI = 2 (so-called Boolean constraint satisfaction 
problem), one can classify precisely for which structures~ the corresponding 
problem CSP(~) is tractable. 

For more general structures~' one can use logical definability to find some 
fairly large classes that guarantee tractability. 

If one tries to think of a logic in which CSP(~) can be expressed, one 
immediately thinks of MSO. Indeed, suppose that the universe of ~ is 
{b0 , ... , bn-d· Then the MSO sentence characterizing CSP(~) is of the form 

::IXo ... ::IXn-1 IJ!, 

where IJ! is an FO sentence stating that, on a structure 2l expanded with n 
sets X 0 , ... , Xn- 1 , the sets Xi form a partition of A, and the map defined by 
sending all elements of xi into bi, for i = 0, ... 'n- 1, is a homomorphism 
from 2l to~-

However, while in many cases MSO is tractable, in general it is not suit
able to establish tractability results without putting restrictions on a class of 
structures 2l, since MSO can express NP-complete problems. 

To express CSP(~) in a tractable logic, we instead consider the negation 
of CSP(~): that is, 

·CSP(~) = {2ll there is no homomorphism h: 2l-> ~}. 

If 2l E ·CSP(~) and 2l is a substructure of 2l', then 2l' E ·CSP(~). 
This monotonicity property suggests that for some ~' the class -,CSP(~) 
could be definable in a rather expressive tractable monotone language such as 
DATALOG. If this were the case, then CSP(~) would be tractable as well. 

Trying to express ·CSP(~) in DATALOG may be a bit hard, but it turns 
out that instead one could attempt to express -,CSP(~) in a richer infinitary 
logic. 

Theorem 14.16. For each ~' the problem ·CSP(~) is expressible in 
DATALOG iff it is expressible in ::I.C~w· D 

Thus, one general way of achieving tractability is to show that the negation 
of the constraint satisfaction problem is expressible in the existential fragment 
of the very rich finite variable logic .C~w. 

Moving back to the general problem CSP(C,C'), one may ask whether 
CSP ( C, C') is tractable whenever CSP ( C, ~) is tractable for all ~ E C'. The 
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answer to this is negative: for each fixed graph G, the problem CSP( { K,, I 
rn EN}, G) is tractable, but CSP( { Km I m E N}, All) is not. However, for the 
class of structures above, a uniform version of the tractability result can be 
shown. 

Theorem 14.17. Let C 0 ATALoa'" be the class of stmctures 23 such that 
·CSP(23) is expr·essible by a DATALOG program that uses at most k: distinct 
variables. Then CSP(AII, CDATAwak) is in PTIME. D 

Yet another tractable restriction uses the notion of treewidth encountered 
in Chap. 6. If we let 7Wk be the class of graphs of treewidth at most k:, then 
one can show that ·CSP(7Wk> 23) is expressible in DATALOG (in fact, in the 
k-variable fragment of DATALOG). Hence, CSP(7Wk, 23) is tractable. 

In fact, this can be generalized as follows. We call two structures 2l and 
23 homomorphically equivalent if there exist homomorphisms h : 2l ---> 23 
and h' : 23 ---> 2l. Let WWk be the class of all structures homomorphically 
equivalent to a structure in 7Wk· 

Theorem 14.18. CSP(WWk, All) can be expressed in LFP {in fact, using at 
most 2k variables) and consequently is 'in PTIME. D 

Thus, definability results for fixed point and finite variable logics describe 
rather large classes of tractable constraint satisfaction problems. 

14.4 Bibliographic Notes 

A comprehensive survey of decidable and undecidable cases for the satisfi
ability problem is given in Borger, Gradel, and Gurevich [25]. It describes 
both the Bernays-Schi:infinkel and Ackermann classes, and proves complex
ity bounds for them. The finite model property for F02 is due to Mortinwr 
[184]; the complexity bound is from Gradel, Kolaitis, and Vardi [100]. Tlw 
II~ -completeness of containment of unions of conjunctive queries is clue to 
Sagiv and Yannakakis [211]. 

There are a number of books and surveys in which temporal and modal 
logics are described in detail: van Benthem [240], Clarke, Grumherg, and Pel eel 
[37], Emerson [64, 65], Vardi [246]. Theorem 14.10 is from Kamp [141]. Abite
boul, Herr, and Van den Bussche [2] showed that Kamp's theorem no longn 
holds if one moves from strings to arbitrary structures. It is also known that 
for the translation from LTL to FO, three variables suffice (i.e., over strings, 
LTL equals FO:\ see, e.g., Schneider [214]), hut two variables do not suffice 
(as shown by Etessami, Vardi, and Wilke [69]). The example of expressing 
a CTL property in DATALOG is from Gottlob, Gradel, and Veith [93], and 
Theorem 14.11 is from [93] and Immerman and Vardi [136]. Equivalence of 
bisimulation-invariant FO and modal logic is from van Bentlwm [240]. and 



14.4 Bibliographic Notes 289 

the corresponding result for MSO and CALC11 is from Janin and Walukiewicz 
[138]; for a related result about CTL *, see Moller and Rabinovich [183]. 

Constraint satisfaction is a classical AI problem (see, e.g., Tsang [235]). 
The idea of viewing constraint satisfaction as the existence of a homomorphism 
between two structures is due to Feder and Vardi [77]. They also suggested 
using expressibility in DATALOG as a tool for proving tractability, and formu
lated the dichotomy conjecture. Theorem 14.15 is due to Schaefer [213] (for 
IBI = 2) and Bulatov [28] (for IBI = 3). The existence of complexity classes 
between PTIME and NP-complete, mentioned before Theorem 14.15, is due to 
Ladner [159]. Other results in that section are from Kolaitis and Vardi [156] 
and Dalmau, Kolaitis, and Vardi [48]. The converse of Theorem 14.18 was 
proved recently by Grohe [112]. 
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